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modification of adenovirus (Ad) 5 to incorporate CD40 ligand (CD40L) rather than native fiber allows
selective transduction and activation of DCs in vitro. Here, we examine the capacity of this targeted
vector to induce immune responses to the tumor antigen CEA in a stringent in vivo canine model. CD40-
targeted Ad5 transduced canine DCs via the CD40-CDAOL pathway in vitro, and following vaccination of
healthy dogs, CD40-targeted AdS induced strong anti-CEA cellular and humoral responses. These data
validate the canine model for future translational studies and suggest targeting of Ad5 vectors to CD40
for in vivo delivery of tumor antigens to DCs is a feasible approach for successful cancer therapy.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Many immunological features of cancers that allow evasion of
immune surveillance and destruction have been revealed, enabling
the development of new and more effective immunotherapeutic
strategies. Immune evasion is now recognized to be due primarily
to a breakdown in the normal route of tumor antigen presenta-
tion to T cells [1). In order to mount an immune response against
a tumor, antigen presenting cells (APCs) monitoring peripheral tis-
sues must present tumor-associated antigens (TAA) to T cells. In
a fully functional immune system, APCs capture and present TAA
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to CD8+ T cells (lymphocytes) (CTL) and CD4+ helper T (Th) cells
in lymph nodes (LN), leading to the expansion and activation of
antigen-specific effector T cells. Once .activated, CTLs recognize
tumor cells expressing the presented TAA. The identification of
a variety of cancer-specific TAA has provided more options for
immunotherapy; however, TAA are often self-antigens to which
a considerable immunological tolerance is maintained, especially
depending on the route of T cell presentation [2]. Therefore, strate-
gies for overcoming tolerance and generating effective immune
responses against TAA are being developed based on harnessing
the immunostimulatory activity of APCs.

Delivering TAA specifically to dendritic cells (DCs) with an
antigen-delivery system offers tremendous potential for the devel-
opment of new cancer vaccines [3}. Supporting this, pre-clinicaland
clinical trials have focused on adoptive transfer of TAA-exposed
DCs. These approaches involve isolating DCs from the blood of
patients, exposing the DCs to TAA and other maturation stimuli in
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culture, and finally, re-injecting them into the patient. Although
encouraging results have been reported, there are substantial
medical, economic, and logistic complexities to this approach. In
addition, while pre-clinical trials in mice demonstrated highly
promising immune responses, including tumor regression and
remission, clinical trials in humans resulted in far fewer cases of
tumor stability or regression, suggesting these vaccines are not yet
optimal [4-8]. Possibly underlying these results, recent evidence
indicates that DCs matured ex vivo do not accurately mimic DCs
matured in vivo, precluding optimal immune system stimulation
[9]. Thus, a strategy to facilitate DC transduction to mediate TAA
delivery in vivo that is universally efficacious, regardless of haplo-
type, is required.

In regard to DC transduction efficiency, gene transfer and
immune stimulation, viral transduction methods have been found
to be superior to non-viral methods [10-12}. In addition to high
gene transfer efficiency, transduction of DCs with adenovirus
serotype 5 {Ad5)-based vectors offers many benefits over other
viral vectors. Ad5-mediated transduction does not require cell pro-
liferation and poses a low risk for insertional mutagenesis [13-16].
Furthermore, non-replicating Ads provide the additional benefit
of delivering TAA for only a finite amount of time, thus mini-
mizing the chances of inducing hyporesponsiveness to chronic
antigen presentation. Despite these advantages, DCs are relatively
refractory to Ad5 transduction due to limited cell surface expres-
sion of the primary Ad5 receptor, coxsackie virus and adenovirus
receptor (CAR) [17]. Thus, efficient Ad5-mediated gene transfer
to DCs requires high multiplicities of infection (MOI). To over-
come this, our lab has re-targeted Ad5 to CD40 expressed on
cell surfaces, achieving efficient and specific DC transduction and
antigen-specificimmune responses using low doses of Ad5 admin-
istered subcutaneously, a site enriched for DCs [17-25]. In addition
to providing a means for efficient DC transduction, CD40 liga-
tion and activation induces migration of mature DCs to the T cell
populated areas of the draining lymph node, thus CD40-targeted
vectors are likely to provide additional immunotherapeutic
benefits.

In the experiments presented here, the transduction poten-
tial of CD40-targeted Ad5 was determined in canine DCs, and the
immunostimulatory capacity of this targeting strategy was evalu-
ated in dogs, the mostrelevant translational animal model available
for evaluating many therapeutic modalities designed to combat
human diseases. Of particular relevance to our studies, dogs are
naturally susceptible to several cancers which mimic the onset,
progression and symptoms of the corresponding human cancers,
allowing therapeutic evaluation with increased clinical relevance
[26-29]. Indeed, many advances in human cancer therapies have
been made or improved through studies in canine patients, includ-
ing the first evaluations of cancer vaccines, and the analysis of
cytokine and chemotherapeutic regimens for pulmonary metas-
tases [26]. In addition, canine models provide dosing and vector
production challenges similar to those encountered in human clin-
ical trials [26,30,31].

The data presented from this pilot study in healthy dogs vali-
date the utility of the canine model for our translational studies,
and suggest that specific targeting of Ad5 vectors to DCs for in vivo
delivery of genes encoding TAA may provide an enhanced immune
response to disease-related antigens.

2. Materials and methods

2.1. Cell lines

The human embryonic kidney cell line 293 was purchased from
Microbix (Toronto, Ontario, Canada). The 293F28 and 293/hCD40

cell lines are derivatives of 293 cells which express either Ad5 wild-
type fiber (for mosaic virus propagation as described below) or
human CD40 as previously described [21]. The 293/cCD40 cell line
is a derivative of the 293 cell line which expresses canine CD40,
and was generated by transfection of 293 cells with the plasmid
pcDNA3.1canineCD40, and subsequent selection with 1000 pg/mi
of Geneticin (G418). A cell clone derived from this population that
expressed high levels of canine CD40 was identified by RT-PCR. All
293 and 293-derived cell lines were propagated in a 50: 50 mixture
of Dulbecco’s modified Eagle’s medium and Ham's F-12 medium
(DMEM/F-12) supplemented with 10% (v/v) fetal calf serum (FCS),
L-glutamine (2 mM), penicillin (100 units/ml) and streptomycin
(100 p.g/ml). FCS was purchased from Gibco-BRL (Grand Island,
NY) and media and supplements were from Mediatech (Herndon,
VA). RT-PCR analysis of cell lines revealed 4.47 x 107 copies/jLg
of human CD40 mRNA in 293/hCD40 compared to 5.6x 10~2
copies/jg in control 293 cells, and 6.44 x 103 copies/j.g of canine
CD40 mRNA in 293/cCD40 cells. 293F28 cells were maintained with
100 pg/mlZeocin (Invitrogen), and 293/hCD40 and 293/cCD40 cells
were maintained with 100 p.g/ml G418. All cell lines were cultured
at 37°Cin 5% CO,.

2.2. Gene therapy vectors

Ad5.FFhCD40L vectors expressing artificial fiber proteins con-
taining FF-CD40L and encoding either luciferase, CEA or GFP/CEA
were constructed as previously described [20,21]. Ad5 vectors
expressing the native fiber protein and encoding either luciferase,
GFP/luciferase or CEA were employed as controls[20,32,33]. Briefly,
Ad5 vectors encoding the native fiber protein were generated by
transfection of 293 cells with Pac I-digested Ad rescue vectors. Vec-
tors with FE-CD40L were generated by transfection of 293F28 cells
with Pac I-digested Ad rescue vectors. 293F28 cells stably express
the native Ad5 fiber, thus viruses rescued at this point were mosaic
in the sense that the Ad5 virions randomly incorporated a mixture
of native fibers and FF-CD40L chimeras. After additional rounds of
amplification on 293F28 cells, the viruses were amplified in 293
cells, which do not express native Ad5 fiber, to obtain virus particles
containing only FF-CD40L [21].

All Ad5 vectors were isolated from infected cells and purified by
equilibrium centrifugation in CsCl gradients according to astandard
protocol [34]. The protein concentrations in the viral preparations
were determined using the DC protein assay (BioRad, Hercules, CA)
with purified bovine serum albumin (BSA) as a standard. The virus
titers were calculated using the formula: 1 ug of protein=4 x 10°
viral particles (vp).

2.3. Preparation of canine peripheral blood mononuclear cell
populations

Whole blood (40-60ml) was collected from normal outbred
dogs in EDTA tubes (Becton, Dickinson), gently and thoroughly
mixed and centrifuged 30 min at 1000 x g at RT. The buffy coat
containing the peripheral blood mononuclear cell (PBMC) popu-
lation was extracted with a pipette in 1-2 ml and diluted with 8 ml
HBS (HEPES-buffered saline, no Mg/Ca, Gibco/BRL). The cell sus-
pension was layered over 5ml Histopaque 1077 (Sigma-Aldrich)
and centrifuged at 1000 x g at RT for 30 min. The band containing
the PBMC population was extracted in 1-2ml into a new sterile
tube and diluted with 2 ml HBS, mixed, and centrifuged once more.
The supernatant was removed and the cells gently resuspend in
5ml HBS. The cells were centrifuged once more and resuspended
in 4ml flow wash buffer (FWB-HBS containing 10% fetal bovine
serum) and incubated at RT at least 40min to allow blocking of
nonspecific sites.
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2.4. Flow cytometry and fluorescent activated cell sorting for
canine dendritic cells

Antibodies were obtained that recognize canine CD11c (mon-
oclonal mouse anti-dog CD11¢, Serotec) and human CD40
{monoclonal mouse clone B-B20, prelabeled with Zenon reagent
PE/Alexa Fluor 610, Invitrogen). The PBMC suspension was cen-
trifuged at 200 x g at RT for 10min, the supernatant removed,
and the cells resuspended in 1 ml FWB. Primary antibodies (100 ul
each) were then added, gently mixed, and incubated for 60 min
at RT in the dark. Then, 2ml HBS was added and the cell sus-
pension centrifuged at 200 x g for 10min. The supernatant was
aspirated and the cells were washed two additional times in 2 ml
HBS, finally resuspending them in 1ml FWB. Each cell suspension
was filtered to 50 jum in a sterile CellTrics disposable filter (Partec,
Germany).

