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TABLE 4
Performance Comparison of MAP and WMAP
Using a 14-Class GCM Data Set

iR i SR
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intractable, because the number of targets #B%/ in the
AA coding increases exponentially with respect to M:

M/2] M—i o
#BM:[‘L/?”‘: 1 (M \(i+] ©)
146 \i+J j /)

i=1 =1

where §;; is the Kronecker’s delta.

In this section, we apply our code optimization based on
the WMAP framework to a 14-class problem [3] of a global
cancer map (GCM) data set, where the number of targets in
the initial AA coding becomes as high as 2,375,101.
Although the original GCM data set consists of 16,063 genes’
expression profiles for 144 training samples and 54 test
samples of 14 common cancer types, we merged the
training and test samples to construct a data set of
190 samples (eight test samples of another cancer type
were removed) in this experiment.

Although WMAP would be able to find an optimal and
possibly sparse (or graded) subset by starting from the
whole AA code matrix in principle, it is in practice difficult
partly because of the lack of a sufficient number of data and
partly because of the computational intractability on a set
whose element number becomes exponential. By applying a
sparse random coding (SR) to this 14-class problem, we
obtained a set of 58 targets, where the number of targets was
determined as a rough standard [15log, M, as proposed in
[15], and the 58 targets were selected from 10,000 random
sets of 58 targets, so that any two code words were the
furthest apart from each other in the sense of Hamming
distance. The details are described in Appendix D. The
objective of our WMAP method here is to obtain an
appropriate graded code matrix starting from the initial set
SR and hence to optimize the weight values for this
“random” but “rigid” code matrix.

We evaluated the six methods, namely, the combinations
of three designs of code matrix, 1R, 11, and SR, and the two
procedures, MAP and WMAP, for the 14-class problem by
the means of a fivefold cross validation. Each binary
classifier was implemented as a linear kernel SVM employ-
ing all genes. Multiclass SVMs implemented as MC-
SVM(CS) and MC-SVM(WW), and the NSC method were
also compared within the same conditions as Experiment 2.
Table 4 shows the results.

A simple voting by linear kernel SVMs showed better
performance with MAP-IR than with MAP-11. MAP-SR
was also better than MAP-11 but did not exceed MAP-1R;
these results were consistent with those by [3]. However,
the results were different when the weight optimization
was performed; WMAP-SR became better than MAP-IR.
The performances of WMAP-1R and WMAP-11 were not
improved by the weight optimization, probably because the

training accuracy was saturated, suggesting this 14-class
classification problem contains rather little data in compar-
ison to the complexity of the multiclass problem. Even in
such a saturated condition and when the initial code matrix
includes a lot of targets, our weight optimization method
works well, as confirmed by the improvement of WMAP-SR
over MAP-SR. The other three state-of-the-art alternatives
did not exceed the results of the WMAP-SR. From this
experiment, we can see that an appropriate “rigid” code
matrix may improve performance by appropriately decod-
ing from it based on the MAP method, over the simple
voting heuristics by 1R or 11, and introducing the weight
optimization to seek the optimal “graded” set from the rigid
one can further improve the performance.

6 DiscussiON AND CONCLUSIONS

The statistical model of the MAP decoder is an expanded
version of the pairwise coupling method of binary prob-
ability estimates [9], which used only B, and is concep-
tually similar to the method in [10], which was also an
expansion in [9], while the MAP method incorporates an
additional term that naturally represents prior knowledge
of class distribution. In [10], B'?, B, and random targets
from B44 were dealt with in combinations, but B44 itself
was not considered, and the optimization of code matrices
(optimal coding problem) was unsolved. Our weight
optimization method used in WMAP successfully obtained
a graded code matrix starting from any code matrix without
any prior knowledge about the data, and this method could
be one answer to the optimal coding problem. This feature
is essential for practical tumor classification problems using
gene expression profiling, because we often do not have
much information on the data.

When B#4, containing all possible targets was used as
the code matrix to be weighted, the WMAP method often
showed the best performance. Especially when B44 could
not be used as in the 14-class GCM problem, various sets of
targets can be considered by reducing B44 but determining
which code matrix shows the best performance among
them requires some heuristics. In the current study, we
used the SR method [15], but still, the weight estimation
method worked well when applied to the reduced code
matrix, implying that our method could solve, at least to
some extent, the optimal coding problem by searching the
analog coding space restricted within the initial binary
coding. The current results suggest that the larger the code
matrix to be optimized, the better the performance becomes,
though the optimization of large code matrices requires
heavy computation. Although it is important, in practice, to
seek a better configuration of the initial code matrix than the
exhaustive coding B44 or the SR BF when the class
number is not small, this problem is not the target of our
current study but a future one, because our code optimiza-
tion technique can in principle employ any initial setting of
the code matrix.

In our code optimization method, overtraining of weights
may occur, especially when the number of targets is large.
This problem could be avoided by using large training data
sets, but in many actual gene expression analyses, handling
small data sets is required. One possible way of dealing with
this problem is to use various parameter optimization
techniques such as the leave-two-out (LTO) method [26],
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which is a hierarchical cross-validation approach. When the
training accuracy by the MAP decoder reaches a higher
limit, i.e., saturation occurs, the room for taking advantage of
the WMAP method is restricted. This is an another aspect of
overtraining, and this tendency is more apparent when the
binary classification method is strong enough. One way of
solving this overtraining problem is to split the training data
set into two or more subsets and to train the binary classifiers
and adjust the weights individually using different data
subsets.

The linear-kernel SVMs used in this study have been
preferred in many bioinformatics studies [27], [28]. On the
other hand, we can also tune parameters of the kernel
and/or use other kernels in the SVM or use more
sophisticated binary predictors such as AdaBoost [29].
The flexibility of our framework that can employ any
binary classification algorithms could yield further perfor-
mance and work well especially when a relatively large
amount of data are available. For example, when we use a
quadratic-kernel SVM as a unit classifier (the kernel
function is K(z,z') = (1 +27¢')?), the resultant cross-
validation accuracy for the thyroid data set was 1 in the
training and 0.780 in the test. Note that this improvement
was due to the change in the unit classifier rather than the
weight optimization. If we employ highly adjustable binary
classifiers and an appropriate code matrix, the classifiers
are well adapted to the given data set, and the decoder can
easily integrate them. In such a case, there is little room to
achieve improvement by the WMAP’s code optimization
because of the saturation of the gain function. Accordingly,
the performance improvement by WMAP is dependent on
both the data set (and the class structure underlying the
data) and the choice of binary classifiers. Still, however, it
is important that our code optimization technique can be
employed with any choice of binary classifiers.

From the view point of biocinformatics, our WMAP
method may also be valuable for feature extraction and
existing classifiers such as the NSC method [25]. The
optimized weights can be interpreted as a numerical feature
vector in the binary classifier space, each of whose elements
characterizes the degree of the corresponding binary
classifier’s contribution to multiclass classification results,
ie., disease (medical or phenotypic) information in cancer
classification problems. In other words, the code matrix
optimized by WMAP would enable us to observe the
interclass relationships in a multiclass classification problem
from the perspective of several binary classification pro-
blems. For example, the code optimized by our WMAP
method can provide information on the geometrical relation-
ship of multiple classes, which can be seen in the experiment
using a synthesized data set (Experiment 1). On the other
hand, the centroids of NSC can be construed as characteristic
pattern vectors in the gene expression space, each of which
represents the corresponding class label and each of whose
elements indicates gene’s responsibility to each class label.
While these are class specific patterns, they do not represent
interclass relationship directly. Consequently, WMAP and
NSC extract some characteristic features from data sets, but
they contain different types of information. As stated above,
the WMAP method itself does not select informative genes
- for cancer classification tasks. However, it is possible to
obtain some evidences about the gene contribution by using

binary classification algorithms such as the weighted voting
method [1] and SVM-RFE [30] as a unit classifier of WMAP,
which incorporates gene selection processes: The higher
ranked or survived genes in a binary classifier that has a
larger optimized weight are supposed to have substantial
influence on multiclass classification results. To do this, we
must not only optimize the code matrix but also tune gene
selection parameters of binary classifiers, but the parameter
tuning is an independent issue of our approach. However,
we expect that our approach will elucidate biological
meaning through linkages between the optimized code
words and the class labels in gene expression analyses.

