research articles

Misonou et al.

A13-1
Y

A2
A7-2
A12-1\A14
\ v
A2
'
A10 y % o® A20-1
A1 A8 Y .4 A14
- A'4 A'G v A1'2 1 Y [ B
7 A1A1 1’\13 1
prd A11-2
]
] N9-2
@ p Ng-2
§ .'EO'@ ’N9-1
2 NS2
o
2
i
o
2
s
5
[
[+4
N16 N22
A Y c
Iy
N18
N24-2
N9-2 n2a.t 242

I
30

Elution time (min)

Figure 5. Comparison of amide column HPLC profiles of acidic and neutral PA-oligosaccharide obtained from CCs and NCs from case
15. Specific elevation of a2—3 sialylation of Les in carcinogenesis. {A) Acidic fraction of CCs, (B) acidic fraction of NCs, (C) neutral
fraction of CCs, (D) neutral fraction of NCs. Identified PA-oligosaccharides of each peak, the ratio of mixtures of peak NS and N24, and

schemes are shown as in Figure 2.

addition, significant amounts of Lcs (N12), VI?Fuca-Leg (N17-1)
and VPFuca-; ,L.cs (N19) are found (Figure 6D). The structures
of CCs can be basically explained by the three different elevated
levels previously described in conjunction with the structures
of NCs as described above. In the neutral fraction from CCs,
peaks N9 and N24 are composed of only Le* (N9—1) and
VBRucolll®Fuca-nLes (N24—1), respectively (Figure 6C). Le¥
(N11) and nLc, (N6) are increased, and Lc, (N5) is decreased
due to the elevation of type-2 chain oligosaccharides. In
addition, agalacto-IIPFuca-nLcs (N14), nLeg (N15), III*Fuca-
nLcg (N21) and VI?FucoVeFuca-nlcg (N22) appeared as minor
peaks in CCs. In the acidic fraction from CCs (Figure 6A), LST-c
(Al10) is increased and IVZFucalVSNeuAca-nLc,(A12-2),
VI®NeuAcallPFFuca-nLcs (A18) and VI®NeuAca-;l.cs (A16—2)
appeared as the results of elevated a2—6 sialylation. Significant
amounts of SLe* (Al12—1) were observed, as the result of
elevated a2—3 sialylation. SLe? {A13—1), which was found in
almost all the CCs, was not found due to the lack of al—4
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fucosyltransfarase activity, but instead, LST-a (A7-2), nonfu-
cosylated SLe?, was observed as one of the major peaks.
Comparison of Activities of Sialyltransferase, Fucosyltrans-
ferase, and p-Galactosyltransferase from CCs and NCs. To
investigate whether the three types of alteration in glycosylation
observed in oncogenesis depend on changes in the activities
of related glycosyltransferases, 8-galactosyltransferase, sialyl-
transferase and fucosyltransefarse from CCs and NCs were
examined (Figure 7). Measurement of the activities from CCs
and NCs from 2 of the 16 cases (case5 and 10) were not
performed since the amount of sample was lacking. In terms
of increase of type-2 chain oligosaccharides, f1—3 and g1—-4
galactosyltranferase activities using Lcs-PA as an acceptor were
examined (Figure 7A and B). As shown in Figure 7A, high levels
of p1—3 galactosyltransferase activity (more than 10 000 pmol/
mg protein/hour) were found in NCs from 10 cases, and low
levels of f1—3 galactosyltranferase activities (less than 10 000
pmol/mg protein/hour) were found in NCs from 4 cases (case
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Figure 6. Comparison of amide column HPLC profiles of acidic and neutral PA-oligosaccharide obtained from CCs and NCs from case
16, who lacks Lewis enzyme activity. (A) Acidic fraction of CCs, (B) acidic fraction of NCs, {C) neutral fraction of CCs, (D) neutral fraction
of NCs. |dentified PA-oligosaccharides of each peak and schemes are shown as in Figure 2.

7, 8, 9, and 12). The 81—3 galactosyltransferase activities were
markedly decreased or at sustained low levels in malignant
transformation (Figure 7A). In contrast to the $1—3 galacto-
syltranferase activities, f1—4 galactosyltransferase activities
were found in all NCs with little variation. Significant differ-
ences between the activity in CCs and NCs were not observed
in any of the cases (Figure 7B).

Four kinds of sialyltransferase activity were examined. The
sialyltransferase activities of a2—6 to terminal galactose of
type-2 chains to generate LST-c from nLc, was observed in
NCs from all cases and increased in carcinogenesis in all
cases with 2 exceptions (cases 14 and 15) (Figure 7C). The
two exceptional cases, case 14 and 15, represent specific
elevation of a2—3 sialylation together with down regulation
of a2—6 sialylation in malignant transformation, as shown
in Figure 5. The amounts of sialic acid linked a2—6 to
subterminal GIcNAc of type-1 chains are decreased or at
sustained low levels in malignant transformation, which is
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also similar to the alteration found in the $1-3 galactosyi-
tranferase activities (Compare Figure 7A and E). The changes
in the activities giving sialic acid transfer a2—3 to terminal
galactose of type 2 and type 1 lactosamine chains in
malignant transformation vary case to case, with some
increasing, some decreasing and others showing no change
(Figure 7D and F). Relatively high al1—-2 fucosyltranferase
activity toward terminal galactose of nLc, and Lcs were
observed in NCs from 3 cases (cases 8, 9, 12, Figure 7G, H).
Low to negligible levels of al—2 fucosyltranferase activities
were found in NCs from other 11 cases (Figure 7G, H).
Profound change, either increased or decreased, in al—2
fucosyltranferase activity occurred in carcinogenesis. When
al—2 fucosyltranferase activities are very low or at negligible
levels in NCs, marked increases in the activities were found
in CCs. In contrast, when ol—2 fucosyltranferase activities
are high in NCs, marked decreases in the activities were
found in CCs {case 9). Very high levels of «1-3 and al—4
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Figure 7. Comparison of activities of f-galactosyltransferases, sialyltransferases, and fucosyltransferases in CCs and NCs. Open and filled
bars indicate NCs and CCs, respectively. (A and B) Activities of #1—3 and 1—4 galactosyltransferases using Lc;-PA as acceptor. (C and D)
Activities of sialic acid transfer a2—6 and a2—3 to the nonreducing terminal galactose of type-2 lactosamine, using nLc,-PA as acceptor. (E
and F) Activities of sialic acid transfer 02—6 to subterminal GlcNAc and a2-3 to nonreducing terminal galactose of type-1 lactosamine,
using Lcs-PA as acceptor. (G and H) Activities of a1—2 fusosyltransferases, using nLcsPA and Lcs-PA as acceptors. (I and J) Activities of
a1-3 and a1-4 fusosyltransferases, using nLcs-PA and Lc,-PA as acceptors, respectively. Assays conditions were as described in Experimental
Procedures. N.D., Not determined due to the lack of remaining samples. Schemes and abbreviations of reaction products are shown in each
part. Oligosaccharides linked to the reaction are highlighted with arrows.