Flow cytometry assays and fluorescent activated cell sorting
(FACs) were performed on a MoFlo flow cytometer and cell sorter
(Beckman Coulter). The CD11c expression profiles were deter-
mined using Summit 4.0 software (Beckman Coulter). The entire
cell suspension was sorted for each experiment and sorted cells
(CD11c+and CD11c-) sterilely collected into tubes containing 1 ml
of EBS. Both samples and sorted populations of cells were main-
tained at RT during the entire process.

To ensure recovery of exposed CD40 on the cell surface, cells
were allowed to recover for 4h prior to transduction with Ad
vectors. Following transduction, cells were collected by centrifuga-
tion, and brought into culture in RPMI-1640 (Gibco/BRL) containing
10% FBS, penicillin/streptomycin/fungizone (Gibco/BRL) and 25%
lymphocyte conditioned media (CM). CM was obtained from cul-
tures of freshly prepared canine lymphocytes which had been
stimulated for 24-48 h with phytohemagglutinin (PHA, 10 pg/ml,
Sigma-Aldrich) [35,36].

2.5. Recombinant protein purification and western blot analysis

The 6-HIS-tagged soluble human CD40L protein and its deriva-
tives were expressed in Escherichia coli BL21(DE3)(pLysS) as
previously described [21]. The concentrations of the proteins in
purified preparations and in cell lysate were determined using the
BioRad DC protein assay.

2.6. Gene transfer experiments

203, 293/hCD40 and 293/cCD40 cell lines and canine DCs were
plated in 24-well plates at 1 x 105 cells/well. Prior to transduction,
cells were washed with serum-free growth medium and incubated
on ice with 0.2 ml of either medium or medium containing a block-
ing agent. In the latter instance, recombinant Ad5 fiber knob [37]
or soluble hCD40L proteins were added to the medium at con-
centrations of 100 wg/m! for 1h on ice. Cells were transduced at
a multiplicity of infection (MOI) of 10, 100 or 1000 vp per cell
with Ad5 vectors in medium containing 2% FCS. After incubation on
ice for 1h, the medium containing the virus and the inhibitor was
removed, and cells were washed with medium containing 10% FCS.
Fresh medium was added, and incubation was continued at 37 °C
for 22 h to allow reporter gene expression. Cells were then washed
with PBS and lysed in Luciferase Reporter Lysis Buffer (Promega).
The luciferase activity in the cell lysates was measured according
to the manufacturer's protocol. Each data point was assessed in
triplicate and calculated as the mean of three determinations. In
instances where transduction was performed without the addition
ofablocking agent, the virus was added tothe cellsin 0.4 mlaliquots
of medium containing 2% FCS.

All incubation and washing steps in gene transfer experiments
involving DCs were performed in cell suspensions since these cells

are only loosely adherent. To minimize variation in the data, which
could result from the loss of cells during the washing steps, the
luciferase activity measured in the cell lysates was normalized to
the protein concentration of resulting cell lysates.

2.7. Invivo canine vaccinations

All experiments were conducted under the oversight of the
Auburn University IACUC committee in AAALAC approved animal
and clinical care facilities. Outbred beagle dogs from two litters
were used for vaccination. The dogs were 10 and 15 weeks of
age at the start of the experiment and weighed approximately
10-15kg each. Additional adult beagle and beagle-corgi crosses
were used to provide blood for isolation of PBMCs. 1 x 10° vp
of AdSCEA.FF/hCD40L (five dogs) or control Ad5CEA (five dogs)
vectors were delivered in 0.5 ml sterile phosphate-buffered saline
(PBS) to each dog. Intradermal (i.d.) injections were performed
in the right lower abdomen using a 25 gauge needle. The dogs
were re-injected with the same dose of each Ad5 vector and by
the same route as their original injection on weeks 4, 8 and 12.
Peripheral blood was collected each week and used for ELISA
detection of anti-CEA antibodies. At week 14, lymphocytes were
purified from collected peripheral blood for lymphoproliferation
assays.

2.8. Lymphoproliferation assays

PBMCs were obtained by density gradient centrifugation using
lymphocyte separation media (Celigro, Mediatech, Inc, Herndon,
VA) and were resuspended in complete medium consisting of
RPMI 1640 supplemented with 10% fetal bovine serum, 2mM L-
glutamine, 50 WM 2-mercaptoethanol, and antibiotics. Cells were
added at 1 x 105 cells per well in round bottom 96-well plates.
stimulated cells were incubated in triplicate wells with recombi-
nant human CEA protein (Vitro Diagnostics, Inc. Aurora, CO)over a
range of concentrations (1-30 p.g/ml). Additionally, BSA (30 p.g/ml)
or ovalbumin (OVA) (25 pg/ml) wells were included as negative
control antigens and Con-A wells (0.5 j.g/ml) were included as pos-
itive control mitogens. Control cells were cultured in complete
medium alone. All cells were incubated at 37°C in a humidified
atmosphere of 5% CO in air for two days, followed by an overnight
pulse with 1 p.Cifwell of tritiated thymidine diluted at 50 .Ci/ml.
Cells were harvested and incorporated radicactivity was quantified
using a solid-phase beta scintillation counter (Matrix 9600; Packard
Instrument Co., Downers Grove, IL). The StimulationIndex (S.1)ywas
calculated as the mean counts per million (cpm) of the stimulated
cells divided by the mean cpm of the control (OVA-stimulated)cells.
A positive response was defined as a post-vaccination S.1. >3.0. The
assay was performed in triplicate for each sample and results are
presented as means.

2.9. ELISA for detection of anti-CEA antibodies

For CEA antibody detection, 96-well EIA plates (Costar 3590)
were coated with recombinant CEA protein (Vitro Diagnostics, Inc.
Aurora, CO) at 100ng/well in borate saline (BS) buffer, pH 8.4, for
4h at RT, and then blocked with borate saline plus 1% (wjfv) bovine
serum albumin (BS-BSA). Serial three-fold dilutions of dog serum
in BS-BSA (1:50-1:109,350) were added to the wells and incu-
bated overnight at 4°C. Plates were washed with PBS containing
0.05% (v/v) Tween-20 and incubated with AP conjugated rabbit
anti-dog (IgG H+L) antibodies (Jackson Immunoresearch Labora-
tories, Inc. West Grove, PA) diluted 1:2000 in BS-BSA for 4h at RT.
After washing, AP substrate (p-nitrophenyl phosphate, Sigma St.
Louis, MO) in diethanolamine buffer, pH 9.0, was added and incu-
bated for 20min at RT. Absorbance was measured at 405nm on
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a Multiskan Ascent microplate reader using Ascent software (Lab-
systems OY, Helsinki, Finland). Absorbance on CEA coated plates
was corrected for absorbance on parallel plates coated with oval-
bumin (Sigma-Aldrich Chemical Co., St. Louis, MO). COL-1 mouse
monoclonal antibody to CEA (NeoMarkers, Fremont, CA) followed
with AP conjugated goat anti-mouse IgG (Southern Biotechnology,
Birmingham, AL) was used as a positive control. For detection of
IgG isotypes goat anti-dog IgG1 and sheep anti-dog 1gG2 antibod-
ies conjugated to horseradish peroxidase (Bethyl Laboratories Inc,
Montgomery, TX) were applied to the wells at adilutionof1:10,000.
After incubation and wash 3,3, 5'5 tetramethyl benzidine substrate
(Sigma) was applied for colorimetric development. The reaction
was stopped by adding 0.5M H2504 and absorbance was read at
450 am. Statistical analysis was performed by using two-tailed Stu-
dent's t-test and values are presented as mean+ standard error of
the mean.

3. Results
3.1. Generation of CD40-targeted Ad5

‘Human, rhesus and murine DCs have been successfully trans-
duced with CD40-targeted Ad5 in vitro, resulting in selective

transduction and simultaneous activation of DCs, indicating CD40 is
an effective target in many species [17-24,38,39]. To establish the
principle that CD40-targeted Ad5 can also mediate gene transfer
to canine DCs, we employed a genetically engineered Ad5 vector
encoding firefly luciferase, designated Ad5Luc.FF/hCD40L (Fig. 1)
[19,21]. This vector was previously constructed so that the shaftand
knob domains of the native fiber protein are replaced by phage T4
fibritin (as a trimerization motif) genetically fused to the TNF-Like
(TNF-L) ectodomain of human CD40L (Fig. 1A). The presence of the
phage T4 fibritin structure allows the TNF-L ectodomain of CD40L
to retain its functional tertiary structure, required for activation of
CD40 [21]. Human and canine CD40 are 83% similar, and amino
acids predicted to be involved in CD40-CD40L binding are con-
served [40,41], suggesting an Ad5 vector expressing human CD40L
may interact effectively to allow transduction of CD40-expressing
canine cells.