The novel approaches introduced in this study show
promise as the means to differentiate similar tumor types of
the same origin, as are thyroid and esophageal cancers, for
example. Before the final determination of their efficacy, a
number of confirmatory experiments are necessary. Never-
theless, we believe that our algorithms based on ECOC
coding/decoding will contribute to providing advanced
tools in the pathological diagnosis of cancer in the near
future.

APPENDIX A

PrRoOBABILITY ESTIMATION FROM DECISION VALUES
OF BINARY CLASSIFIERS

In order to convert a discriminant function value from a
binary predictor (in this study, a binary SVM) into the
probability estimate, we employed a regression-based
method proposed by Platt [17]. Let d;(z) € R be a discrimi-
nant function value from the jth predictor constructed based
on the partial training data L; = {z™,i™} _  where n; is
the index set of samples used to make this pjredictor. The
logistic regression model assumes that the probabilistic
guess q§") = Pr(i € 1;jz™,i € 1; U0;) is given by the para-
metric sigmoidal function of d;(x):

™ _ 1
% T 1T exp(A;d;(a™) + B;)’

where A; and B; are the model parameters specific to the
Jjth target. These parameters were estimated by maximizing
the log likelihood on the transformed training data
L_Ii = {dj(m(n))’ i(n)}nenj:

max Z{’ry’) log q](-") -{1- rg.")) log(1 — qgm)}

nen;

(10)

r§~") is the target probability defined as

m_ )Ty
where 7, and r; are explained below. We used a gradient
descent method to maximize (10) with respect to A; and B;.

Platt’s method incorporated the following two techni-
ques to avoid overfitting to the training data. First, the
estimated target probabilities, 1, = (Ny; +1)/(Ny; +2) and
ro; = 1/(No; + 2), were used instead of typical choices, r;, =
1 and o, = 0, where Ny, and Ny, are the numbers of samples
belonging to 1; and to 0;, respectively. This setting is
effective especially in dealing with unbalanced training
data sets. Second, cross validation was used for generating

if i e 1,
if i € 05,

500



YUKINAWA ET AL.: OPTIMAL AGGREGATION OF BINARY CLASSIFIERS FOR MULTICLASS CANCER DIAGNOSIS USING GENE EXPRESSION... 9

unbiased training data of the sigmoidal fitting. It should be
noted that a naively made transformed data set L’ could be
biased because of the effects from the optimization of the
jth predictor. We used fivefold cross validation in this
study. Namely, the training data set L; was divided into
five blocks, five binary predictors were trained by using
four out of the five blocks, and then, d;(z) was evaluated on
the remaining block for each of the five predictors. The
concatenation of the evaluation over the five disjoint blocks
was used as the unbiased transformed training data set L.

APPENDIX B

PseubocoODES FOR MAP AND WMAP

To provide the procedures of MAP and WMAP in step-by-
step manner, we present their pseudocodes here. Algo-
rithm 1 is a pseudocode for MAP that estimates the
multiclass membership probability from the set of binary
membership probabilities.

Algorithm 1. MAP class membership probability estimation
1: procedure ESTIMATEP(q, 5%, w, C, B)
2 if p° is NULL then

3: foralli € C do b Initialize class
membership probability if p° is not specified
4: )« 1/#C
5: end for
6: end if
7: V0 — V(p°|lg,w, B) > Calculate the initial
objective function value according to (4)
8: T«0
9: repeat
10: T—T+1
11: # Update p by the steepest descent method
12: foralli e C do
13: logp? « logpl ™t +

ap] 18V (plg, w, B)/0pilp_yr > Step size ais
determined by line search algorithm

14: end for
15: Normalize p” so as to Y ;.cp! =1
16: VT — V(pT|q, w, B) > Update the objective

function value
17: until T = MazlIter, or V¥ — VI~ < Threshold,
> Mazlter, and Threshold, are arbitrary constants
18: pe—p’
19: return p
20: end procedure

In this code, procedure ESTIMATEP takes a set of binary
membership probability g = {g;};cp, an arbitrary initial
value of multiclass membership p° = {p?};.c, a fixed weight
vector w = {w;},cp, the set of class labels C'={1,..., M},
and the code matrix B as inputs, and outputs the estimated
multiclass membership p according to the steepest descent
method. Since p; > 0, we used the gradient along logp,
which stabilizes the optimization (Algorithm 1, line 12). If
we do not specify p°, elements of p° are automatically set by
the uniform probability 1/#C (Algorithm 1, lines 2-6).

Algorithm 2 is a pseudocode for WMAP, which
optimizes the weights for the given code matrix B.

Algorithm 2. WMAP weight optimization
1: procedure TRAINW

Q= {q(n)}nzl,...,Na T= {t(n)}nzl,...,N’ C, B)

2: for all j € B do > Initialize weight w = {w;},cp
3: wg — 1/#B
4: end for
5. P°« ESTIMATEPALL(Q,NULL,w’, C, B)
6: U°—U(P’,T) b Calculate the initial objective
function value according to (5)
7: T+0
8 repeat
9: T—T+1
10: w’ « argmaxU(PT!,T) under 3, gw] =1
# Update w by a"gradient ascent method based on
gradient (12)
11: PT — ESTIMATEPALL(Q, PT~, w7, C, B)
# Update P with new weights
12: UT — U(PT,T) » Update the objective

function value
13: until T > Mazlter,, or UT — UT-1 < Threshold,
> MazlIter, and Threshold,, are arbitrary constants
14: W — wT
15: return w
16: end procedure

17: procedure ESTIMATEPALL
({q(n)}nzl,...,N’ p(n)}n=1,...,N7 w,C, B)
18: forn=1to N
19: p'™ — ESTIMATEP (¢™, p™, w, C, B)
20: end for
21:  retum {p™},_; y
22: end procedure

This code consists of two procedures: a main procedure
TRAINW and an auxiliary procedure ESTIMATEPALL,
which is a wrapper of ESTIMATEP of Algorithm 1. TRAINW
takes a set of binary membership Q= {¢™},_, y of
N samples, the corresponding true class label vectors
T = {t™},_, nC,and B, and outputs the optimized
weight vector . ESTIMATEPALL is used for the inner
optimization given by (8), which updates the multiclass
membership probabilities of all samples P = {p™},_;
for the current weight estimate w” (Algorithm 2, lines 8-13).
TRAINW performs the outer optimization given by (7).