fucosyltransferase activities toward subterminal GlcNAc of in malignant transformation (Figure 71, ]). As mentioned
nLc; and Lc,, respectively, were found in all NCs, and above, a.1—4 fucosyltransferase activities were not found at
alteration of the activities varies from decrease to increase any extent in NCs and CCs from case 16 (Figure 7]).
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Figure 8. Synthetic pathways for major groups of GSLs in CCs
and NCs. Arrows indicate the pathways predominating in NCs.
Broken arrows indicate the pathways increased in carcinogenesis
of CCs. Abbreviations: 4F, a1—4 fucosylation of GicNAc, 3F, 0.1-3
fucosylation of GlcNAc, 2F, a1—-2 fucosylation of galactose, 3S,
02-3 sialylation of galactose, 6S, a2—6 sialylation of galactose.
Schemes are shown as in Figure 2. The structures of GSLs in
NCs are composed of mainly Le? and Le® (highlighted by square),
formed by a1—4 fucosylation of Lcs, and a1—2 fucosylation of
Lecs followed by a1—4 fucosylation, respectively. In malignant
transformation the type-2 ratio, a2—3 and/or a2—6 sialylation,
and a1—2 fucosylation are increased. These alterations result in
increases in the amounts of or the appearance of oligosaccha-
rides such as Le*, LeY, LST-¢, SLe*, SLe? and IV?FuclV ®NeuAc-
nLc4.

Discussion

The accumulation of GSLs having type-2 chain derivatives,
i.e. those with LeX, Le?, dimeric Le*, and their sialosyl derivatives
in colon cancers as analyzed by conventional methods has been
reported.””® Furthermore, the accumulation of GSLs having
02—6 sialylated lactosaminyl structures in human colon cancers
has been detected using specific monoclonal antibodies and
a2—6 sialyl specific lectins.?! 2% Although most of the previous
findings are essentially in agreement with our results, we
provide much more detailed, precise structural information in
terms of quality and quantity of the GSLs from both NCs and
CCs from many patients.

We found three kinds of changes in oligosaccharide struc-
tures in malignant transformation of CCs. Synthetic pathways
for the major groups of GSLs in CCs and NCs are outlined in
Figure 8. However, these apparent alterations are more difficult
to identify when whole cancerous tissues and normal tissues
are used as analyzing sources {data not shown). This result
indicates the importance of the isolation of cells with high
purity for cancer glycomic analyses.

Metastasis to the liver is the most important factor of poor
prognosis of colorectal cancers. Even though extensive studies
have been performed in attempts to elucidate the molecular
mechanism of this event, a different approach may help to
better understand the mechanism or help discover promising
predictive factors clinically undetected during initial surgery.®®
In this study, we found a common feature of the structures of
the GSLs from CCs of the 5 patients: namely a marked elevation
of type-2 oligosaccharides. One hypotheses as to how the
alteration is associated with hepatic metastasis can be consid-
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ered; the presence of an oligosaccharide determinant involved
in hepatic metastasis. SLe* and SLe?® are thought to function
as E-selectin ligands and to be involved in hematogenous
metastasis of cancers.* However, when considering the struc-
tures of GSLs, SLe* and SLe® determinants would seem unlikely
to be critically involved in hepatic metastasis of CCs because
expression of SLe* is lacking in one of the five patients and
SLe? is absent in another. However, in contrast to our results,
increased expression of SLe* and SLe® in colon cancers was
found to be correlated with poor prognosis in patients with
colorectal cancers by clinico-immunohistochemical analyses
using paraffin embedded colon cancer tissues.*”?® However,
the results from the previous immunohistochemical analyses
did not reflect the quantities of GSLs, because we found that
GSLs are removed by alcohol dehydration and xylene treatment
in the process of embedding in paraffin. The most probable
candidate oligosaccharide determinant of GSLs involved in liver
metastasis is thought to be a2-6 sialylated IV?Fuca-nLc,
(A12-2, Figures 4, 6). This GSL was isolated and the structures
identified in our previous study which analyzed the structures
of GSLs from colon cancer tissue at hepatic metastasis.!?
Marked elevation of nLc,, followed by a1-2 fucosylation and
02—6 sialylation of terminal galactose, results in the generation
of this structure (Figure 8). The enzymes responsible and the
reaction mechanism that generates this unique structure have
been already investigated and submitted elsewhere. This GSL
was found in the CCs of all 5 patients having hepatic metastasis
and 4 other patients in whom liver metastasis had not been
shown, out of a total of 16 subjects.

Cancer malignancy is defined by several key phenotypes,
including apoptosis, motility, angiogenesis, self-adhesion, ad-
hesion to extracellular matrix and to endothelial cells and
aberrant glycosylation is thought to be involved in these steps?.
It is unclear at present as to which of the above processes the
altered GSL structures on the surface of CCs found in this study
are involved. However, when focusing on hepatic metastasis,
functional analyses of a2—6 sialylated IV?Fuca-nLc, may help
to solve the problem. To this end, a study looking into this line
of investigation is under way.