3.2. Gene transfer analysis in 293 cells expressing CD40

To confirm that the human CD40L ectodomain of
Ad5LucFF/hCD40L mediates vector targeting to canine CD40,
luciferase transgene expression was analyzed as a measure of
vector transduction potential in 293 cells and cell lines stably
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expressing CD40. 293 cells, which do not express endogenous
CD40, or 293 cells stably transfected with either human €D40
(293/hCD40) or canine CD40 (293/cCD40) were incubated with
either untargeted Ad5Lucl or CD40-targeted Ad5Luc.FF/hCD40L
(10 vp/cell) (Fig. 1B). All 293 cell lines, which express the Ad5
receptor, CAR, were efficiently transduced by untargeted Ad5Lucl.
In contrast, wild-type 293 cells incubated with Ad5Luc.FE/hCD40L
expressed very low levels of luciferase, indicating this CD40-
targeted vector does not transduce cells efficiently through CAR.
However, Ad5LucFF/hCD40L-mediated luciferase expression
in both 293/hCD40 and 293/cCD40 cells (Fig. 1B), suggesting
Ad5Luc.FF/hCD40L capably transduces cells expressing either
human or canine CD40.

3.3. Validation of CD40-mediated transduction

To further investigate the targeting specificity of
Ad5Luc.FF/hCD40L, viral transduction was performed in the
presence of specific blocking agents. Prior to transduction, 293,
293/hCD40 and 293/cCD40 cells were incubated with either
soluble recombinant Ad5 fiber knob or soluble human CD40L
(shCD40L) to block CAR or €D40, respectively, on the cell surface.
Luciferase expression under these blocking conditions was com-
pared to luciferase expression without blocking (normalized for
each vector to 100%). As shown in Fig. 1(C-E), transduction of all
293 cell lines by Ad5Luc1 was inhibited by soluble knob (87% block
in 293 cells, and 90% block in 293/hCD40 and 293 JcCD40), indicat-
ing transduction by untargeted Ad5 requires CAR, as expected. The
very low level of luciferase expression in 293 cells incubated with
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Ad5Luc.FF/hCD40L was not affected by soluble Ad5 knob (Fig. 1C).
The high luciferase expression levels in 293/hCD40 and 293/cCD40
cells transduced by AdSLuc.FF/hCD40L were not affected when
CAR was blocked with soluble Ad5 knob (Fig. 1D and E), further
demonstrating that Ad5Luc.FF/hCD40L does not require CAR for
transduction of CD40-expressing cells. In contrast, pre-incubation
with shCD40L decreased luciferase expression levels by 81% in
293/hCD40 cells, and by 78% in 293/cCD40 cells (Fig. 1D and E),
but did not affect luciferase expression levels following Ad5Luct
transduction in 293 cells (Fig. 1C). These results demonstrate that
transduction by Ad5Luc.FF/hCD40L specifically requires cellular
expression of CD40.

3.4. Targeted gene transfer to canine cells

To determine if CD40-targeted Ad5 also transduces canine DCs,
as observed with DCs from other species, transduction experi-
ments were conducted with canine DCs cultured from isolated
PBMCs. Flow cytometry with anti-CD40 and -CD11c antibodies
indicated CDA40 expression on 43.5% of CD11c+ PBMCs (DCs), while
only 1.7% of CD11c~ cells were CD40+ (Fig. 2A). Based on CD40
expression, DCs were sorted into two groups: CD11c¢c+/CD40—
and CD11c¢+/CD40+. Cells from each group were incubated with
either Ad5Lucl or AdSLuc.FF/hCD40L for analysis of transduc-
tion efficiency as measured by luciferase expression levels, As
observed previously with human DCs [17], canine CD11c+/CD40+
DCs were refractory to transduction by untargeted Ad5, even at
a very high vector concentration of 1000 vp/cell (Fig. 2B). In
contrast, luciferase transgene expression was 15-fold higher in
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Fig. 2. Receptor specificity of cell transduction and efficiency of gene transfer mediated by CD40-targeted AdS5 in canine DCs. (A) Anti-CDA40 antibodies detected expression of
CD400n43.5%CD11c+cells, and celis were sorted cells based on CD40 expression levels. (B)CD1 1c+/CD40+and CD11c+/CD40— cells were transduced with untargeted Ad5Luct
(white bars) or CD40-targeted AdSLuc.FF/hCD40L (black bars) at an MOI of 1000 vp/cell to determine the receptor specificity of vector transduction, (C) CD11c+/CD40— and
(D) CD11c#/CD40+ canine cells were transduced with untargeted Ad5Luc1 (white bars) or CD40-targeted Ad5Luc.FF/hCD4OL (black bars) at an MOI of 1000 vp/cell in the
presence of recombinant Ad5 fiber knob or soluble human CD40L to further confirm the receptor specificity of vector transduction. Luciferase activity detected in the presence
of blocking agents is normalized against luciferase activity in absence of blocking agents. Mean = SD are shown from three replicates performed simultaneously.
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CD11c+/CD40+ DCs incubated with Ad5Luc.FF/hCD40L. Transgene
expression was only slightly increased in CD11c+/CD40— DCs fol-
lowing incubation with Ad5Luc.FF/hCD40L, suggesting this vector
specifically transduces cells via CD40. This minimal increase in
Ad5Luc FF/hCD40L-mediated gene transfer in CD11c+/CD40— DCs
may be due to low-level expression of CD40 in this CD11c+ sub-
set that could not be detected by flow analysis. Supporting this,
luciferase expression was 84% lower in CD11c+/CD40+ cells pre-
incubated with shCD40L and transduced with Ad5Luc.FF/hCD40L,
but only 30% lower in CD11c+/CD40— cells pre-incubated with
shCD40L (Fig. 2C and D). Furthermore, when transductions were
performed with vectors encoding GFP, GFP expression was detected
only in CD11c+/CD40+ cells incubated with the CD40-targeted
vector. GFP expression was not detected in CD11c+/CD40— cells
incubated with CD40-targeted vector or in either DC subset incu-
bated with untargeted vector (Supplementary Fig. 1). These results
again confirm the specificity of CD40-mediated transduction by this
CD40-targeted Ad5 vector. Thus, the efficient and specific delivery
of transgenes to canine DCs by Ad5Luc.FF/hCD40L in vitro validates
the examination of this vector for in vivo delivery of transgenes to
CD40-expressing cells, particularly DCs.

3.5, Antigen-specific immune responses following vaccination in
healthy dogs

The ultimate goal is the development of a vaccine that can
deliver tumor-specific transgenes to DCs in vivo in order to gen-
erate a TAA-specific immune response. Therefore, it was critical
to investigate the capacity of untargeted versus CD40-targeted
AdS5 vectors to induce TAA-specific immune responses. We have
previously demonstrated an enhanced immune response in mice
following injection of CD40-targeted Ad5 by various routes [25].
To determine if similar immune responses are detected in dogs, we
performed a pilot experiment with healthy dogs injected with Ad5
vectors engineered to express human carcinoembryonic antigen
(CEA) as a model tumor antigen (AdSCEA and Ad5CEA.FF/hCD4OL).
CEA orthologues have been identified in dogs; however xenoanti-
gens are more likely to overcome immunotolerance and induce

a more robust antigen-specific immune response [42-45]). Five
dogs received id. injections of Ad5CEA (1 x10° vplinjection)
and five dogs received injections of Ad5CEA.FF/hCD40L (1 x 10°
vp/injection) according to the schedule outlined in Fig. 3A. One dog
served as a negative control, receiving no injections. At week 14,
PBMCs were harvested and lymphocyte proliferation was quan-
tified as a measure of TAA-specific T cell activation. An S.IL of
greater than 3.0 was considered positive. A positive lymphopro-
liferative response was observed in three of five dogs immunized
with AdSCEA.FF/hCD40L and in four of five dogs immunized with
Ad5CEA, although the average S.I. tended to be greater in respond-
ing animals immunized with Ad5CEA.FF/hCD4O0L (Fig. 3B). These
results suggest that while vaccination with either untargeted or
CD40-targeted Ad5 induces an antigen-specific T cell response, this
response may be magnified in individuals responding to the CD40-
targeted vector.

To analyze antigen-specific humoral immune responses, CEA-
specific 1gG serum concentrations were quantified. A strong
anti-CEA humoral immune response was induced in both groups
of dogs by 14 days post-immunization, though the antibody titer of
dogs immunized with untargeted Ad5CEA was significantly higher
as measured on days 21, 35 and 42 (Fig. 4A). We further exam-
ined the isotype of the antibody response on day 35, the day with
the most significant difference in antibody responses between the
groups. The concentration of I1gG1 was significantly lower in dogs
immunized with Ad5CEA.FF/hCD40L (Fig. 4B and C), resulting ina
higher ratio of IgG2 to IgG1 (Fig. 4D).

4, Discussion

DC-based vaccination can overcome tumor-associated suppres-
sion of immune responses, although the full potential of this
strategy has yet to be realized in the context of a reliable cancer
therapy [4-8]. In order to overcome the potential limitations asso-
ciated with autologous DCs transduced and matured ex vivo, our lab
has investigated methods to directly transduce and activate DCs in
vivo in a an animal model highly likely to provide clinically relevant
information.



7122 .