APPENDIX C

DERIVATION OF WMAP MeTHOD

The optimization of (8) can be simply executed by the MAP
method, but we need a technique to optimize (7) because U
depends on w indirectly through 5 = {p™}. We define a
function f(w,p) of w and p = {p™}:
f,p) = 2V o)
w,p) = 5.V (plw),
where V is the sum of V and the Lagrange multiplier term.
The stationary condition of V with respect to p:

f(w,p) =0
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provides the p(w) that satisfies (8). Then,

f(w+ dw, 13+dp)

=f(w,p) +5- f(w+6‘dw D+ bdp)dw
6 .
- Z 6f (n)
jeB a ieC n=
=0

gives an another solution of (8), p + dp, when w has an
infinitesimal change dw, where 0 < 8 < 1.

For description simplicity, we introduce matrix
A = {a(j, 1)}, where mdlces j and p correspond to a target
J € B and an element pf of p, respectively. Each element of

matrix A is defined by
s vV
a(j, (i, n)) = ———.
G =5

We also introduce a square matrix H = {h(y, ')} whose
element is defined by

v

) 117 = =y

where p and /' index an element p ) of p. By using these
notations, solution condition (11) is expressed in an implicit
function as

Adw + Hdp = 0,

and when dw — 0,

dp(") dp )
=—_—— A
{ dw; } dw H
Using this derivative,
oU  opoU 1, 0U
A e =, 12
ow Owdp H=A dp (12)

Each element of 8U/dp is written as

oU <1 _ exp(Bp™) > exp(Bp{™)
617(“) Zi'ec exp(ﬂpi, ) Zz eC exp(,sz

and then, (7) can be optimized by a gradient ascent method
based on gradient (12).

/- (")
7 (19)

APPENDIX D

SpPARSE RANDOM CODING

The SR, which enables us to design efficient initial code
matrices for large-class problems, was proposed by Allwein
et al. [15]. Code matrices of SR for M-class problems consist
of nonoverlapping [ = [15log, M| targets (row vectors).
Each element was assigned a value from {“1,” “0,” “+"} with
certain probabilities; “1” or “0” with 1/4 or “*” with 1/2. To
obtain good error correcting properties, the minimum and
averaged distance between each pair of code words (rows

in the code matrix) should be large. For calculatmg distance
of a pair of code words u, v € { "1, 70, " +"}"*!, we used a
generalized Hamming distance:

l 0 fu=vAu #0Av #0,
p:Zri, wherer; =< 1 ifu #v Auw £0AY #£0,
i=1 05 ifu;=0vVy; =0.

After generating 10,000 code matrices according to the
process above, we selected the optimal code matrix whose
minimum p value was the maximal among them, checking
that no column or row contained only “x
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Abstract: Multistage carcinogenesis is an important concept in cancer biology. Each new stage is triggered by the
acquisition of an additional genetic aberration, leading to clonal expansion of the cancer cell. The resulting tumor
mass consists of cancer cells with all genetic aberrations, but may include precursor cells at some point of
carcinogenesis. We analyzed six colorectal cancer tissues with APC, K-ras, and p53 mutations. From each sample,
40-50 areas (100x100x40um) consisting only of cancer cells were microdissected, and genomic DNA was
purified. Ratios of mutated and normal alleles were quantitated by the SNaPshot assay, a primer extension assay.
In five tumor tissues, we identified cancer cell subpopulations corresponding to putative precursors, i.e., cells with
mutations in one or two of the three genes. All samples were likely to be of monoclonal origin, and temporal
sequences of the mutations could be deduced from the mutation patterns of putative precursors. The orders of
mutation events were variable. However, the two carcinoma tissues accompanying adenoma regions started with
the APC mutation, not contradicting the previous studies. The analysis also revealed considerable heterogeneity
in allele ratios of one or two of the chromosomes. The current findings are promising to uncover the process of
carcinogenesis directly from the tumor tissue of the patient.

Key Words: carcinogenesis, somatic mutation, intratumor heterogeneity, chromosome copy number variation,
cancer stem cell

Introduction prostate [9], breast [10], ovarian [11], and
cervical [12] cancers. These studies excised
Carcinogenesis is a multistage process in sections from different areas of the tumor
which an initial population of slightly abnormal mass and compared mutation or chromosomal
cells, descendants of a single mutant aberration patterns. One of the studies
ancestor, evolves through successive cycles of correlated the degree of heterogeneity with the
mutation and natural selection [1]. The model evolutional process of cancer [7]. However, the
of Vogelstein and colleagues on the temporal origin of the heterogeneity is not clear from
sequence of genetic events in colorectal these studies.
cancer is known as a typical example [2].
According to this model, each new stage is In the present study, we focused on mutations
triggered by the acquisition of an additional in three genes, i.e., APC, K-ras and p53, and
genetic aberration which brings a growth or examined whether the tumor tissues
survival advantage to the cell. Eventually, this comprised cancer cells at some point of
leads to clonal expansion of the cell and carcinogenesis. To improve the resolution of
overgrowth over the other cells. This process the assay, we reduced the size of the excised
may yield a tumor mass including cancer cells sections from the reported sizes of previous
at some point of carcinogenesis as the minor studies by more than two orders of magnitude.
population, leading to intratumoral In  addition, applying the principle of
heterogeneity in mutation patterns. There have competitive PCR, we quantitated relative
been a considerable number of studies abundance of each allele. The analysis
demonstrating intratumor genetic revealed that five out of six tissues had cancer
heterogeneity in human colorectal [3-8], cells with one or two of the mutated genes,
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corresponding to the precursors of cancer
cells with three mutations. The identification of
precursor cancer cells, defined here as cancer
cells lacking a part of carcinogenic mutations,
will enable us to trace the history of
carcinogenesis.

Materials and Methods
Samples

Seventy-nine colorectal carcinoma tissues
from our tumor tissue bank were screened for
mutations in the coding regions of APC, K-ras
and p53 genes. DNA was extracted from
frozen bulk tumor tissues by QlAamp DNA
Micro kit (Qiagen). Coding regions of APC, K-
ras and p53 genes were screened for
mutations by High-Resolution Melting on
LightScanner (Idaho Technology Inc.). Samples
with aberrant melting curves were analyzed by
direct sequencing with BigDye Terminator
Cycle Sequencing Kit (version 3.1, Applied
Biosystems, USA) on ABI PRISM 3730 (Applied
Biosystems, USA). Eleven out of 79 samples
had mutations in all three genes. We selected
six colorectal carcinoma samples with the
largest size for the next experiment. The study
was approved by the ethical committee of
Osaka Medical Center for Cancer and
Cardiovascular Diseases. Informed consents
were obtained from all patients.

Laser Microdissection and DNA Extraction

Sections (40um thick) from frozen cancer
tissues of six patients were prepared on Leica
CM1900 cryostat (Leica Microsystems). After
mounting on a film-covered glass slide, the
sections were stained with Mayer's
hematoxylin (Wako). Microdissection was
performed using Leica AS LMD system (Leica
Microsystems). Genomic DNA was extracted by
prepGEM kit (ZyGEM) according to the
protocol; 20ul DNA mixture was prepared from
each sampile.

PCR Ampilification and SNaPshot Assay

DNA fragments containing mutations were
amplified by multiplex PCR on GeneAmp PCR
System 9700 (Applied Biosystems). PCR
mixture included 5ul DNA (250pg), 1xPCR
buffer (Applied Biosystems), 2mM MgClz,
200uM each dNTP, Primer mix (0.2uM each
primer, Supplemental Table S1) and 1U
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AmpliTagGold polymerase (Applied
Biosystems) in a 10 ul reaction. Cycling
conditions were as follows: denaturing at
94°C for 5 min; 40 cycles of denaturing at
94°C for 30 s, annealing at 54-56°C for 30 s
and synthesis at 72°C for 40 s; and final
synthesis at 72°C for 5 min. SNaPshot assay
is a primer extension assay. each primer is
designed to bind to a complementary template
right in front of the mutation site. Reaction is
carried out in the presence of fluorescently
labeled ddNTPs and DNA polymerase extends
the primer by one nucleotide, adding a single
ddNTP to its 3’ end. Fluorescent dyes used for
dideoxynucleotides are as follows: A, dR6G; C,
dTAMRA; G, dR110; and T, dROX.