Precise analyses of the activities of glycosyltransferases
responsible for the aberrant glycosylation in malignant trans-
formation presented us with valuable information to help us
understand the mechanisms involved. Three types of increases
in levels, the ratio of type-2 oligosaccharides, a2—6 sialylation
and a1—2 fucosylation can be approximately accounted for by
changes in the activities of related glycosyltransferases. Thus,
in malignant transformation, activities of 1—3 galactosyltrans-
ferase were markedly decreased, the activities of a2—6 sialyl-
transferase toward terminal galactose of nlLc4 are increased,
and the activities of al—2 fucosyltransferase toward nLc, and
Lc, are markedly increased with no or a few exceptions. It is
possible that greatly reduced activity of f1—3 galactosyltrans-
ferase and a virtually invariant alteration in the activities of
B1—4 galactosyltransferase in carcinogenesis result in the
increase of type-2 chain oligosaccharides. Similarly, increased
type-2 chain oligosaccharides, followed by the increase in the
activity of o2—6 sialyltransferase toward type-2 lactosamine
chains results in the elevation of o2—6 sialylated type-2
oligosaccahrides, such as LST-c and VISNeuAcalll3Fuca-nLcs.
Furthermore, greatly increased activity of al—2 fucosyltrans-
ferase toward both nlc, and Lc, leads to the elevation of al—2
fucosylated products, such as Le¥ and LeP. In contrast, elevation
of u2-3 sialylation in carcinogenesis does not depend on
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changes in the related activities. For example, levels of Lc, in
NCs were higher than in CCs in almost all the cases. In addition,
in NCs the levels of the two glycosyltransferase activities that
generate SLe® from Lc; (02—3 sialyltransferase and al—4
fucosyltransferase), are similar to or higher than those in CCs
in several cases, (e.g, cases 1, 2, 6, 11, 12, 13, 15). However,
expression of SLe? is observed in CCs, but absent or present in
only very small quantities in NCs. This maybe a result of the
concerted actions of glycosyltransferases. To generate the SLe*
structure, it is essential that a2—3 sialyltransferase acts before
01—4 fucosyltransferase, because 02—3 sialyltransferase does
not act on terminal galactose when the adjacent GlcNAc is
fucosylated. Hence, a well arranged mechanism of preferential
al—4 fucosylation on type-1 oligosaccharides, such as Lcs,
exists in NCs but breaks down in CCs.

The structures of oligosaccharides analyzed in this study
were limited to those of GSLs. However, other glycans, such
as N- and O-linked glycoproteins and proteoglycans, are also
thought to be intimately involved in cancer malignancy.®> It
is therefore also important to pursue the structures and
functional roles of these glycans on the surface of cancer cells.

This clinico-glycomic study revealed three kinds of unidi-
rectional changes in glycosylation in carcinogenesis of CCs and
examined the activities of related glycosyltransferases. Because
the number of cases analyzed is small, in order to be able to
generalize about the observations in this study, a larger number
of samples is required. However, the findings from this study
will give important clues toward the elucidation of the detailed
mechanism of alteration of glycosylation and its involvement
in cancer malignancy.
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Using gene expression profiling to identify
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Histopathological classification of gliomas is often dinically
inadequate due to the diversity of tumors that fall within the
same class. The goal of the present study was to identify prognostic
molecular features in diffusely infiltrating gliomas using gene
expression profiling. We selected 3456 genes expressed in gliomas,
including 3012 genes found in a gliomal expressed sequence tag
collection. The expression levels of these genes in 152 gliomas (100
glioblastomas, 21 anaplastic astrocytomas, 19 diffuse astrocytomas,
and 12 anaplastic oligodendrogliomas) were measured using adapter-
tagged competitive polymerase chain reaction, a high-throughput
reverse transcription-polymerase chain reaction technique. We
applied unsupervised and supervised principal component analyses
to elucidate the prognostic molecular features of the gliomas. The
gene expression data matrix was significantly correlated with the
histological grades, oligo-astro histology, and prognosis. Using 110
gliomas, we constructed a prediction model based on the expression
profile of 58 genes, resulting in a scheme that reliably classified
the glioblastomas into two distinct prognostic subgroups. The
model was then tested with another 42 tissues. Multivariate Cox
analysis of the glioblastoma patients using other clinical prognostic
factors, incduding age and the extent of surgical resection, indicated
that the gene expression profile was a strong and independent
prognostic parameter. The gene expression profiling identified
clinically informative prognostic molecular features in astrocytic and
oligodendroglial tumors that were more reliable than the traditional
histological classification scheme. (Cancer Sci 2009; 100: 165-172)

Despite being critical for treatment outcomes, precisely
assessing the risk of a glioma using histological classi-
fication fails to address the heterogeneity of responses to therapy
among patients within the same histological class, indicating
that the classification system is not an adequate predictor of the
clinical behavior of the tumor.’ However, recent studies
suggest that molecular approaches are useful for identifying
prognostic markers. Genetic analyses have shown that allelic
loss of chromosomes 1p and 19q is a strong predictor of longer
survival in patients with oligodendroglial tumors.® Further-
more, MGMT promoter methylation was found to be an
independently favorable prognostic factor in GB patients.®

In addition to genomic changes in glioma cells, gene expression
profiling is expected to elucidate molecular features related to
clinical parameters. Application of this method to glioma patients
will not only help clinicians make an optimal clinical decision,
but also lead to possibilities for personalized, pathway-targeted
therapies in the future.

In the present report, we describe high-throughput RT-PCR-
based gene expression profiling of more than 150 gliomas.
Previously we established a molecular diagnostic system for AO
and GB, using part of the data matrix.”? We extended the study,
and identified specific gene expression patterns that can be used

doi: 10.1111/].1349-7006.2008.01002.x
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to classify GB into two distinct subgroups, which are strongly
predictive of prognosis.

Materials and Methods

Patient characteristics. We obtained 169 glioma specimens from
patients who underwent surgical resection at Kyoto University
Hospital or nearby regional hospitals between 1998 and 2005.
The majority of the patients were recruited from a phase II
clinical trial (the KNOG study).®? The protocol for the present
study was approved by the Institutional Review Board of Kyoto
University. Written informed consent was obtained from each
of the patients.