E.E. Thacker et al. / Vaccine 27 (2009) 7116-7124

A a0 (D) OnadsceA
sk - W AJ5CEAFFINCDAOL
1 i M-+ Ad5CEA
2 a0 * —&— Ad5CEAFF/MCDAOL ©
& W .
5E %
g- g e * ".‘ v
% g 204 & Q30
0 RO -
82 I
B . . O 20
£ j0d 5 Aee——y N P D
[
10
0.0+ - -
7 14 2 35 42 0 101 112 0
Days post-vaccination
(B) . (C) ...m--- AGBCEA
%* L —tr= AJSCEA FF/HCDAOL.
- .o g~ AGSCEA :
5. 3w, * o
BDE s A\ GSCEA, FFINCD40L 603
- E i, B5E
&= 2 2 ‘g e .
89 58’
Q. g_"
‘Q.ﬁ 1. & g §
<< g’
8 A
0 " o g+
102 103 104 105 108 102 108 104 10% 108
1idilutions 1idilutions

Fig. 4. Antigen-specific humoral responses in healthy dogs vaccinated with CD40-targeted AdS. (A) Serum was drawn
detect human CEA-specific canine IgGs.
to determine total 1gG concentrations. (B) 1gG1 and (C) IgG2 isotypes were detected with

Ad5CEA (squares) or AdSCEAFF/hCD40L (triangles). ELISAs were performed to
recombinant human CEA, and detected with anti-dog 1gG secondary antibody

goat anti-dog 1gG1 and sheep anti-dog IgG2 antibodies, respectively. (A, B and C) Absorbance was read at 450 nm. Statistical analysis for was

weekly from each dog following vaccination with
Serum from each time point was incubated with

performed by using two-tailed

Student's t-test and values are presented as mean £ SE. *p<0.05; **p<0.0001.(D) Average ratio of 1gG2:1gG1 following vaccination with Ad5CEA (white) or AdSCEA.FF/hCD40L

(black).

Several strategies to accomplish in vivo delivery of immunother-
apeutic antigens to DCs have now been reported, including the use
of free antigen, protein fusions and viral gene therapy [46-51].
However, complete success depends on overcoming biological
delivery challenges. In this regard, Arthur et al. previously found
that Ad5 vectors are superior to other non-viral methods for deliv-
ering antigens to DCs in vitro [10], and other groups have since
demonstrated highly efficient Ad5-mediated gene transfer to DCs
ex vivo, using high concentrations of Ad5 [52,53]. Additionally, Ad5
capsid protein isa potent adjuvant thatenhances CTLresponse [54].
Therefore, TAA transfer by Ad5 vectors is likely to enhance produc-
tion of tumor cell-specific CTL [55]. Thus, an Ad5 vector re-targeted
to bind a specific protein expressed on the surface of DCs seems
likely to provide an enhanced in vivo immunotherapeutic strategy.

In addition to targeting DCs, proper activation and matura-~
tion of DCs is crucial for stimulating an antigen-specific immune
response. It is now obvious that the collective term “DC” actually
refers to a heterogeneous population of cells, derived from differ-
ent lineages, in different maturation states, and likely displaying
distinct functional features [8]. In general, antigen presentation by
mature DCs leads to an antigen-specific immune response, while
antigen presentation by immature DCs has been implicated in
the induction of immune tolerance through activation of regu-
latory T cells [56]. CD40 is an attractive candidate for targeting
DCs as it is expressed on the cell surface of DCs, and, while it is
also expressed on endothelial cells and other immune cells, CD40
expression is far less ubiquitous than CAR expression. Additionally,
localized dermal injection of CD40-targeted virus delivers virus to
a location that is rich in CD40-positive DCs and lacks substantial
numbers of other CD40-expressing cells, such as B cells. Binding:
of CDA40L to CD40 induces DC maturation, enabling these cells to
migrate to draining lymph nodes and activate antigen-specific T
cells. This complete activation of DCs is critical for tumor rejection
in vivo [57].

Results from the analysis of our in vitro gene transfer in
model cell lines and canine DCs demonstrates CD40-targeting dra-
matically enhances Ad5-mediated transgene expression in cells
expressing CD40, and in DCs in particular. Furthermore, CD40-
targeted Ad5 requires cell expression of CD40 for transduction, and
is incapable of transducing cells through CAR. This specificity will
likely allow in vivo transduction of DCs with a much lower vec-
tor dose than is required for untargeted Ad5 transduction. Studies
are currently underway to confirm the in vivo cell specificity of
CD40-targeting.

In order to obtain clinically relevant information regarding
the immune response generated in vivo following vaccination
with CD40-targeted Ad5, we immunized healthy dogs with CD40-
targeted or untargeted Ad5 encoding human CEA as a model tumor
antigen. A key issue in the successful development of effective
cancer immunotherapies is the design of vaccines that can over-
come immune tolerance and induce a T cell response to autologous
TAA, which are also expressed by normal cells. In this regard,
experiments in mouse models suggested that vaccination with
xenogeneic TAAs (xenoantigens) encoding slight differences in
sequence overcome immune tolerance by improving MHC I and
11 epitope presentation, evoking tumor immunity [42-45]. Thus,
using Ad5 vectors encoding human CEA allowed us to more thor-
oughly investigate the potential of eliciting TAA-specific immune
responses in dogs via a CD40-targeted Ad5 vector.

Antigen-specific T cell responses were generated in dogs receiv-
ing either the CD40-targeted vector or the untargeted vector.
Interestingly, the extent of lymphoproliferation appeared to be
enhanced in responders immunized with CDA40-targeted Ad5 as
compared to untargeted AdS, though these responses will need
to be investigated with a larger number of dogs in order to thor-
oughly evaluate statistical significance. Further, as observed with
previous studies in mice [25],an antigen-specific humoral response
was also observed following vaccination with either CD40-targeted
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or untargeted vectors in all dogs. However, a clear difference in
the quality of the response was detected in the ratio of 1gG1 to
1gG2 isotypes generated by the two vectors. Though the relation-
ship between Th type responses and 1gG subclass has not been
completely characterized in dogs [58], previous reports suggest
that increased IgG2 production correlates with a Th1 type immune
response that is characterized by a cytokine profile similar to that
in humans [59-62]. Also similar to human patients, Th1 induc-
ing cells, as determined by cytokine production, are diminished
in dogs with metastatic cancers [63]. Suppression of DC-activated
Th1 immunity has been implicated in the progression of cancers
such as melanoma, thus an enhanced antigen-specific Th1 cellular
immune response is likely to result in a more effective anti-tumor
response. Future studies measuring cytokine release by T cells will
be required for complete evaluation of the immune response gen-
erated, however.

In summary, these results from a pilot vaccination study in dogs
confirm in a clinically relevant animal model that re-targeting Ad5
to bind CD40 circumvents the requirement for CAR expression,
allowing efficient transgene expression in DCs in vitro, and subse-
quent antigen-specific immune responses in vivo. CD40-targeted
Ad5 may in turn provide more effective cancer therapies. Most
importantly, immune responses in these dogs are comparable to
expected responses in humans, and establish that dogs provide
a reliable intermediate model system for investigating potential
immunotherapies for cancers such as osteosarcoma, lymphoma,
breast cancer and melanoma. Thus, these experiments have pro-
vided the critical groundwork necessary to aliow further evaluation
of targeted immunotherapies in canine cancer patients in order
to provide information for development of successful translational
therapies.
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Measles virus Edmonston strain (MV-Edm) is thought
to have remarkable oncolytic activity that selectively
destroys human tumor cells. The P/V/C protein of wild-
type MV was shown to resist the antiviral effects of inter-
feron (IFN)-o.. Here, we engineered new MVs by arming
MV-Edm tag strain (a V-defective vaccine-lineage strain,
MV-Etag) with the Por N, P, and L genes of wild-type MV
(MV-P and MV-NPL, respectively). The oncolytic activi-
ties of the MVs were determined in human renal cell car-
cinoma (RCC) cell lines and primary human RCC cells
by the MTT assay. The antitumor efficacy of the MVs
was evaluated in A-498 xenografts in nude mice. IFN-o
effectively inhibited the replication of MV-Etag and MV-P,
but not MV-NPL. MV-NPL more efficiently induced cyto-
pathic effects (CPEs) in OS-RC-2 cells, even in the pres-
ence of human [FN-o.. MV-NPL replicated more rapidly
than MV-P and MV-Etag in A-498 cells. Apoptosis was
induced earlier in A-498 cells by MV-NPL than MV-Etag
and MV-P. MV-NPL showed more significant antitumoral
effects and had prolonged replication compared toc MV-
Etag and MV-P. In this study, we demonstrated that the
newly engineered MV-NPL has more effective oncolytic
activity and may help establish an innovative cancer
therapy.

Received 31 August 2009; accepted 2 December 2009; advance online
publication 3 fanuary 2010. doi:10.1038/mt.2009.296

INTRODUCTION

Oncovirotherapy, which uses replication-competent viruses as
a cancer therapy, is attracting much interest.'* Recently, several
reports confirmed that these live-attenuated viruses can induce
rapid and lytic infections in tumor cells.”!® Furthermore, some
viruses are being used as cancer therapies in current clinical

trials.*12 Measles virus Edmonston strain (MV-Edm) has potent
antineoplastic activity against various human cancers, includ-
ing lymphoma, ovarian cancer, mesothelioma, breast cancer,
and hepatocellular carcinoma.!,>-¢ It selectively induces potent
cytopathic effects (CPEs), notably intercellular fusion in cancer
cells, but causes minimal damage in normal cells.>" In addition,
the MV genome is very stable and the vaccine strains have never
reverted to pathogenic forms, making MV highly suitable for fur-
ther development as an oncolytic agent.