PCR fragments for primer extension were
prepared by incubating 7.5 pl PCR product
with 0.5 U shrimp alkaline phosphatase
(TaKaRa) and 1 U exonuclease | (TaKaRa) for
40 min at 37°C in a final volume of 10 ui,
followed by the inactivation of the enzymes for
20 min at 80°C. Primer extension was carried
out in 5 pl containing 2 pt of treated PCR
product, 2.5 ul ABI Prism SNaPshot Multiplex
kit (Applied Biosystems) and 0.5 yl extension
primers mix (0.2uM each primer). Primer
sequences are shown in Supplemental Table
§1. Cycling conditions were according to the
manufacturer's protocol: 25 cycles of 10 s at
96°C denaturation, 5 s at 50°C annealing,
and 30 s at 60°C extension. To remove
unincorporated ddNTPs, 5 ul of SNaPshot
products were incubated for 40 min at 37°C
with 0.5 U shrimp alkaline phosphatase
(TaKaRa) in a final volume of 6 ul, and the
enzyme was deactivated as described above.
A total of 1 pl of treated SNaPshot reaction
was denatured in 9 pl of distilled water (in the
presence of standard-LIZ 120) for 5 min at
95°C, and was analyzed on ABI PRISM 3100
Genetic Analyzer (Applied Biosystems). The
fragment analysis was performed with Peak
Scanner Software v1.0 (Applied Biosystems).

The mutated allele ratio, M/(M+N), was
calculated where M is mutant allele peak
height and N is normal peak height.
Reproducibility of the amplification and the
SNaPshot assay was checked with two series
of experiments. All data are supplied as
Supplemental Table $2. We plotted the results
on 3D graphs using Grafis software
(ver.2.9.22, Kylebank Software Ltd.). In most
cases of allelic loss, the corresponding peak
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Table 1 Sequence alterations identified in colorectal cancer tissues of the patients

S le N APC K-RAS P53
ample No. Exon Locus Exon Locus Exon Locus

1 16 €.2932 C>T Q978* 2 ¢.35 G>AG12D 7 c.767 C>AT256K
3 16 ¢.3956 delC P1319fs*2 2 c.34 G>A G12S 8 ¢.818 G>A R273H
33 16 c.2755 A>T R919* 2 ¢.38 G>A G13D 8 c.824 G>T C275F
41 16 c.4044 insA 3 ¢.204 G>C R68S 6 ¢.659 A>G Y220C
65 14 ¢.1690 C>T R664* 2 ¢.35G>AG12D 6 ¢.659 A>G Y220C
74 16 ¢.2626 C>T R876* 2 ¢.35 G>T G12V 4 ¢.374 C>T T125M

*stop codon

height was zero. However, there were several
areas with residual peaks, where we set the
threshold as 0.05.

LOH Analysis

Amplification of microsatellite markers on
chromosome 5q (D5S107, D5S82 and
D5S346) and those on chromosome 17p
(D17S796 and D17S786) was performed in
two separate multiplex PCR reactions. PCR
mixture included 5upl DNA, 1xPCR buffer
(Applied Biosystems), 2mM MgClz, 200uM
each dNTP, Primer mix (Supplemental Table
S1) and 1U AmpliTagGold polymerase {(Applied
Biosystems) in a 10 pl reaction. Cycling
conditions were as follows: denaturing at
94°C for 5 min; 40 cycles of denaturing at
94°C for 30 s, annealing at 55°C for 30 s and
synthesis at 72°C for 30 s; final synthesis at
72°C for 30 min. The fluorescent products
were analyzed on ABI PRISM 3100 Genetic
Analyzer (Applied Biosystems). The fragment
analysis was performed with Peak Scanner
Software v1.0 (Applied Biosystems).

Results
Outline of the Method

From our tumor tissue bank, we selected six
colorectal cancer tissues carrying mutations in
APC, K-ras, and p53, identified by analysis of
bulk tissues. The details of the mutations are
listed in Table 1. Although there may be
additional mutations not detected by the bulk
tissue analysis, we focused on these
mutations for detailed analysis. For the
analysis of genetic heterogeneity, we excised
40-50 small areas containing only cancer
cells from frozen tissue sections, and purified
genomic DNA. The sampling was random, but
we avoided repeated sampling from the same
cryptic region. After simultaneous amplification
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of three genes with multiplex PCR, mutation
status was quantitatively determined with the
SNaPshot assay, a primer extension assay.
The illustration of the method is shown in
Figure 1.

In our previous study on lung cancer [13], we
determined the smallest amount of tissue
section that enabled stable and unbiased PCR
amplification. We set the size of the section as
100x100x40 um, a slight increase in
thickness from 35 pm. This scale was less
than 1/100 of those used in previous studies:
for example, 5x5x5 mm3 in [12]. We used
one-fourth of the genomic DNA purified from
the excised section for a single multiplex PCR
reaction.

To confirm the quantitative recovery of PCR
products in our protocol, we performed the
following experiment. We purified genomic
DNA from the colorectal tumor section (0.01
mm?2 each) from two other patients: one with
homozygous T for SNP in TGFR2 (rs2228048)
and one with homozygous C. Samples with
various amount ratios of the two genomic DNA
(1.0, 3:1, 1:1, 1.3, 0:1) were prepared,
maintaining the total amount of DNA as that
used for the single multiplex PCR reaction. To

Mutation screening

Colon canger tissue section - 40 pym
LMD of ~50 areas (1x10¢pm?)

Benomic DNA extraction
Multiplex PCR ampiification
SNaPghot assay

Figure 1 Graphic representation of the method.
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Figure 2 A. Quantitative accuracy of the SNaPshot assay of amplified products. Horizontal axis indicates the ratio
of the mutant allele (T at r52228048) of TGFR2 in the template; vertical axis indicates the ratio of the mutant
allele of TGFR2 in the amplified product, i.e., M/(M+N), where M is mutant peak height, and N is normal peak
height. The error bars correspond to the standard deviations of ten experiments. B, Contamination of normal cells
in the excised section areas. Data obtained from areas including various fractions of normal cells among cancer
cells were plotted. Horizontal axis indicates mutant allele ratios (M/(M+N)) of APC; vertical axis indicates that of K-
ras.

simulate  multiplex PCR reaction, we Although we set the size of the excised section
simultaneously amplified TGFR2, K-ras and as small as possible, it consisted of 180-200
APC. Then, allele ratios of amplified TGFR2 cells. One may argue that possible
were determined with the SNaPshot assay. contamination of normal cells may lead to
There was a good correlation between the erroneous conclusions. We performed the
amount ratio in the templates and the ratio in following experiment: from a colorectal cancer
amplified products (Figure 2A), assuring tissue, we excised twenty areas (0.01 mm?
unbiased ampilification. each), which included various numbers of