The following samples were excluded from the study: samples
with evidence of previous chemoradiation therapy within the last
10 years (five samples), insufficient tumor content (four samples),
poor expression data quality (two samples), or the presence
of pilocytic astrocytoma (six samples). In total, 152 samples,
including 100 GB, 21 AA, 19 DA, and 12 AO, were eligible for
further analysis. The specimens were examined histologically at
the primary hospitals according to the World Health Organiza-
tion’s 2000 criteria.® The original slides were reviewed by the
Kyoto University Pathology Unit for the final diagnosis. The
samples were collected at the time of the initial surgery without any
prior treatment, except for one sample of recurrent AO collected
14 years after the initial treatment, which included radiotherapy.
The preoperative Karnofsky performance status score was at
least 50 for each of the cases. The extent of surgical resection was
classified into one of three categories according to postoperative
MRI carried out shortly after surgery: complete resection,
incomplete resection, or biopsy. Complete resection was defined
as no evidence of enhanced lesion or T1 abnormality in non-
enhanced tumors using postoperative MRI. All patients received
fractionated local radiotherapy with or without ACNU-based
chemotherapy, except for one case of diffuse astrocytoma that
was not treated with any adjuvant therapy, and one case of
recurrent AO that was treated with adjuvant chemotherapy
alone. Seventy-three of the 100 GB patients were treated accord-
ing to the regimen from the KNOG study. For tumor progres-
sion, the patients underwent a second operation if possible, and
received further chemotherapy for most of the cases.

RNA and DNA isolation. In all cases, tumor specimens were
dissected into two portions at surgery, one for histological

“To whom correspondence should be addressed. E-mail: katou-ki@mc.pref.osaka.jp
Abbreviations: AA, anaplastic astrocytoma; ACNU, numustine; AO, anaplastic oli-
godendroglioma; ATAC-PCR, adaptor-tagged competitive polymerase chain reaction;
DA, diffuse astrocytoma; EST, expressed sequence tag; GB, glioblastoma; KNOG,
Kyoto Neuro-Oncology Group; LDA, linear discriminant analysis; MDA, M.D.
Anderson Cancer Center; MGH, Massachusetts General Hospital; MGMT, O%-methyl
guanine methyltransferase; MRI, magnetic resonance imaging; OS, overall survival;
PC1, first principal component; PCA, principal component analysis; PFS, progression-
free survival; RT-PCR, reverse transcription-polymerase chain reaction.
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diagnosis and the other for molecular experiments. The tumor
specimens for molecular research were immediately snap frozen
at surgical resection, and kept at —80°C until use, Total RNA was
extracted from 100 mg of the tumor specimen with Trizol reagent
(Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s
instructions. Tumor specimens containing 20% or more of non-
tumor or necrotic areas were excluded from further analysis.
Genomic DNA was isolated utilizing a QlAamp DNA Mini Kit
(Qiagen, Valencia, CA, Germany) according to the manufacturer’s
instructions.

Gene expression analysis. The expression of genes was measured
by ATAC-PCR. Selection of the genes examined was based on
an EST sequencing survey of the genes expressed in 12 glioma
tissues as described previously.” We identified 3012 unique
sequences from the EST collection, and prepared 3456 primers
for ATAC-PCR, including primers to survey an additional 444
genes selected from a literature survey. The ATAC-PCR
procedure has been described previously.® The complete list of
genes and expression data from the present study are shown in
a supporting file. The expression data will be deposited into
Center for Information Biology gene EXpression database
(CIBEX) at the DNA Data Bank of Japan.

Methylation-specific PCR. DNA methylation patterns in the
CpG islands of the MGMT gene were determined as described
previously.®”

Statistical methods.

Survival data. OS and PFS were defined as the period from
surgery to death and that from surgery to radiological detection of
tumor progression, respectively. Tumor progression was evaluated
according to the criteria of the committee of the Brain Tumor
Registry (Japan): a 25% increase in tumor size, appearance of
new lesions, or obvious deterioration due to mass effects or
perifocal edema.'® A radiological examination was carried out
every 2 or 3 months postoperatively in high-grade glioma patients,
and immediately after neurological deterioration was detected.

Data preparation and preprocessing. The raw expression data
were first adjusted to correct for variations due to different
sample mRNA concentrations by dividing each value by the
corresponding median value. Values less than 0.05 and more
than 20 were converted to 0.05 and 20, respectively. The entire
data matrix was then converted to a logarithmic scale. Genes for
which 20% of the data were missing were excluded from statistical
analysis after missing value imputation using BPCAfill.'""? The
gene expression levels were then normalized so that the genewise
mean for each sample became zero.

For the analysis with external data sets, we obtained data for
24 genes from the MGH data set®? and 55 genes from the MDA
data set™ for the profile of 58 genes. After a logarithmic con-
version, normalization was carried out so that the average gene
expression level for each gene was zero. Zero was used as the
value when data were not available.

Feature extraction. We used two feature-extraction methods to
obtain effective coordinate axes onto which each data vector
could be projected appropriately. Unsupervised principal
component analysis (PCA) was used to extract axes (principal axes)
representing variations in sample expression vectors. Because
the vector dimensionality (i.e. the number of genes) was larger than
the number of vectors (i.e. the number of patients), we carried
out singular value decomposition to obtain the principal axes.?

The second method was LDA, which searches for an axis on
which the signal-to-noise ratio between the projected data and
the biological and clinical labels of interest is maximized. In the
present study, LDA was carried out after the gene expression matrix
had been projected onto a two-dimensional principal component
space generated by unsupervised PCA. The combination of LDA
and PCA is also known as a principal component regression,
which rarely over-fits when dimensionality is reduced enough by
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the PCA process. A low-dimensional relationship between the
samples and the biological and clinical labels was obtained.

Cox proportional hazards regression. To select genes for the
prognosis prediction model, for which the target was PFS (see
supervised PCA below), we evaluated the significance of the
correlation with PFS using univariate Cox tests (the log-rank test).