Measles virus is a negative-strand RNA virus of the
Morbillivirus genus in the Paramyxoviridae family. A polymerase
(L) and its cofactor (P) associate with the viral RNA and N protein
to form a ribonucleoprotein. This complex is surrounded by the M
protein. The P gene encodes the P protein and two nonstructural
accessory proteins, C and V."® The two MV envelope glycoproteins
H and F work in concert to induce virus—cell membrane fusion.
CD46 and CD150 were identified as two MV receptors. CD150
expression is confined to immune cells, whereas CD46 is expressed
ubiquitously in nucleated cells.””-* CD46 is abundantly expressed
in cancer cells,» but minimally expressed in normal cells such as
fibroblasts and peripheral blood lymphocytes,”” making cancer
cells a suitable target for MV oncolytic therapy.

Type I interferon (IFN-a/P) is a powerful innate antiviral
defense. MV vaccine strains can induce significantly higher levels
of type I IFN than wild-type MV.** To combat the cellular innate
immune response, many viruses encode antagonistic molecules
that block some steps of the type I IFN antiviral response.”® The
P proteins of wild-type MV have been shown to resist type I IFN.
Furthermore, an engineered MV-Edm tag strain (MV-P), whose
P gene was replaced with the comparable wild-type gene, induces
significantly less IFN-a in tumor cells and has enhanced oncolytic
potency against human multiple myeloma compared to the paren-
tal virus.”? The major function of the N protein is to surround
the genomic RNA, encapsidate the viral genome, and support
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its replication and transcription.’*” The N, P, and L proteins are
assembled into the ribonucleoprotein, which is the viral replica-
lion unit, Therefore, we reasoned that combining a safe targeted
therapy mechanism that destroys the host antiviral genetic pro-
gram and enhances viral genome replication in cancer cells would
generate a novel and innovative cancer gene therapy.

In this study, we generated a newly engineered MV, MV-NPL,
which is based on the Edm tag strain but is armed with the N,
P, and L genes of the wild-type strain. We demonstrated that
MV-NPL has enhanced oncolytic activity against human renal
cell carcinoma (RCC) cell lines in vitro and in vivo compared to
MV-Edm tag and MV-P. We found that MV-NPL had faster rep-
lication and transcription than MV-Edm tag and MV-P in RCC
cell lines in vitro and RCC cell line xenografts in vivo. In addition,
MV-NPL efficiently proliferated and killed RCC cell line even in
the presence of IEN-a. Furthermore, this oncolytic activity was
specific as MV-NPL caused minimal cytopathic effects in normal
human cell line.

RESULTS

CD46 is overexpressed in human RCC cell lines

CD46 expression in the human RCC cell lines A-498 and
0S-RC-2, primary human RCC cells of T5, normal human skin
fibroblast cell line BJ-1 was analyzed by flow cytometry. CD46
was expressed on the surface of most human RCC cell lines and
primary human RCC cells: 93.8% in A-498, 93.7% in OS-RC-2,
and 92-95% in primary human RCC cells (n = 3). However,
only 8.7% in BJ-1 demonstrated positive expression of CD46
(Figure 1). These results demonstrated that human RCC cell
lines and primary RCC cells expressed higher levels of CD46
than normal cells.

MV-NPL induces stronger CPEs than MV-P and
MV-Etag in human RCC cell lines and primary

human RCC cells

Schematicrepresentation of the genome of MV-Etag (a V-defective
vaccine-lineage strain) strain, engineered MV-Etag strain that
expresses the wild-type P gene (MV-P) and the engineered
MV-Etag strain that expresses the wild-type N, P, and L genes
(MV-NPL)}is shown in Figure 2a. They were rescued and efficiently
propagated in Vero cells and used for the following experiments.
We studied the CPEs associated with each MV in the human RCC
cell lines A-498 and OS-RC-2, primary RCC cells (1 = 3), the nor-
mal human skin fibroblast cell line B]-1. Cells were infected with
the various viruses at multiplicities of infection (MOlIs) of 1 and
0.1 for 120 hours and the stained with crystal violet. Compared
to MV-P and MV-Etag, MV-NPL demonstrated more dramatic
CPEs in an MOI-dependent manner (#n = 3; Figure 2b). The CPEs
appeared at 72 hours postinfection with each MV at an MOI of 0.1
in both A-498 and OS-RC-2 cells and primary RCC cells (data not
shown). However, normal human cell line BJ-1 showed minimal
CPEs after each MV infection (Figure 2b). We further determined
the cell viability after infection with the various viruses using the
Cell-Titer 96 Aqueous Non-Radioactive Cell Proliferation Assay.
Analyses were performed every 24 hour for 120 hours. Compared
with MV-P and MV-Etag, MV-NPL demonstrated a greater
reduction of proliferation in A-498, OS-RC-2, and primary RCC

& The American Society of Gene & Celi Therapy

250 250
200 200
] M1 M1
2 2 150 3 l !
f24 =
> 3
0 o
5] G 160 3
50
04

08-RC-2
250 250 4
200 4 200 1
© 150 5 M1 0 150 |__ﬂ1___i
[ l—————————-———- =
3 3
o o
A 100 4 O 100 §
50 50 3
0 0 T 4 YTy
10° 10' 10® 10 10° 10°  10' 10* 10*  10*

5 BJ-1

Figure 1 CD46 receptor expression on the human renal cell card-
noma {RCC) cell lines A-498 and OS5-RC-2, primary human RCC cells
of T5, and normal human cell line B}-1. CD46 receptor was highly
expressed on the human RCC cell lines A-498 and OS-RC-2 as well as
primary human RCC cells of T5, but was minimally expressed on the nor-
mal human cell line BJ-1. The analysis was performed by flow cytometry.
CD46 expression in isotype control is 1%. The thick histograms show
the measured fluorescence of cells incubated with an isotype control
(detailed) and the thin histograms represent cells labeled with an anti-
CD46 fluorescein isothiocyanate antibody.

cells from 72 or 96 hours to 120 hours at an MOI of 0.1 (1 = 3;
Figure 2¢).

MV-NPL induces faster cell lysis in A-498 cells

than MV-P and MV-Etag

A-498 cells were plated in 6-well plates at a density of 2 x 10°
cells/well. The cells were infected with various viruses at an
MOT of 0.1 and the supernatants and cells were collected from
12 to 120 hours. The intracellular viruses were released by two
cycles of freezing/thawing. The viral titers were determined as
the TCID50 (50% tissue culture infective dose) in Vero cells in
a 96-well plate. The intracellular MV-NPL viral titer of A-498
cells peaked at 60 hours postinfection (Figure 3a). Compared
with MV-NPL, intracellular MV-P virus demonstrated slower
replication and the viral titer peaked at 84 hours (Figure 3a).
In the culture supernatant, the MV-NPL viral titer peaked at
72 hours (Figure 3b). Similar to the intracellular viral titer,
the extracellular MV-P titer peaked with delayed kinetics at
84-96 hours compared to MV-NPL. We also found that after
the intracellular viral titer peaked, the viral titer in the culture
supernatant peaked in A-498 cells infected with MV-NPL. Real-
time RT-PCR analyses revealed a time-dependent increase in
measles viral mRNA in A-498 cells, and compared with other
viruses, cells infected with MV-NPL demonstrated higher viral
mRNA levels (Figure 3c).

MYVs induced human IFN-a production from human nor-
mal skin fibroblast cells of BJ-1, and human RCC cells of A-498
and OS-RC-2. MV-NPL more effectively evaded to the antiviral
defense of IFN-a in Vero cells than MV-P and MV-Etag,
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@ The American Society of Cene & Cell Therapy

[Nndpve[ M T F T HT

L _J-mv-p

A-498

08-RC-2

5

(]
IC-B Wild Type 120

L J—MV-Etag

Oncolytic MV-NPL for Cancer Therapy

A-498
MO =0.1
100 i ¥ b 4 3
I
;; 80
3 60
33 abg abc  ghe
2 40 {|—— Controt
8 ~o— MV-Etag
20 {|—=—MV-P
~a— MV-NPL
0
24 48 72 96 120
Hours
OS-RC-2
1
» MOL=0.1
100
*
T 80
&
8 60 abc  abc  abc
= 40 4] —— Control
3 —o— MV-Etag
20 4f —°— MV-P
~a— MV-NPL
0 z
24 48 72 96 120
Hours
T5
120 MOl =0.1
2 N
5
-~ 80
2
[ 60 ab  abc
.9
2 404j—— Control
8 o= MV-Etag
204 —— MV-P
—=— MV-NPL
¢}
24 48 72 96 120
Hours
BJ-1
120 MOL=0.1
510 —=—=—{—
B
= 80
7 60
a
= 404|~e—Contral
3 —o— MV-Etag
204|—o—MV-P
—=— MV-NPL
0 T g y
24 48 72 96 120
Hours

Figure 2 induction of cytopathic effects (CPEs) and cell death in human renal cell carcinoma (RCC) celi lines A-498, 05-RC-2, primary RCC
cells T5, and normal human cell line B]-1 by MV-Etag, MV-P, and MV-NPL. (a) At 120 hours after infection with each MV at multiplicities of
infection (MOIs) of 1 and 0.1, the cells were stained with crystal violet. (b) Cells were infected with each MV at an MOI of 0.1 and cell viability was
analyzed using the MTT assay. Each value is normalized to the control (untreated cells), which was set at 100%, and represents the mean + 5D (a, P <
0.01, MV-NPL versus control group; b, P < 0.07, MV-NPL versus MV-Etag group; ¢, P < 0.01, MV-NPL versus MV-P group).