1o

Figure 3 An example of intratumor genetic heterogeneity (Sample 1). A microscopic view of a colorectal cancer
tissue section (left) with black circles indicating microdissected areas; (right), electropherograms of the SNaPshot
assay. The first two peaks represent the mutation status of p53 (C>A); third and fourth - that of K-ras (G>A); and
the last two peaks - that of APC (C>T). Black peak, fragment amplified with ddC; green peak, fragment amplified
with ddA; blue peak, fragment amplified with ddG; red peak, fragment amplified with ddT. Red bar, 100um.
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normal cells. This colorectal cancer tissue had
mutations in all of the three genes. After
isolation of genomic DNAs, we amplified
corresponding exons of APC, K-ras and p53,
and quantitated allele ratios with the
SNaPshot assay. The relative allele ratios of
APC and K-ras were plotted (Figure 2B). In the
case of normal cell contamination, ratio of the
normal allele is proportional to the fraction of
normal cells included in the microdissected
region. Thus, ratios of normal/mutant alleles
of the two genes are proportional as shown in
Figure 2B. The same correlation was observed
with APC-p53 and K-ras-p53 (data not
shown). In general, a data point from a mixture
of mature cancer cells and normal cells would
lie around a line connecting data points
derived from each of them. We can exclude
the possibility that an aberrant mutation
pattern is due to the normal cell contamination
by this plotting. As shown below, no areas had
this characteristic.

Intratumor Heterogeneity of APC, K-ras and
p53 Mutations

We examined six colorectal cancer tissues and
found that five tissues contained cancer cells
with mutation types different from that of the
major population. Figure 3 shows an example
(sample 1). Six areas are presented.
Electropherograms of three areas (A, D, F)
revealed mutations in three genes, i.e., APC,
p53, and K-ras. One area had mutations in
APC and K-ras (B), whereas the other two
areas (C, E) had mutations only in APC.

In our experimental system, the relative ratios
of mutated and normal alleles were measured
(Supplemental Table S2). Thus, we plotted
areas in three-dimensional spaces created by
mutated allele ratios of APC, K-ras and p53
(Figure 4, top graphs). We also presented two-
dimensional plots with color graduation for
APC allele ratio (Figure 4, bottom graphs).
QuickTime movies of the three-dimensional
plots will be posted on our web site at:
http://genome.mc.pref.osaka.jp/data_downlo
ad.html.

The major population of sample 1 (30/41
areas) carries all three mutations (Figure 4A).
Chromosomal status is stable with APC and K-
ras, but there is a distinct heterogeneity with
p53. Besides this major population, there are
two subpopulations: with APC and K-ras
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mutations (4/41), and with APC mutation
alone (7/41).

Most of the excised areas from sample 3 carry
mutations in all three genes - 46 out of 48
areas (Figure 4B). However, we found two
areas with mutations in both K-ras and p53
but not in the APC gene.

The major population of sample 33 has all
three mutations, but p53 and K-ras alleles
have marked heterogeneity (Figure 4C).
Besides, there is one subpopulation with APC
and K-ras mutations (6/48) and another with
APC mutation alone (18/48).

In sample 41, there are two minor populations:
one with p53 mutation alone and one with K-
ras and p53 mutations (Figure 4D). The former
lost the normal p53 allele, and the latter lost
the normal K-ras allele, whereas the major
population always maintained the K-ras
normal allele, and often the p53 normal allele
as well. Subsequent loss of normal alleles
after divergence of the major population is
suspected.

There are three subpopulations of cancer cells
in sample 65 (Figure 4E). APC alleles are
highly homogeneous - we detected the APC
mutation in all 49 areas. A subpopulation with
only APC mutation (2/49) and another carrying
both APC and p53 aberrations (2/49) were
identified.

Although we identified minor subpopulations in
the above cases, sample 74 showed no
heterogeneity in the mutation pattern (Figure
4F).

Order of Genetic Events

In somatic mutations in APC, K-ras, and p53,
mutations in various loci evoke similar
biological effects onto cells. Because the
chance that the second mutation is introduced
into the same locus is very low, these
mutations should have been introduced by
single events. Therefore, subpopulations of
each sample should have been derived from a
single ancestor cell, and the order of mutation
events can be deduced from mutation
patterns of subpopulations. For example,
sample 1 had a subpopulation with APC and K-
ras mutations, and another with APC mutation
alone. The order of mutation events is

Int J Clin Exp Pathol (2009) 2, 154-162
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Figure 4 Genetic heterogeneity in six colorectal cancer tissues. The mutant allele ratios (M/(M+N)) of p53, K-ras
and APC genes are plotted in the x, y and z axis, respectively. Each sphere represents a single area; the color
indicates the mutant allele ratio of APC gene. The top graphs are 3D graphs; the bottom graphs show p53 and K-
ras only (the color is the same as in the 3D graph). A. Sample 1; B, Sample 3; C. Sample 33; D. Sample 44; E.

Sample 65; F. Sample 74.

Table 2 Summary of the order of genetic events in the samples

Sample No. Precursor genotype* Order of genetic events Accompanying adenoma

i APCMK-RASNP53N (7/41) APC—HK-RAS—P53 Yes
APCMK-RASMP53N (4/41)

3 APCNK-RASMP53M (2/48) P53/K-RAS—APC No

33 APCMK-RASNP53N(18/48) APC—K-RAS—P53 No
APCMK-RASMP53N(6/48)

41 APCNK-RASNP53M(7/40) P53—K-RAS—APC No
APCNK-RASMP53M(1/40)

65 APCMK-RASNP53N(2/49) APC—P53—HK-RAS Yes
APCMK-RASNP53M(2/49)

74 - - No

*N, normal; M, mutation; (areas/total)
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therefore APC—K-ras—p53. The deduced
order of mutation events is shown in Table 2.

A major concern is the possibility that the
absence of mutation is due to loss of the
mutated allele. Loss of the mutant allele was
reported in the mismatch repair region [14],
although it is not known with APC, K-ras and
p53. We performed LOH analysis of 5q and
17p with relevant areas using microsatellite
markers, and detected both alleles in all
cases, excluding the possible loss of the
mutated allele (Supplemental Table S3).
During a review of archival HE sections, we
found that in two samples adenocarcinoma
was accompanied by adenoma regions (Table
2).

Discussion

The study of human carcinogenesis has been
a difficult task due to unavailability of tumor
samples of different stages, especially early
stages, from the same patient. Thus, most
models have been based on indirect evidence
obtained by studies with patient populations
[2, 15]. In the present study, we demonstrated
that the primary colorectal cancer tissues
contained cancer cells with part of the
mutations found in the major population,
which are likely to be precursors of the major
population, and named them precursor cancer
cells. in addition, from their mutation patterns,
we deduced the order of genetic events. It is
likely to be a common feature of colorectal
cancer, because five out of six cases had such
minor populations. The heterogeneity of
somatic mutation patterns previously reported
in colorectal carcinoma [3, 5, 7] is probably
due to the precursor cancer cell. In colorectal
adenoma, genetic heterogeneity of
carcinogenic mutations was well established in
the context of tumor evolution [16, 17]. The
current findings imply that the heterogeneity
found in early adenoma still remains in the
later carcinoma stage, reducing its level. It
should be noted that mutation patterns are
not necessarily consistent in adjacent
adenoma and carcinoma regions: K-ras
mutations in the adenoma region were not
found in the adjacent carcinoma in 24% of the
cases [18]. This suggests that even adjacent
carcinoma and adenoma arose from different
ancestors. Also taking into account de novo
carcinoma, it is important to collect
information directly from carcinoma tissues.
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Another important discovery is heterogeneity
in allelic imbalance. It is interesting to note
that the heterogeneity was usually restricted to
some  chromosomes. In sample 1,
heterogeneity was found only with p53. In this
context, it would be cautious to interpret
results of comparative genomic hybridization
(CGH) or array-CGH. CGH cannot discriminate
cases with and without heterogeneity,
presenting an averaged view for chromosome
aberration with heterogeneity.