In addition, multivariate Cox proportional hazard regression
was used to calculate regression coefficients between possible
prognostic genes and PFS of the corresponding patients; the
obtained coefficient vector represented an axis with coordinates
that showed the strongest correlation with PFS. As with the
LDA, calculations were carried out after the application of PCA,
which extracted two-dimensional representations. Cox’s analy-
ses were done by our original Matlab 6.5 implementation that
mimicked Cox’s analysis modules in XploRe (http://www.
xplore-stat.de/), a web-based statistics software.

Among the GB patients, the significance of the final molecu-
lar classification compared to the other prognostic factors was
evaluated using multivariate Cox analysis. We included both the
training and test sets for the analyses.

Supervised PCA. When constructing the prognosis prediction
model whose target was PFS, we used supervised PCA, in
which genes correlated with a variable of interest (here, PFS)
were selected first. Supervised PCA was then carried out in the
subspace represented by the selected genes. The resulting PC1
score exhibited a strong correlation with the variable."® In the
present study, the genes correlated with PFS were selected using
Cox proportional hazards regression.

Results

‘We carried out survival analysis on 152 tissue samples (100 GB,
21 AA, 19 DA, and 12 AO). Because the survival benefits of
various chemotherapeutic regimens for glioma, especially GB,
are not distict,"' with the exception of that associated with
temozolomide,?**) we included all of the cases in the survival
analysis irrespective of the chemotherapy treatment. After data
processing, we obtained a data matrix consisting of 3225 genes
from the 152 samples. We divided the data matrix into two —
one set consisted of 110 patients (the training set) and the other
contained 42 patients (the test set) — by selecting samples that
arrived at the laboratory at earlier dates for the training set.

The samples that were used as the training set consisted of 77
GB, 11 AA, 11 DA, and 11 AO. The median age at surgery of
the associated patients was 54 years (range 21-82 years). The
median follow-up period for the survivors with GB was
19.5 months (range 3-62 months). Among the 77 GB patients,
61 patients showed tumor progression and 48 patients died. The
median PFS and OS periods in the GB patients were 7 and
14 months, respectively. Data about OS is generally more accu-
rate than that for PFS. However, because the PFS data were
carefully obtained following the strict guidelines of the KNOG
study,® the quality of the PFS data was comparable to that of
the OS data. Because OS may be affected by treatment bias at
the time of tumor progression, such as a second operation, and
there was a good correlation between OS and PFS (correlation
coefficient 0.96), we adopted PFS as the clinical parameter that
most accurately represented the aggressiveness of the gliomas in
each patient.

Unsupervised PCA of the training data set revealed that the
cumulative contribution ratios of the top six principal com-
ponents were 0.9076, 0.9500, 0.9595, 0.9673, 0.9719, and 0.9773.
We plotted the samples on a plane constructed using the first
two components. The resulting scatter diagram demonstrated
that the sample distributions were related to the histological
classes, indicating a close correlation between the global gene
expression patterns and the histology of the samples, such as
malignancy grades and oligo-astrocytic characteristics. Interestingly,
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Fig. 1. Principal component analysis based on the expression of 3225
genes in 110 gliomas in the training set. Circles indicate tumor samples
with color representing histological classes. Glioblastoma (GB) samples
with progression-free survival of 2years or longer (favorable) are
circled in blue, and those with overall survival shorter than 2years
(unfavorable) are marked with a red 'X'. AA, anaplastic astrocytoma;
AO, anaplastic oligodendroglioma; DA, diffuse astrocytoma; PC1, first
principal component; PC2, second principal component,

relatively favorable GB cases with PFS periods of 2 years or
more were located closer to the AO area (Fig. 1).

To further clarify the relationship between the gene expression
profiles and the histology or prognosis of the tumors, we drew
three axes (i.e. grade, oligo-astrocytic, and prognosis axes) in
the scatter diagram in the two-dimensional principal component
space (Fig. 1). The grade axis was determined by LDA, which
discriminated grade 4 (GB) from grade 2 and 3 astrocytic
tumors (DA and AA). The coordinate along the grade axis
represented the correlation between each sample and its histo-
logical grade. The oligo axis was similarly determined by LDA,
which discriminated between the oligodendroglial (AO) and
astrocytic tumors (DA, AA, and GB). The prognosis axis was
determined using multivariate Cox regression analysis. Because
the direction of the prognosis axis was different from that of the
grade axis, estimating the prognosis using gene expression
patterns is likely to be better than estimations obtained using the
histological grading.

We then constructed an outcome prediction model using a
supervised method. Our prediction model was based on super-
vised PCA with the genes that were found to correlate with PFS
using univariate Cox analysis. We evaluated the prediction
model using a fivefold crossvalidation, in which the objective
patients were left out of the supervised PCA process. We found
that the best result was achieved when we used the 58 top-ranked
genes (Fig. 2). The 58-gene model demonstrated a positive
correlation between the PC1 score and PFS in the training set
(Fig. 3a). When all of the training samples were divided into
two groups based on the simple criterion that the coordinate on
the PC1 score was positive or negative, a significant difference
in PFS was observed between the two groups (Fig. 3b). We did
not use any optimized thresholds either with the training or
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Fig. 2. Significance of the prediction model as a function of the
number of diagnostic genes. The vertical axis is the P-value determined
with the likelihood ratio test, whereas the horizontal axis is the
number of top-ranked genes used for the model, selected using
univariate Cox analysis.

test sets. Even when the analysis was restricted to only the GB
cases, PFS was significantly different between the two groups
(Fig. 3¢). Survival data for individual GB and non-GB patients,
aligned based on the PC1 score, are shown in Figure 4a,b.

We selected 58 genes (listed in Table 1) using all of the training
data, and constructed a prognosis predictor based on the PC1
score. This model successfully classified patients in the test set
into good-prognosis and poor-prognosis groups (Fig. 3d.e,f).
Survival data for each patient are shown in Figure 4c.