The TFN family, particularly type I IFN (IFN-o/B), induces a
powerful innate antiviral response. IFN-a production induced by
human normal and tumor cells after infection by MVs was quan-
tified using IFN-specific enzyme-linked immunosorbent assay
(ELISA) kits (Figure 4a). We examined the sensitivity of the MV
viruses to human IFN-a. Vero cells were infected with different
MVs at an MOI of 0.001, and then treated with human IFN-a
(1,0001U/ml) 2 hours after infection. The viral titers were deter-
mined at 48 hours postinfection. Human IFN-a effectively inhib-
ited MV-Etag proliferation (Figure 4b). To some extent, IFN-a
also suppressed MV-P proliferation, whereas it had no appar-
ent effect on MV-NPL proliferation (Figure 4b). To investigate
whether IFN-a can prevent the CPEs of MV, OS-RC-2 cells were
infected with each MV at an MOI of 0.1. Different concentrations
of human IFN-a (250-2,0001U/ml) were added to the infected
cells and crystal violet staining was performed at 120 hours after

Molecular Therapy

infection. Compared to MV-P and MV-Etag, MV-NPL more
effectively induced CPE even in the presence of IFN-a. However,
there were no obvious CPEs in BJ-1 cells (Figure 4c).

MV-NPL induces more apoptosis in human RCC cells
than MV-P and MV-Etag

A-498 cells were infected with each MV at an MOI of 0.1, and
apoptotic cells were analyzed by propidium iodide staining and
subsequent flow cytometry. Upon infection with the MVs, the
number of cells in sub-G1 increased in a time-dependent manner
(Figure 5a). MV-NPL induced apoptosis in ~20 and 40% of cells
at 48 and 72 hours at an MOI of 0.1, respectively (Figure 5a).
However, at the same time points, MV-P and MV-Etag only
induced apoptosis in ~10 and 15% of cells (Figure 5a). We further
examined poly(ADP-ribose) polymerase expression and found
that the 85-kd cleaved poly(ADP-ribose) polymerase fragment
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Figure 3 Production of MV-Etag, MV-P, or MV-NPL in the human
renal cell carcinoma (RCC) cell line A-498. Cells were infected with
each MV at an multiplicity of infection (MOI) of 0.1. (a) Cells and (b)
supernatants were harvested at the indicated times. The viral titers were
determined on Vero cells and expressed as TCID, /ml. (c) Total RNA from
A-498 cells was isolated at the indicated times. The viral mRNA levels
were measured using real-time PCR. Each vaiue is normalized to that in
MV-Etag, which was set a ratio = 1, and represents the mean + SD (a,
P < 0.05, MV-NPL and MV-P versus MV-Etag; b, P < 0.05, MV-NPL versus
MV-P). TCID,, 50% tissue culture infective dose.

(85 kd) was more rapidly expressed in A-498 cells infected
with MV-NPL than those infected with MV-P or MV-Etag
(Figure 5b).

Intratumoral administration of MV-NPL induces
regression of A-498 xenografts

Each MV was given intratumorally to nude mice bearing estab-
lished (0.5-0.6cm in diameter) subcutaneous human A-498
tumor xenografts. Intratumoral administration of MV-Etag or
MV-P (10 doses of 1.0 x 10° TCID, /dose) effectively suppressed
the growth of A-498 xenografts. Compared with MV-Etag or
MV-P, intratumoral injection of MV-NPL caused even more
regression of the A-498 xenografts (Figure 6a). At 80 days after
injection, the survival rate was significantly improved in the
MV-NPL-injected group (55%), compared to the control group
(0%), MV-Etag-injected group (0%), and MV-P-injected group
(11%) (Figure 6b). A-498 xenografts infected with MV-NPL had
the highest mRNA expression of the M gene of MV, indicating
that MV-NPL was more effectively replicated in the xenografts
than MV-P at 19 days after the injection when the former sig-
nificantly suppressed the tumor growth than the latter (P < 0.05)
(Figure 6c).
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Figure 4 Different sensitivities of MV-Etag, MV-P, and MV-NPL to
human INF-g. (a) BJ-1, A-498 and OS-CR-2 cells were infected with
MV-Etag, MV-P, or MV-NPL at an muitiplicity of infection (MOI) of 0.1.
After 48-hour infection, the production of IFN-a: was determined using
human IFN-a enzyme-linked immunosorbent assay kit. (b) Vero cells
were infected with each MV at an MOI of 0.001 and cultured in the
presence or absence of 1,0001U/m! recombinant IFN-¢. Viral titers at
48 hours were determined by titrating the TCID50 on Vero cells, *P <
0.05 versus IFN(+). (c) OS-RC-2 cells and BJ-1 cells in 24-well plates
were infected with each MV at an MO of 0.1. Two hours after infection,
human IFN-o was added to the cells at the indicated concentrations.
At 120 hours after infection, the cells were stained with crystal violet.
IFN, interferon; TCID,,, 50% tissue culture infective dose.

DISCUSSION

Oncovirotherapy using replication-competent viruses for cancer
treatment has recently attracted considerable attention. Engineering
replication-competent virusesfor cancer therapyisanovel and prom-
ising strategy. Live-attenuated MV has a potent and tumor-specific
oncolytic activity against a variety of human tumors.>®»2 In clini-
cal trials, the MV vaccine strain has been shown to mediate regres-
sion of T-cell lymphomas when administered intratumorally."
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Figure 5 Apoptosis induced by MV-Etag, MV-P or MV-NPL in the
human renal cell carcinoma (RCQO) cell tine A-498. Cells were infected
with each MV at an multiplicity of infection (MOI) of 0.1. (a) Adherent
and detached cells were harvested at 24, 48, and 72 hours postinfection.
The percentage of sub-G1 cells was measured by fluorescence-activated
cell sorting (a, P < 0.05, MV-NPL, MV-P and MV-Etag versus control;
b, P < 0.05, MV-NPL and MV-P versus MV-Etag; ¢, P < 0.05, MV-NPL
versus MV-P). (b) Whole-cell lysates of A-498 cells that were infected
with each MV were subjected to western blot analysis using anti-PARP
and B-actin antibodies. PARP, poly(ADP-ribose) polymerase.

However, there is no report on the oncolytic effects of measles virus
on human RCCs. In this study, we report for the first time that mea-
sles virus has potent antitumor activity against human RCC cells
in vitro and in vivo.

Numerous factors in the tumor microenvironment, such as
the stromal architecture and surrounding innate immune system,
could potentially restrict viral replication and spread in vivo.®
Human type I IFNs such as IFN-a/p have been shown to inhibit
gene expression and the production of progeny virions of the
measles virus vaccine strain, including Edmonston tag strain. -
In order to more effectively control tumor growth and eventually
eradicate tumors by direct viral spread and oncolysis, an attenu-
ated replication-competent virus must be able to evade the host
innate immune response.** The P/V/C protein of the MV wild-
type strain encoded by the P gene was shown to block IFN-a
induced-signaling, allowing the virus to evade the innate immune
response. 1831353 The N, P and L proteins asseruble into the ribo-
nucleoprotein, which serves as the MV replication unit. In our
study, we found that wild-type N protein provided virus with resis-
tance to IFN similar to P (data no shown). Moreover, the L protein
gene of wild type can more effectively induce viral RNA and pro-
tein synthesis than vaccine strain.”’ In this study, we engineered a
novel MV-Edm by replacing the N, P, and L genes with those of
the wild-type MV strain to create a virus that rapidly replicates
on human renal cancer cells. Compared to MV-P and MV-Etag,
MV-NPL exhibited more efficient replication and a potent killing
effect in human renal cancer cells in vitro and in vive. In our study,
we demonstrated that human IFN-a effectively inhibited the rep-
lication of MV-Etag and MV-P, but not MV-NPL, at an MOI of
0.001 in Vero cells in vitro, Furthermore, MV-NPL exhibited more
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efficient cytopathic effects than MV-Etag and MV-P in OS-RC-2
cells even in the presence of IFN-a.

Several mechanisms could account for the enhanced anti-
tumoral effects of the engineered virus in vitro, such as faster
replication kinetics, enhanced cell killing, or evasion of host
antiviral mechanisms.'** In this study, we demonstrated that
MV-NPL replicated faster than MV-P and MV-Etag. In addition,
RCCs infected with MV-NPL produced more viruses than those
infected with MV-P or MV-Etag. Measles M mRNA was detected
earlier in A-498 cells infected with MV-NPL than with MV-P
or MV-Etag, which resulted in more substantial upregulation of
viral protein production compared to the other viruses in a time-
dependent manner (Figure 3). Therefore, we considered that the
rapid oncolysis of cancer cells induced by MV-NPL is due to rapid
viral mRNA transcription followed by abundant intracellular viral
protein production and accelerated cancer cells lysis, causing the
cells to necrose after viral infection. To determine the mechanism
of MV-induced cell death, we used sub-G1 staining. Our results
demonstrated that MV-NPL induced apoptosis in infected tumor
cells faster than MV-Ftag and MV-P. Therefore, we concluded that
not only necrosis but also apoptosis was an important mode in
MV-induced cell death.