Because PCR from a small amount of DNA
may lead to biased amplification, we carefully
designed the whole experiment. In our
previous study [13], we determined the
minimum amount of tissue sections enabling
unbiased quantitative amplification. Using the
determined amount of  section, we
demonstrated  quantitative  recovery  of
amplified products under the condition used in
this study. This excludes the possibility that
the observed loss of mutant/normal allele is
due to stochastic PCR reaction. In addition, we
previously calculated the chance of erroneous
identification of allelic loss by stochastic PCR:
it was 3.5x105 and 6.04 x107 in two different
loci [13]. Except for one pattern of sample 41,
all mutation patterns of precursors were
identified with more than two areas,
demonstrating reproducibility of the patterns.

There appears to be no rule in the deduced
order of mutation events. It should be noted
that de novo colorectal cancer is more
frequent in Japanese than in other racial
populations [19]. Investigators believe that
this neoplasm develops through a pathway
different from the polypoid one [19-21]. There
were two cases (sample 1 and 65) in which
studied carcinoma was accompanied by
adenoma regions, and the APC mutation was
the first event in both cases. Because the
original Vogelstein model is for cancers
developed from adenoma [2], our results do
not contradict the previous studies based on
patient populations. One sample (sample 74)
was homogeneous - only one type of cells was
found in it. According to the widely accepted
theory, cancer tissue includes a dominhant
clone, which overgrows the other cells [1].
Although advanced cancer growth could be an
explanation, it is nhot clear whether there was
any other type of cells in this cancer tissue.
There may have been a heterogeneous pattern
in another part of the section or the tissue.

Int J Clin Exp Pathol (2009) 2, 154-162
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This approach for temporal sequence may be
applied to other cancers, if precursor cancer
cells exist. It should be noted that many
genetic aberrations such as LOH occur
frequently, and it is important to determine
whether the aberration is from a single event
or more than one event. Mutations in APC and
p53 do not need such attention, because the
chance of having mutations at the same base
is very low. For chromosomal aberrations,
probably use of multiple markers would solve
the problem.

Most models of carcinogenesis assume that
tumors are monoclonal in origin. This
conclusion is based largely on studies using X
chromosome-linked markers in females [22].
However, a recent study demonstrated
relatively large sizes of X-inactivation patches
in normal tissues, confounding assessment of
early studies [23]. Our results strongly suggest
the monoclonal origin: the tumor tissues
contained cancer cells with several different
genetic types, of which mutation patterns
indicated monoclonal origin. However, there is
still possibility of other clones not detected by
the above number of sampling.

Our results suggest that putative precursor
cancer cells exist in the tumor mass surgically
dissected, and we can perform molecular
analysis through their purification and
subsequent culture. One intriguing question is
whether they are the same as cells that
differentiated into cancer cells with the three
mutations in the past. As they still exist as a
minor population, their growth rate is smaller
than the major population, suggesting no
additional mutation for growth advantage. The
smaller number of replication cycles indicates
less number of new mutations. Thus, we
suspect that their biological properties would
not change. Another question is whether the
precursor cancer cells are malignant or
benign. Most adenoma cells accompany APC
mutations, and precursor cancer cells with
APC mutations might be reminiscent of
adenoma cells.

Detailed comparison of mutation patterns in
the primary tumor and metastasis revealed
that a considerable number of cases had
different mutation patterns [24, 25].
Unmatched mutation patterns indicate that
metastatic lesions would be derived from a
minor population in the primary tumor,
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suggesting possible involvement of precursor
cancer cells, Additional experiments with
primary tumor and its paired metastases are
required to elucidate this issue.

We believe that finding putative precursor
cancer cells is important for understanding
carcinogenesis as well as for future drug
discovery. If they have distinct molecular
characteristics, it would be beneficial to
develop anti-cancer drugs targeting them. In
particular, due to possible involvement in
metastasis, such drugs are of interest for their
possible anti-metastasis activities.
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Abstract: New generation sequencers have been developed with a strong impact on genomics. These sequencers
are based on a principle different from the Sanger method, and can sequence one to several million templates in
a single run, albeit read length is relatively small. The current large-scale efforts are: 1) complete genome
sequencing of 1,000 individuals, the primary objective of which is identification of rare SNP variants, not
identified by the international HapMap project; 2) large-scale sequencing of cancer genomes to construct a
complete catalog of genomic changes. These sequencers are also being applied in the identification of new
infectious agents. Steady increase in data production capacity and decrease of cost will definitely make the
sequencers a powerful diagnostic tool, especially for screening of all genetic diseases. On the contrary, statistical
problems inherent to large data sets need to be solved before application to specific problems in medical science.

Key words: Massive parallel analysis, the 1000 genomes project, the cancer genome atlas

Introduction sequencers, | will show their basic principle
first.
In the field of genomics, the next generation
DNA sequencer is currently the hottest topic. Principle of the second generation sequencer
These new sequencers can produce over 100
times more data compared to the most Three second generation sequencers are
sophisticated capillary sequencers based on commercially available: Roche FLX [11,
the Sanger method. The rapid developments ilumina Genome Analyzer (GA) [2], and
of machines and bioinformatics are making Lifetechnologies’ SOLID [3, 4]. Those
the goal a “1,000 dollar genome sequence”, machines are widely distributed, and their
i.e., sequencing individual human genomes at performance has been well characterized. All
a cost of $ 1, 000 each. The entire scene of sequencers are based on a similar principle.
biomedical science may change when the goal
has been reached. 1. Use PCR products from single molecules as
templates. With FLX and SOLID, PCR
in this review, | summarize the principle of the amplification is performed on microbeads
next  generation sequencers, current using emulsion PCR so that PCR products from
applications, and their future prospects in a single molecule are attached to a single
medical science. The first generation bead. With FLX, each bead is located in a
sequencers refer to those based on the picoliter well. With GA, PCR ampilification is
Sanger method, the second generation performed on a slide glass, making “clusters”
sequencers are those based on massive of PCR products derived from single molecules
parallel analysis, and the third generation [B]. Cluster formation is more sophisticated
sequencers are those based on single because theoretically a higher density of
molecule sequencing in addition to massive templates can be achieved.
parallel analysis. Because the current
excitement comes from the second-generation 2. Sequence by repetitive reaction. Information
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Figure 1. Schematic presentation of the principle of the second-generation sequencer. This scheme is based

on Roche FLX.

of 1-2 bases from a large number of templates
is obtained by a single reaction, where the
bases are discriminated by a fluorescent dye.
Each time, a fluorescent image of the entire
field, i.e., all templates, is captured with a CCD
camera so that all analyzed bases are
recorded. After clearing out the dyes, the same
cycle is continued untit no further base
information can be obtained.