We examined the methylation status of the MGMT promoter
in the GB patients. Among the 72 assessable cases (55 in the
training set), the MGMT promoter was methylated in 40 of the
cases (32 in the training set) (56%), and the methylation status
was not obviously correlated with our prognosis predictor
(Fisher’s exact test P =(.3).

We evaluated the 58-gene profile with other prognostic factors.
First, we carried out Cox analysis with the 58-gene profile and
tumor grade (GB vs others). In the univariate Cox analysis for
PFS, we obtained P =2.7¢™" and P = 1.0e’® for the 58-gene profile
and tumor grade, respectively. Multivariate Cox analysis including
the 58-gene profile and tumor grade gave 1.0e”® for the 58-gene
profile, and 0.84 for tumor grade. In the univariate Cox analysis
for OS, we obtained 6.0e™" and 4.7e”, for the 58-gene profile
and tumor grade, respectively. Multivariate Cox analysis gave
2.4e7¢ for the 58-gene profile, and 0.03 for tumor grade. Thus,
the 58-gene profile is a strong prognostic factor independent of
tumor grade.

We then carried out univariate and multivariate Cox regression
analyses to evaluate the clinical parameters as potential predictors
of PFS and OS among GB patients (Table 2). Univariate analysis
revealed that the extent of resection, age, and the 58-gene profile
were significantly correlated with OS, whereas only the 58-gene
profile was significantly correlated with PFS. Multivariate analysis
using the three factors extent of resection, 58-gene profile, and
age showed that the extent of resection (P = 0.0011) and the 58-
gene profile (P = 0.0012) were prognostic factors of similar
strength (hazard ratio 3.1) for OS.

We checked the performance of our predictor using two
publicly availably data sets; the MGH data set'? and the MDA
data set."? The correlation of the PC1 score to OS was evaluated
with Cox regression tests, resulting in P-values of 0.00051 and
0.0066 for the MDA and MGH data sets, respectively. Our pre-
dictor produced a stable performance without over-fitting our
data set. The results of Kaplan—-Meier analysis are supplied as a
supporting figure.

Among the 58 selected predictor genes, the expression of 37
genes was upregulated in the poor-prognosis group. They
included IGFBP2, VEGF, TNC, FN14, TIMP1, HMOXI1, LGALSI,
and UPAR, all of which are known to be involved in angiogenesis
or tumor-invasion processes. The remaining 21 genes showed
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Fig. 3. (a,d) Correlations between the first principal component (PC1) score and progression-free survival (PFS) from (a) 110 gliomas in the training

set, and from (d) 77 gliomas in the test set. Red circles and blue crosses denote the patients with tumor progression and the censored patients
without tumor progression, respectively. (b,c,e,f) Kaplan-Meier estimates of PFS ratios: (b) 110 gliomas or (c) 77 glioblastomas (GB) in the training

set; (e) 42 gliomas or (f) 23 GB in the test set.

upregulated expression levels in the good-prognosis group. Six
of these genes (INA, HES6, RTN1, BRSK2, SYNI, and CPLX2)
have been implicated in neuron-related functions (Table 1).

Discussion

Molecular-based classification of high-grade gliomas is
expected to play an important role in predicting tumor prognosis,
but it has been difficult to achieve practical applicability. Two
gene expression profiling studies"**? constructed molecular
classification schemes that correlated with survival. However,
due to the lack of a proper comparison with other major
prognostic factors,®” the clinical utility of these schemes is
unclear. In the present study, we enrolled patients mainly from a
phase II clinical trial.”® The treatment and collection of clinical
information was carried out under strict guidelines, including
frequent follow up and centralized diagnosis of MRI films.
Using gene expression data obtained from high-throughput RT-
PCR, we constructed a prognosis predictor that is independent
of the primary prognostic factors. This prognosis predictor,
composed of a 58-gene profile, was effective both for GB and
non-GB cases. The system was a better predictor of PFS than
OS, probably because PFS more directly correlates with the
biological properties of gliomas.

Although our predictor was mainly based on the cases from
the KNOG study, the results with two external data sets support
the universal performance of the predictor irrespective of
chemotherapeutic regimen. Because survival benefit by chemo-
therapy was relatively small in most malignant gliomas,"® it is
important to elucidate the differences in the intrinsic biological
characters of the tumors.

168

Because the diagnostic genes were selected for correlation
with prognosis, the prognostic predictor can be applied to any
glioma, irrespective of histological grade. In our 52 non-GB
cases, seven patients showed early progression within 6 months,
By means of our prediction scheme, six out of the seven cases
were classified into the poor-prognosis group, indicating good
prognostic predictability for non-GB cases as well as GB cases.

Feature extraction by PCA and other techniques uncovered
various molecular properties of the gliomas. AO localized to a
particular area of the two-dimensional principal component
space, indicating a distinct difference in the gene expression
profiles of oligodendroglial and astrocytic tumors. The direction
of the prognosis axis and the oligo axis indicated that different
gene sets contributed to the differences in malignancy and his-
tology. Differences in the directions of the prognosis and grade
axes indicated that the pathological grading was not necessarily
parallel to the refractoriness of the gliomas. Because the favorable
GB cases were located closer to the AO cases, we speculate that
deviation of the prognosis axis from the grade axis was due to
the AO-like gene expression signature. This also agrees with our
previous study on AO and GB classification:® 46 out of 168
diagnostic genes of the AO and GB classifier appeared among
the 58 genes of the prognostic predictor. Those genes were simply
selected by P-value-like scores for differential gene expression
between AO and GB.

In our analyses, the expression levels of genes related to
angiogenesis or invasion processes were higher in the poor-
prognosis group. The expression of these genes has been
reported to correlate with the malignant characteristics of
gliomas, and some of them may work cooperatively.®3% Among
the poor-prognosis markers reported by Phillips ef al.,"® VEGF,
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Table 1.