MYV has been shown to use two receptors, SLAM (CD150) and
CD46, for entry into cells. SLAM (CD150) is a signaling Iympho-
cyte activation molecule and its expression profile is confined to
immune cells. CD46 is ubiquitously expressed in nucleated cells.
The MV-Edm strain can infect cells via CD46, which is expressed
more frequently in human cancer cells than normal cells. The
most important issue to consider when developing an effective
oncovirotherapy is that the oncolytic virus needs to selectively
infect tumor cells but not normal cells. Our data demonstrated
that CD46 was overexpressed in human RCC cell lines as well as
cultured primary human RCC cells with 11-fold higher expres-
sion than in the normal human BJ-1 cell line. Compared to can-
cer cells, MV induces minimal CPEs in normal human cell line,
These results suggested that cancer cells are suitable targets for
MYV infection.

Compared with oncolytic DNA viruses, RNA viruses do not
require host nuclear transcription factors, and must rely on an
alternative mechanism to preferentially replicate in tumor cells.®
Furthermore, the MV genome is very stable, and the vaccine
strains have never reverted to pathogenic forms. The Edmonston
strain has been successfully used as a vaccine with an excellent
safety profile. These data suggest that the MV vaccine strain has
high tumor selectivity and safety, even though additional safety
studies should be performed before starting clinical trials. In this
study, we demonstrated that even low intratumoral doses of the
engineered MV in vivo are sufficient to induce tumor regression.

We also demonstrated that MV-NPL efficiently induced tumor
regression and showed the highest viral mRNA expression in the
mouse model compared to MV-Etag and MV-P. The oncolysis
of cancer cells has been clearly shown in vitro, so we suspected
that the same mechanism occurs in our in vivo model. In cur-
rent oncolytic virus research, intratumoral, intravenous, or intra-
peritoneal injections have been used to treat immune-deficient
mice bearing human tumor xenografts. Among these treatments,
intratumorally injected virus can efficiently escape circulating
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Figure 6 Therapeutic efficacy of MV-Etag, MV-P, or MV-NPL for renal
cell carcinoma (RCC) xenografts in vivo. (a) A-498 cells (5 x 10¢ in
100! phosphate-buffered saline) were injected subcutaneously. When
tumors reached a diameter of 0.5-0.6 cm, the virus was injected intratu-
morally every other day for a total of 10 doses (1.0 x 10° TCID, /dose)
over 19 days. The first day of injection represents day 1, and the tumor
volumes were measured every other day (n= 9/group). (b) Kaplan-Meier
survival analysis are shown for treated mice and mock-treated mice (P =
0.002, MV-NPL versus MV-P). (¢) intratumoral administration of each
MV was initiated with a 1.0 x 10* TCID,_ injection. Nineteen days after
injection, the tumors were harvested and the M gene viral mRNA levels
were determined by real-time PCR, *P < 0.05 versus MV-P. TCID,, 50%
tissue culture infective dose.

MV-neutralizing antibodies; therefore, this method is considered
to be more desirable.

Currently, some additional immune mechanisms have been
implicated in oncovirotherapy-mediated therapeutic effects.
Several studies have shown that CD8 T cells are related to the
efficiency of herpes simplex virus-induced,*® vesicular stomati-
tis virus-induced,” and MV-induced*** virotherapies. However,
adult patients infected with measles virus have significantly higher
levels of regulatory T cells, IFN-y, and interleukin-10 (ref. 41).
Furthermore, the phagocytosis of apoptotic MV-infected meso-
thelioma cells induced spontaneous DC maturation and activation
and significant CD8 T-cell amplification. Collectively, oncovi-
rotherapy may exhibit multiple clinical effects, including tumor
lysis followed by the appearance and persistence of antitumor
immunity.
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In summary, our current results demonstrated that newly
engineered MV-NPL has more effective oncolytic activity than
the parental virus or MV-P as a systemic therapy for human RCC.
The engineered virus caused CPEs in human RCCs, but had no
toxic effects on normal human cells. Furthermore, MV-NPL repli-
cated faster and more effectively resisted IFN-a than MV-Etag and
MV-P, allowing the virus to escape the innate immune response.
Although additional safety issues should be investigated, these
properties of MV-NPL may help establish an innovative cancer
therapy in the future.

MATERIALS AND METHODS

Construction of engineered viruses. The plasmids p(+)MV323 (ref. 42)
and p(+)MV2A (ref, 43), which encode the full-length antigenomic com-
plementary DNA of the IC-B wild-type strain and the Edmonston tag
strain, respectively, were used in this study, We inserted restriction enzyme
sites (SnaBI-N-Spll-P-Eco4711I-M-Nrul-F-Pacl-H-Spel-L-Pmel) into the
noncoding region of the p(+)MV323 genome using PCR with specific
primers. Using the appropriate restriction enzymes, a series of genomic
regions of p(+)MV2A were replaced with identical regions in p(+)MV323,
which generated plasmids carrying the full-length genomes of recombi-
nant engineered viruses (Figure 3a). Engineered MV's were rescued from
cloned viral genome complementary DNA with a highly efficiently reverse
genetics system as described previously.* The engineered MVs were prop-
agated in Vero cells, an African green monkey kidney epithelial cell line,
and passage three viral stocks were used in this study.

Cell line culture. The human RCC cell lines A-498 and OS-RC-2, the nor-
mal human skin fibroblast cell line BJ-1 were maintained in Dulbeccos
modified Eagle’s medium supplemented with 10% heat-inactivated fetal
bovine serum (Japan Bioserum; Sigma, Steinheim, Germany). Vero cells
were used to produce measles virus and maintained in Dulbecco’s modi-
fied Eagle’s medium supplemented with 5% heat-inactivated fetal bovine
serum (Japan Bioserum). All media used in this study contained 100 U/ml
of penicillin-streptomycin. All cell lines used in this study were cultured in
a humidified atmosphere with 5% CO, at 37°C.

Primary cell culture. Primary human RCC tissues were established using
surgical specimens immediately after resection from Kyushu University
Hospital after institutional review board approval and informed patient
consent, Tissues were sliced, minced, treated with collagenase (GIBCO,
Invitrogen, Carlsbad, CA) at 37 °C for 2 hours on a shaker, and then filtered
through a nylon mesh (100-yim diameter) to obtain single cell suspensions.
Harvested cells were cultured in Minimum Essential Medium a medium
(GIBCO, Invitrogen) supplemented with 10% heat-inactivated fetal bovine
serum (Hyclone, Logan, UT) and 4 pg/ml of Gentamicin Reagent Solution
(GIBCO, Invitrogen). Al cells used in this study were cultured in a humid-
ified atmosphere with 5% CO, at 37°C.

Flow cytometry. CD46 expression and the subdiploid status of cells
(sub-G1) were determined by flow cytometry. To measure CD46 expres-
sion, the cells were harvested with Cell Dissociation Buffer (GIBCO,
Invitrogen), washed twice with phosphate-buffered saline (PBS), and incu-
bated with a fluorescein isothiocyanate-labeled monoclonal mouse anti-
human CD46 or control antibodies (BD Biosciences, Pharmingen) for 1
hour on ice. The cells were washed twice with PBS and then 10,000 cells per
sample were analyzed using a FACScan (BD Biosciences, San Jose, CA).
For sub-G1, A-498 cells were plated in 6-well plates, and then treated with
each MV at an MOI of 0.1. Adherent and detached cells were harvested at
24, 48, and 72 hours after infection and fixed in ice-cold 70% ethanol for at
least 1 hour. Cell pellets were washed twice with PBS and then incubated
for 30 minutes at room temperature in 1ml PBS containing 50 pg propid-
ium iodide (Sigma-Aldrich, St Louis, MO), 0.1% Triton X-100, 1 mmol/l
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EDTA, and 0.5 mg RNaseA. After staining, 10,000 events per sample were
analyzed using a FACScan (BD Biosciences). Fragmented apoptotic nuclei
were recognized by their sub-G1 DNA content. The percentage of sub-G1
cells was recorded for each sample. All flow cytometry data were analyzed
using the Mod Fit LT software (Verity Software House, Topsham, MN).

Evaluation of CPEs in vitro. A-498, OS-RC-2, T5 (cultured primary
human RCC cells), and BJ-1 cells were cultured in 24-well plates at a den-
sity of 2 x 10 cells/well. The cells were infected with each MV at an MOI
of 1 or 0.1 in 0.2ml of Opti-MEM I {GIBCO, Invitrogen) for 2 hours. The
virus suspension was removed, and 1ml of fresh medium was added to
each well with or without the noted concentrations of human IFN-a. At
120 hours after infection, the cells were gently washed twice with PBS,
and the remaining cells were fixed with 0.5% glutaraldehyde in PBS for
15 minutes. Then, cells were washed with PBS and stained with 0.1% crys-
tal violet solubilized in 2% ethanol-distilled water. The stained product
was subsequently washed twice with distilled water, air-dried, and then
photographed.