A schematic representation of the represent-
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tative sequence principle is shown in Figure 1.
Each sequencer employs different principles of
reaction including:

(1). Pyrosequencing [6] (FLX). When an
extension reaction occurs, one dNTP is added,
and pyrophosphate (PPi) is released. ATP
sulfurylase quantitatively converts PPi to ATP
in the presence of adenosine 5°
phosphosulfate. This ATP acts as fuel to the
luciferase-mediated conversion of luciferin to

Int J Clin Exp Med (2009) 2, 193-202
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Table 1. Comparison of sequencers (January, 2009). It should be noted that the throughput of

each sequencer is improving rapidly

ABI Roche GS FLX lHlumina GA ABI SOLiD
3730x
Bases / template ~1100 ~400 ~75 50
Templates / run 96 1,000,000 40,000,000 85,000,000
Data production /day 1 MB/day 400MB/run/7.5hr 3,000MB/run/6.5 days  4,000MB/run/6 days
Maximum samples o6 16 regions/plate 8 channels/flowcell 16chambers/2 slides
Sequence reaction Sanﬁer pyrosequencing Reverse terminator ligation sequencing
method

oxyluciferin that generates visible light in
amounts that are proportional to the amount
of ATP. The light produced in the luciferase-
catalyzed reaction is detected by a camera
and is analyzed in a program.

(2). Reversible terminator (GA). Using a
fluorescent dye-labeled terminator, the single
base extension reaction is performed. Then,
the fluorescent dye and the blocking group are
chemically removed, and the next extension
reaction is performed. The terminators are
similar to those reported in [7].

(3). Sequencing by ligation (SOLID). This
reaction utilizes the base discrimination ability
of DNA ligase. Two bases adjacent to the
ligation point are used for sequencing. One
cycle consists of ligation of oligonucleotides,
and cleavage and removal of the extended
product. The cycles are repeated until no
detectable fluorescent signals are obtained.
One of the earliest examples of sequencing by
ligation is described in [8].

The current benchmarks of the sequencers
are summarized in Table 1. In brief, FLX
produces long reads (~400 bases), but the
number of templates per run is moderate
(~1,000,000). GA and SOLID produce short
read (50~75 bases), but are characterized by
the large number of templates per run
(400,000,000~85,000,000). Their perform-
ance is increasing rapidly.

The third generation sequencer-single
molecule sequencing

Pacific Bioscience Inc. is developing a
sequencer based on a new principle, which
should be categorized as third generation. This
DNA sequencer uses single DNA molecules as
templates. The main characteristic of this

195

515

sequencer is real-time monitoring of nucleo-
tide incorporation with DNA polymerase. The
major drawback of the second-generation
sequencers from the Sanger method is short
read of templates. Not like the second-
generation sequencer, this sequencer can
obtain reads of several kilobases from a single
template. This sequencer is based on the
following three technical components.

1. Zero mode waveguide [9]. A slide glass is
coated with a thin aluminum layer. The
aluminum layer has many small holes, with a
diameter d ~50 nm. Because the light, whose
wave length is greater than 1.7 x d, is
evanescent, the illuminating light exists only in
the entrance of the hole. Because no
propagation mode exists, these guides are
referred to as “zero mode wave guide.” To
enable realtime  monitoring of DNA
polymerase, the corcentration of substrates
(deoxynuclectide triphosphate, dNTP) should
be more than micromole. However, other
technologies require a much lower concen-
tration for detection of fluorescence. Zero
mode waveguide is the first technique solving
this problem.

2. Passivation of aluminum surface using
polyphosphonate chemistry [10]. Aluminum
surface is protected with polyvinylphosphonic
chemistry from attachment of DNA poly-
merase. Thus, DNA polymerase molecules only
attached to the silica surface, i.e., at the
bottom of the holes, eliminating possible
background fluorescent light.

3. Use of dNTPs whose terminal phosphate
moieties are conjugated with fluorophores
[11]. These fluorescence-labeled dNTPs
release fluorescence when incorporated into
DNA, and then lose the fluorophores. Thus,
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these dNTPs enable realtime monitoring of
incorporation of nucleotides.

Characteristics of sequence data generated by
the second-generation sequencers

Because the third generation sequencer has
yet to be commercialized, this review further
focuses on the second-generation sequencers.
It should be noted that there is plenty of room
for improvement in throughput of GA and
SOLID. With these systems, templates can be
accumulated at a much higher density. On the
contrary, Roche FLX has limitations. Because
the fluorescent dye, i.e., oxyluciferin, diffuses
into the reaction solution, each template bead
must be separated in an individual well. This
feature limits the template density

The surrounding situation of the second-
generation sequencers is different from that of
the first-generation sequencers. The most
important factor is the completion of the
human genome project. As shown above, a
major drawback of the next-generation
sequencers from the previous sequencers is
the short read length: 350 bases (FLX) and 50-
75 bases (GA, SOLiD), compared to > 800
bases with first-generation sequencers. The
short read length is & considerable
disadvantage for de novo sequencing. In de
novo sequencing, it is necessary 1o construct a
complete sequence from a large humber of
short sequence pieces. If the one read length
is short, the short pieces make only small
overlaps, making it difficult to construct
contigs. Thus, the  second-generation
sequencers, especially GA and SOLID, are not
intended for de novo sequencing. However, in
the human genome, the short pieces may be
assembled into large sequences, being
matched with the reference human genome
sequence. In this way, the second-generation
sequencers can produce complete genome
sequences of individuals. The major genome
centers now challenge two targets, i.e., the
genomes of individuals and cancer genomes.

Sequencing genomes of individuals

For several years, single nucleotide polymer-
phism (SNP) and its application to human
genetics has been the most intensive area in
genomics. SNP was at first intensively
collected using sequences obtained during the
human genome project. These SNPs (roughly
100 million) were organized by haplotypes
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identified by the international HapMap project
[12]. Consequently, about 50,000 tag SNPs
representing haplotypes, were obtained.
Genetic loci associated with a number of
common diseases have been identified using
the above tag SNP set through genome-wide
association studies (GWAS). Accumulating
results, however, show that GWAS generally
failed to identify most of the genetic
background of common diseases. A series of
articles has been recently published to review
the results from various viewpoints [13-15].
There are now a number of discussions to
determine the research direction, i.e,,
continuation of GWAS or turning the research
direction to complete sequencing of individual
human genomes. Because the SNP markers
used in GWAS are based on the international
HapMap project, they detect allele variants
whose frequencies are over 5 %. Therefore,
rare variants (0.1 - 5 %) cannot be detected in
GWAS. Proponents of the genome sequencing
argue that genetic association may be found
with rare variants, not detected by the current
tag SNPs, and the complete genome
sequences of a large number of individuals will
uncover the more detailed view of variations.
Currently, the “1,000 genomes” project
(http://www.1000genomes.org), an interna-
tional project to sequence genomes of 1,000
individuals, is ongoing. The outcome of the
projects will be an important resource for
human genome variation, but the direct
objective is identification of rare variants to
extend current GWAS,

It is important to confirm whether the second-
generation sequencers can identify SNP
equally as well as the Sanger method. Two
Caucasian individual genomes have been
determined before the “1,000 genomes”
project. One that was obtained by the Sanger
method [16], identified 2.8 million known
SNPs and about 0.74 million novel SNPs. The
other that was sequenced with GS20, a
previous model of FLX [17], identified 2.72
million known and 0.61 million novel SNPs,
Pilot experiments of the 1,000 genome project
determined genomes of two individuals with
GA [18, 19]. The sequence of a male Yoruba
identified 3.8-4.1 million SNPs, 73.6% of
which were in dbSNP [18]. The sequence of an
Asian individual identified 3 million SNPs, 73.5
% of which were in dbSNP [19]. Recently, a
new study compared the second-generation
sequencers and a Sanger sequencer from the
view point of GWAS [20]. In general, the
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second-generation sequencers had very high
sensitivity, i.e., identification of SNPs, but
relatively low specificity. This tendency was
more prominent with GA and SOLID, because
of short sequence reads: errors were more
common in repeated sequence regions,
probably due to errors during sequence
assembly. The other obstacle is biases in
representation among genomic regions. To
obtain complete coverage of a genomic region,
it is necessary to obtain more reads. These
results suggest that the next-generation
sequencers are useful for SNP studies, if
enough reads are obtained.