List of the 58 genes

No. Coxp CoxP GS number Gene symbol RefSeq ID Description

1 1.58897 5.99E-14  GS2482 1GFBP2 NM_000597 Insulin-like growth factor binding protein 2

2 1.65957 6.14E-13 GS3909 VMP1 NM_030938 Hypothetical protein DKFZp5661133

3 1.99214 7.54E-13 GS10556 MSN NM_002444 Moesin (MSN)

4 1.22527 9.07E-12  (GS4923 TIMP1 NM_003254 Tissue inhibitor of metalloproteinase 1

5 1.78505 1.33E-11 GS1890 LGALS1 NM_002305 Lectin, galactoside-binding, soluble, 1 (galectin 1)

6 -1.39052 1.99E-11 GS12839 HMP19 NM_015980 HMP19 protein (HMP19)

7 -1.32313 9.28E-11 GS6687 CHGB NM_001819 Chromogranin B (secretogranin 1)

8 2.61673 1.24E-10 GS3240 cD63 NM_001780 CD63 antigen (melanoma 1 antigen)

9 2.15797 2.30E-10 GS13698 NES NM_006617 Nestin (NES)

10 1.62126 3.08E-10  GS2782 CLIC1 NM_001288 Chloride intracellular channel 1

11 -0.953909 3.10E-10  GS14040 INA NM_032727 Internexin neuronal intermediate filament protein

12 1.23347 5.97E-10 - TNC NM_002160 Tenascin C (hexabrachion) (TNC)

13 1.48203 6.01E-10 GS4168 TAGLN2 NM_003564 Transgelin 2 (TAGLN2)

14  -1.20606 7.09E-10  GS13019 HES6 NM_018645 Hairy and enhancer of split 6 (Drosophila)

15 1.03772 1.64E-09 - VEGF BC065522 Vascular endothelial growth factor

16 1.24957 1.86E-09 - VIM NM_003380 Vimentin (VIM)

17 1.82864 2.30E-09  GS475 LDHA NM_005566 Lactate dehydrogenase A

18 1.13676 2.47E-09  (GS4232 TNC NM_002160 Tenascin C (hexabrachion)

19 ~1.18854 2,58E-09  GS13275 RPIP8 AB209802 RaP2 interacting protein 8 variant protein

20 -1.0301 4,30E-09 GS12811 SCG3 NM_013243 Secretogranin lii

21 -1.05624  4.58E-09  GS14085 GDAP1L1 NM_024034 Ganglioside-induced differentiation-associated protein 1-like 1
22 1.48913 7.70E-09  GS1683 IFITM3 NM_021034 Interferon induced transmembrane protein 3 (1-8U)

23 298416  7.79E-09  GS1949 PPIB NM_000942 Peptidylprolyl isomerase B (cyclophilin B)

24 2.53115 8.59E-09 GS421 TMSB4X NM_021109 Thymosin, 4, X-linked

25 -1.09751 9.31E-09  GS10002 ALDOC NM_005165 Aldolase C, fructose-bisphosphate

26 2.36402 9.99E-09 GS3483 ZYX NM_001010972 Zyxin (ZYX), transcript variant 2

27 -1.00798 1.08E-08  GS13065 ATP1A3 NM_152296 ATPase, Na+/K+ transporting, o3 polypeptide

28 -1.09385 1.15E-08 - ABCC8 NM_000352 ATP-binding cassette, sub-family C

29 0.982952 1.17E-08  GS6094 IGFBP3 NM_000598 Insulin-like growth factor binding protein 3, transcript variant 2
30 -1.33159 1.18E-08  GS13989 TUB NM_003320 Tubby homolog (mouse), transcript variant 1

31 1.2851 1.30E-08  GS208 IF130 NM_006332 Interferon, yinducible protein 30

32 1.5316 1.35E-08 - FLNA NM_001456 Filamin A, o (actin binding protein 280)

33 1.02419 1.52E-08 - UPAR NM_001005376 Plasminogen activator, urokinase receptor, transcript variant 2
34 1.50835 1.58E-08  GS13503 UPP1 NM_181597 Uridine phosphorylase 1 (UPP1), transcript variant 2

35 1.71108 1.59E-08 GS12786 LAMB2 NM_002292 Laminin, B2 (laminin S)

36 -0.989343 1.67E-08 GS13762 KIAAQ927 AB023144 KIAAQ927 protein

37 1.3664 1.68E-08 GS3760 AEBP1 NM_001129 AE binding protein 1

38 1.74194 1.84E-08 GS2836 EST Al420423 Full-length insert cDNA clone EUROIMAGE 1287006.

39 -1.00213 2.00E-08  GS14024 RTN1 NM_206857 Reticulon 1, transcript variant 2

40 1.111 3.23E-08  GS11665 HMOX1 NM_002133 Heme oxygenase (decycling) 1

41 1.18646  3.34E-08 -~ FN14 NM_016639 Tumor necrosis factor receptor superfamily, member 12A
42  -1.10155 3.71E-08  GS7227 DKFZp434)212 BC078676 Kinesin family member 21B

43 1.76858 4,94E-08  GS2958 GM2A NM_000405 GM2 ganglioside activator

44 1.34778 5.34E-08  GS242 S100A10 NM_002966 $100 calcium binding protein A10

45 -~0.824638 5.66E-08 - PDESB ABO085826 Phosphodiesterase 8B3

46  -1.05329 5.78E-08  GS13667 BRSK2 NM_003957 BR serine-threonine kinase 2

47 -0.956703  7.13E-08 GS4155 SYN1 M58378 Synapsin | (SYN1)

48 1.2386 7.13E-08 GS1071 EST BX647603 ¢DNA DKFZp686L01105

49 -0.923475 7.67E-08 GS512884 CPLX2 NM_001008220 Complexin 2, transcript variant 2

50 1.50109  8.98E-08 GS1458 MRCL3 NM_006471 Myosin regulatory light chain MRCL3

51 1.92343 9.65E-08 GS2257 TMSB10 NM_021103 Thymosin, f10

52 -0.930736 1.20E-07 GS13880 JPH4 NM_032452 Junctophilin 4

53  -1.11747 1.26E-07  GS14607 FAIM2 NM_012306 Fas apoptotic inhibitory molecule 2

54 -0.909196  1.39E-07 GS11781 DKFZp761P2314 AL834342 ¢DNA DKFZp761P2314

55 1.23982 1.55E-07 GS6132 PLEKHA4 NM_020904 Pleckstrin homology domain containing, family A member 4
56 2.37577 1.67E-07  GS4131 GPX1 NM_000581 Glutathione peroxidase 1 transcript variant 1

57 1.15188 1.68E-07  GS2223 sSOD2 NM_001024466 Superoxide dismutase 2, mitochondrial, transcript variant 3
58 1.93896 1.80E-07  GS7306 RHOC NM_175744 Homo sapiens ras homolog gene family, member C

CoxB, regression coefficient; CoxP, P-value for univariate Cox analysis.