Western blot analysis and ELISA. Infected cells were harvested and sol-
ubilized in a Nonidet P-40-based lysis buffer {20mmol/l Tris (pH 7.4),
250 mmol/l NaCl, 1% Nonidet P-40, 1 mmol/l EDTA, 50 mg/ml leupeptin,
and 1 mmol/l phenylmethylsulfony! fluoride). After incubating on ice for
5 minutes, the cell lysates were clarified by centrifugation at 13,000 for 30
minutes at 4°C. The protein concentrations in the lysates were quantified
using Multiskan spectrum. The samples were separated on precast 4-12%
gradient MOPS polyacrylamide gels (NOVEX, San Diego, CA), and then
transferred to nitrocellulose membranes (BIO-RAD, Hercules, CA). The
membranes were pretreated with Tris-buffered saline containing 5% dry
milk and 0.05% Triton X-100 (TBST) for 1 hour at room temperature and
then incubated with monoclonal antiproteolytic cleavage of poly(ADP-
ribose) polymerase (Biovision, Mountain View, CA) and a rabbit anti-B-
actin (CHEMICON International, Temecula, CA) antibodies for 1 hour
at room temperature. Afer several washes in TBST, the membranes were
probed with rabbit or mouse peroxidase-conjugated secondary antibod-
ies (Santa Cruz Biotechnology, Santa Cruz, CA) at room temperature for
1 hour. After a final wash with TBST, the immune-reactivity of the blots
was detected using an enhanced chemiluminescence detection system
(Amersham, Piscataway, NJ). ELISA specific for IFN-a was performed
using a human IFN-a ELISA kit (PBL Biomedical Laboratories) as per
manufacturer’s instructions.

Celi proliferation assay. The Cell-Titer 96 Aqueous Non-Radioactive Cell
Proliferation Assay (Promega, Madison, WI) was used in this study. A-498,
OS-RC-2, T5, and BJ-1 cells were plated in 96-well plates at a density of 1 x
10¢ cells/well. Twelve hours after seeding, the cells were infected with each
MV at an MOI of 0.1 for different time intervals and then incubated with
20ul of MTS reagent for 2 hours at 37°C. The absorbance at 490 nm was
recorded using an ELISA plate reader.

Assessment of MV replication in a human RCC cell line. The human RCC
cell line A-498 was seeded in 6-well plates at a density of 2.0 x 10¢ cells/
well. Twelve hours after plating, the cells were infected with each MV at an
MOI of 0.1 in Opti-MEM L. The cells and supernatants were collected at
different time intervals. The viruses were released by two cycles of freezing
and thawing. The viral titers in the cells and supernatants were determined
by titrating the TCID50 on Vero cells.

Human IFN-a sensitivity of MVs. Vero cells were infected with each
MYV at an MOI of 0.001. Two hours after infection, human IFN-a A/D
(Sigma, St Louis, MO) was added to the cells at a concentration of
1,000 IU/ml. At 48 hours postinfection, the cells were harvested together
with the culture media. The viral titers in both the intracellular samples
and the culture supernatants were determined by titrating the TCID50
on Vero cells.
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In vivo xenograft experiments. A-498 cells (5 x 10° in 100l PBS)
were injected subcutaneously into the right flanks of 4-week-old female
BALB/c nude mice using a 27-gauge needle. The length and width of
the tamors in each mouse were measured daily with calipers. Mice were
randomly divided into four groups: MV-Etag, MV-P, MV-NPL, or con-
trol (n = 9/group). Intratumoral administration of each MV was initi-
ated when the tumors reached a diameter of 0.5-0.6 cm. The mice were
injected with each MV (1 x 10° TCID50 in 50 ul Opti-MEM I, and each
mouse received 10 MV doses on days 1, 3,5, 7,9, 11, 13, 15, 17, and 19.
Control mice (mock therapy group) were injected with equal volumes of
Opti-MEM I containing no virus. The tumor volume was calculated as
length x width x width/2, Mice were killed if they lost >20% of their body
weight or the tumor diameter exceeded 1.0 cm. All mouse experiments
were approved by the Committee of the Ethics on Animal Experiments
in the Faculty of Medicine, Kyushu University and carried out follow-
ing the Guidelines for Animal Experiments in the Faculty of Medicine,
Kyushu University, Fukuoka, Japan and The Law and Notification of the
Government,

Statistical analysis. Each experiment was repeated three different times,
and data are presented as means £ SD. Where indicated, the data were ana-
lyzed by a one-way analysis of variance with Bonferroni’s post hoc test using
SPSS 15.0 software (SPSS, Chicago, IL). P values <0.05 were considered
statistically significant.
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Abstract The mechanism that regulates the terminal
maturation of hematopoietic stem cells into erythroid cells
is poorly understood. Therefore, identifying genes and
surface markers that are restricted to specific stages of
erythroid maturation will further our understanding of
erythropoiesis. To identify genes expressed at discrete
stages of erythroid development, we screened for genes
that contributed to the proliferation and maturation of
erythropoietin (EPO)-dependent UT-7/EPO cells. After
transducing erythroid cells with a human fetal liver (FL)-
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derived lentiviral cDNA library and culturing the cells in
the absence of EPO, we identified 17 candidate genes that
supported erythroid colony formation. In addition, the
mouse homologues of these candidate genes were identified
and their expression was examined in El12.5 erythroid
populations by gRT-PCR. The expression of candidate
erythroid marker was also assessed at the protein level by
immunohistochemistry and ELISA. Our study demonstrat-
ed that expression of the 4poa-I gene, an apolipoprotein
family member, significantly increased as hematopoietic
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stem cells differentiated into mature erythroid cells in the
mouse FL. The Apoa-1 protein was more abundant in
mature erythroid cells than hematopoietic stem and
progenitor cells in the mouse FL by ELISA. Moreover,
APOA-1 gene expression was detected in mature erythroid
cells from human peripheral blood. We conclude that
APOA-1 is a novel marker of the terminal erythroid
maturation of hematopoietic stem cells in both mice and
humans.

Keywords APOA-1 . Erythroid cell maturation - Fetal liver
erythropoiesis - Library screening - Lentiviral cDNA library

Introduction

Hematopoiesis is the process -in which pluripotent
hematopoietic stem cells (HSCs) are generated, differen-
tiated into specific progenitors, and ultimately matured
into a variety of blood cell types (erythrocytes, mega-
karyocytes, lymphocytes, neutrophils, and macrophages)
[1]. During embryonic development, HSCs emerge in the
aorta-gonad-mesonephros (AGM) region and expand first
in the fetal liver (FL) and then in the bone marrow (BM)
[2-5]. Among these hematopoietic organs, the FL is a site
of both HSC expansion and active erythropoiesis [6].
Erythropoiesis is the process by which a vast number of
enucleated red blood cells (RBCs) are produced from
hematopoietic stem cells (HSC) [7]. However, the molec-
ular mechanisms underlying erythropoiesis have not been
fully elucidated, largely because there are only a few
molecular markers of terminal erythroid maturation in
both mice and humans. To address this issue, we focused
on the events that regulate the terminal erythropoiesis of
HSCs to mature erythroid cells in order to identify novel
markers of mature erythrocytes.

A previous study established a mouse embryonic (ES)
cell-derived erythroid progenitor (MEDEP) cell line [38].
Although erythroblasts expressing the erythroid matura-
tion marker Terl19 [9] (a protein that molecularly
resembles glycophorin) can be generated from ES/iPS-
derived MEDEP cells, most of these cells remained
nucleated, indicating that they have failed to complete
terminal maturation. Ter119 antigen is currently the only
erythroid-specific marker in mice. However, Terll9 is
expressed at many maturation stages, from erythroblasts to
mature, circulating erythrocytes. Therefore, additional
markers for mature erythrocytes are needed. Numerous
attempts at generating vast quantities of enucleated
erythrocytes have failed to efficiently give rise to fully
functional erythrocytes in vitro. This may in part be due
to the gaps in our understanding of the mechanisms that
regulate erythropoiesis.
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The cytokine erythropoietin (EPO) plays important
roles in erythropoiesis by regulating erythroid cell
differentiation, maturation, proliferation, and survival.
Erythroid cells are highly dependent on EPO during
early differentiation and maturation but lose this depen-
dency and express lower levels of the erythropoietin
receptor (EPOR) as they mature [10]. We hypothesized
that EPO-independent signaling plays an important role
in the terminal stages of erythropoiesis.

We previously established a system in which specific
lentiviral gene transduction induced hematopoiesis from
embryonic stem cells of a nonhuman primate common
marmoset in the absence of bone marrow stromal cells
[11]. In addition, we constructed a high-performance
human fetal liver (FL)-derived ¢DNA lentiviral library as
a tool to facilitate the discovery of novel genes that are
involved in the expansion of HSCs, erythropoiesis and/or
liver development [12]. During embryogenesis, the FL is
the major site of hematopoiesis, particularly erythropoiesis.
Therefore, the FL-derived cDNA lentiviral library that we
constructed contains many genes that are involved in the
differentiation and maturation of these lineages. The goal of
this study was to identify novel genes that are involved in or
expressed during EPO-independent terminal erythroid
maturation. We identified APOA-1 as a novel marker of
the maturation of hematopoietic stem cells into mature
erythroid cells.

Materials and Methods
Cells

UT-7/EPO cells [13] (kindly provided by Dr. Komatsu)
are an EPO-dependent cell line that was established from
the bone marrow of a patient with acute megakaryoblastic
leukemia. This cell line was cultured in Iscove’s modified
Dulbecco’s medium (IMDM) supplemented with 10%
fetal bovine serum (FBS) and 1 U/mL human recombinant
EPO (R&D Systems, Minneapolis, MN) at 37°C in 5%
CO..

Lentivirus Production

The previously generated human fetal liver-derived Entry
¢DNA library [12] was used in this study. Briefly, 34 pug
(1-2%10° ¢DNA clones) of the library was mixed with
20 ug of pCAG-HIVg/p and 20 ug of pCMV-VSVG-
RSV-Rev as the packaging plasmids in 3.5 ml of FBS-free
DMEM, and then 370 pl of 1 mg/m! polyethylenimine
(PEI) was added to the mixture. After a 30-min incuba-
tion, the DNA/PEI complexes were dropped onto semi-