Still the complete human genome sequencing
is expensive. In addition, a huge computa-
tional load is required. Instead, sequencing of
all protein coding regions, named “exome”, is
regarded as a cost-effective approach [21].
SNPs or mutations in coding regions are more
informative and likely to be linked to diseases
than those in non-coding regions. One of the
examples is a study on pancreatic cancer
described below [22].

Sequencing of cancer genomes

The objective of projects, such as The Cancer
Genome Atlas (htip://cancergenome.nih.gov),
to sequence cancer genomes is a complete list
of genomic changes contributing to
carcinogenesis. These projects hypothesize
that there would be undiscovered genes
contributing to carcinogenesis, and they will
accompany genomic changes such as
mutations, copy nhumber variations and
translocations. Epigenetic events have also
been known to contribute to carcinogenesis,
and may be incorporated into the projects.
Unbiased exploration of such events would
substantially contribute to understanding of
cancer, and lead to identification of new target
molecules.

Several pilot experiments using the first
generation sequencers have been performed.
Due to Ilimited throughput of the first
generation sequencers, several early studies
focused on specific gene families, such as
tyrosine kinases, which were often activated
by somatic mutations. An organized study was
performed at the Welcome Trust Sanger
Institute [23]. In that study, somatic mutations
were classified into “driver” and “passenger”
mutations. “Driver” mutations are defined as
that conferring growth advantage, and
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“passenger” mutations are defined as those
without any biological effects. Overall selection
pressure by all the substitute mutations was
calculated: 1.29 (95% confidence interval,
1.10-1.51; P=0.0013).197The other study
examined the majority of the transcribed
genes (18,191 genes) with eleven breast and
eleven colorectal cancer tissues [24]. This
study revealed that there were a large number
of mutations with rare incidence, in addition to
a small number of genes with mutations of
high incidence. Both studies suggested that
known somatic mutations were only a small
fraction of mutations in cancer genomes, and
more systematic analysis of the cancer
genome, i.e., complete genome sequencing of
a large number of cancer tissues, is necessary.
These studies were followed by two studies on
glioma [25, 26]. Both studies accompanied
measurements of copy number variation by
genome arrays and gene expression profiling
[25] by microarrays or SAGE [26]. One of the
studies found recurrent mutations at the
active site of isocitrate dehydrogenase 1
(IDH1) in 12% of glioblastoma patients [26].
This resuit suggests that there would be
additional important mutations not discovered
so far.

Comparison of a cancer genome with the
corresponding germline genome is very
informative. One study analyzed the whole
genome of malignant cells and normal cells
from a single acute myelogenous leukemia
(AML) patient [27]. The whole genome analysis
revealed that the AML genome had only eight
heterozygous, non-synonymous  somatic
mutations, all of which were novel. Another
study to sequence all coding regions on a
genome of familial pancreatic cancer
identified that mutations in PALB2 was
responsible for the disease, validated with 96
additional samples [22]. Both studies could
pinpoint out a small humber of candidate
genes, demonstrating the accuracy and
thoroughness of the whole-genome approach.

The above early studies strongly suggest that
the large-scale cancer genome projects would
definitely contribute to our understanding of
genetic changes in cancer. However, contribu-
tion to medicine is a different problem. The
rationale to justify the large investments for
these projects is identification of molecular
targets and subsequent developments of anti-
cancer drugs. The proponents of the projects
argue that newly identified mutations will be

Int J Clin Exp Med (2009) 2, 193-202



Impact of the next generation DNA sequencers

effective targets for anti-cancer drug develop-
ment. This reflects the current trend of anti-
cancer drug development: a large number of
molecular target drugs are now being
developed or during clinical trials with
expectations to improve cancer therapy.
However, when the above cancer genome
projects were finished, the current trend and
enthusiasm might be finished. Already, there is
controversy among scientists on the future
prediction of molecular target drugs [28, 29].
So far, all molecular target drugs except
imatinib extend overall survival only several
months. Molecular target therapy might turn
out to be not attractive as it is: pharmaceutical
companies might lose interest. In any case,
the resulting data will be valuable as a
resource for cancer research.

Discovery of new infectious agents

The third important application of the second-
generation sequencers is identification of
infectious agents. RNA or DNA of human
tissues or cells infected by a specific infectious
agent such as a virus, bacterium, contain the
human genome sequences as well as
sequences of the infectious agent. Sequencing
a large number of RNA or DNA pieces from an
infected sample, the resulting sequences
contain those derived from the infectious
agent as well as from the human genome.
Now that the complete human genome
sequence has been obtained, subtraction of
the human genome sequence should
theoretically yield sequences of the infectious
agent. This idea is not new. In 2002, a
computational experiment was performed, by
searching the human genome sequences for
expressed tag sequences (EST) of human
origin using data in the public database [30].
Among sequences not matching the human
genome, more than 50 sequences matching
virus genomes were identified. The same
group performed a model experiment with
tissues of post-transplant lymphoproliferative
disorder (PTLD), and successfully recovered
Epstein-Bar virus sequences, the known agent
of PTLD [31]. These studies suggested the
plausibility of the above experimental strategy.

In spite of the potential strength of the
strategy, the high cost of DNA sequencing has
prevented real application. Due to the
decreased cost of sequencing by the second-
generation sequencer, two studies using FLX
appeared in 2008. One study focused on
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patients who died of febrile iliness after
visceral organ transplantation [32]. Unbiased
transcript sequencing from liver and kidney,
and subsequent data analysis revealed
infection of a new arena virus. The other study
focused on Merkel cell carcinoma, a rare type
of skin cancer [33]. Sequencing of nearly
400,000 transcripts identified sequences
similar to known polyoma viruses, Further
analysis revealed a new polyoma virus
sequence named Merkel cell polyoma virus.

Application to gene expression profiling

The sequencers can be applied to gene
expression profiling, i.e., a genome-scale
analysis of gene expression. Sequencing a
large number of transcripts purified from a
tissue or cell, and subsequently matching
them to the human reference genome reveals
the identity of each transcript. The expression
level of the gene can be determined from the
number of times each gene sequence
appeared. This approach of gene expression
profiling has been named digital gene
expression profiling, and was originally
initiated in the early stage of the human
genome project [34]. Later, a new technique
named serial analysis of gene expression
(SAGE) [35], appeared. In SAGE, a small tag
(SAGE tag), with a size of 9 to 21 bases, is
obtained from each transcript, and tens of
tags are concatemerized, and read with a
sequencer. With SAGE, from a single read,
frequency information of tens of transcripts
can be obtained. Even still with SAGE, it was
not practical to process a large number of
samples due to low throughput of the
sequencers based on the Sanger method. With
the next-generation sequencers, digital
expression profiling has finally become a
plausible method comparable to microarrays.
lts major advantage over microarray is
straightforward standardization of the data. In
digital expression profiling, data is just
molecular counts. In contrast, the data
obtained by microarray analysis is expression
level against some standard, and it is difficult
to compare data from different experimental
series. However, for laboratory use, i.e,,
comparison of global gene expression among
samples of interest, digital expression profiling
does not have clear advantage over
microarrays.

Discussion for future applications
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