VIM, and NES were included in our predictors. Another study  could be potential therapeutic targets in patients from the poor-
also indicated that angiogenic activity represented by  prognosis group.

coexpression of VEGF and IGFBP2 distinguished primary GB The good-prognosis group was characterized by upregulation
from secondary GB.“® These genes and their protein products  of the expression of neuron-related genes. Phillips er al. also
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Table 2. Univariate and muitivariate analyses for overall survival (OS) and progression-free survival (PFS) in glioblastoma patients

oS PFS
Variable No. patients
Hazard ratio (95% Ci) P-value Hazard ratio (95% Cl) P-value

Univariate analysis

Age <50 years versus >50 years 98 1.9 (1.1-3.6) 0.025 1.2 (0.71-2.1) 0.47

Extent of resection?® 98 3.1 (1.5-6.7) 0.00085 1.4 (0.79-2.5) 0.23

MGMT* 72 0.78 {0.43-1.40) 0.43 0.67 (0.39-1.2) 0.16

58 gene profile 98 3.8 (1.8-.9) 0.000051 3.0 (1.7-5.6) 0.0001
Multivariate analysis

Age <50 years versus 250 years 98 1.8 (0.93-3.40) 0.078 - -

Extent of resection? 98 3.1 (1.5-6.7) 0.0011 - -

58 gene profile 98 3.1 (1.5-6.5) 0.0012 - -

tPartial resection and biopsy versus complete resection. *Methylated versus unmethylated O6-methyl guanine methyltransferase (MGMT) promotor.

Cl, confidence interval.

described a correlation between neuronal markers and the favorable
subclasses.”'? Likewise, other investigators have reported that a
subset of neuronal genes was highly expressed in AO tumors
with better prognoses.®** Taken together, these results indicate
that the expression of neuron-related genes is a marker of good
prognoses in patients with high-grade gliomas.

Among the 58 genes in the predictor model, IGFBP2 and
VEGF also appeared in the 44-gene classifier described by
Freije et al.,*® whereas TIMP] and SCG3 appeared in the 35-
gene signature developed by Phillips er al.!'¥ Although most of
the genes did not overlap, these three gene sets might have
similar prognostic value, because distinct but equally predictive
gene lists can be derived from the same data matrix.®® It should
be noted, however, that the 35-gene signature was strongly
correlated with age (P < 0.005), making its clinical utility
uncertain.

Hegi et al. recently demonstrated that epigenetic silencing
of the MGMT gene serves as an independent prognostic
parameter in GB patients treated with temozolomide.® In our
analysis, the methylation status of the MGMT promoter did not
prove to be a significant prognostic factor. Kamiryo et al. found
that MGMT methylation was a significant prognostic factor
for both for OS and PFS in patients with grade III tumors,
but not for grade IV tumors.®” Our result is consistent with this
report, suggesting that the effect of MGMT on ACNU-based
treatment is likely to be smaller than that on temozolomide in
GB patients.
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Optimal Aggregation of Binary Classifiers
for Multiclass Cancer Diagnosis
Using Gene Expression Profiles

Naoto Yukinawa, Shigeyuki Oba, Kikuya Kato, and Shin Ishii

Abstract—NMulticlass classification is one of the fundamental tasks in bioinformatics and typically arises in cancer diagnosis studies by
gene expression profiling. There have been many studies of aggregating binary classifiers to construct a multiclass classifier based on
one-versus-the-rest (1R), one-versus-one (11), or other coding strategies, as well as some comparison studies between them.
However, the studies found that the best coding depends on each situation. Therefore, a new problem, which we call the “optimal
coding problem,” has arisen: how can we determine which coding is the optimal one in each situation? To approach this optimal coding
problem, we propose a novel framework for constructing a multiclass classifier, in which each binary classifier to be aggregated has a
weight value to be optimally tuned based on the observed data. Although there is no a priori answer to the optimal coding problem, our
weight tuning method can be a consistent answer to the problem. We apply this method to various classification problems including a
synthesized data set and some cancer diagnosis data sets from gene expression profiling. The results demonstrate that, in most
situations, our method can improve classification accuracy over simple voting heuristics and is better than or comparable to state-of-

the-art multiclass predictors.

Index Terms—NMulticlass classification, error correcting output coding, gene expression profiling, cancer diagnosis.

1 INTRODUCTION

NA microarrays or alternative quantification techniques

have enabled genome-wide expression analyses of
various biological phenomena. One important application
of this technique is cancer diagnosis, where the expression
level of thousands of genes can be used as a vast amount of
molecular biomarkers of specific phenotypes. This analysis
is expected to overcome the conventional problems of
histopathological cancer diagnosis such as variations in
diagnosis by individual pathologists or difficulties in
differentiating between malignant and benign tissues due
to their morphological similarities. For constructing diag-
nosis systems using high-dimensional gene expression data,
supervised learning theories are often applied, and several
studies have been successful in recent years. Representative
studies include classification of two kinds of acute leukemias
[1] by weighted voting algorithm, classification of four types
of small round blue cell tumors (SRBCTs) by artificial neural
networks [2], and the diagnosis of multiple (14 types)
common adult malignancies by a multiclass support vector
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machine (SVM) [3]. These existing studies revealed that
tissues from different origins can be well classified by
supervised classification algorithms, mainly because the
gene expression profile of an origin is considerably different
from the others. On the contrary, classifying multiple types
of tissue from the same origin, for example, hereditary breast
cancer [4], is much more difficult due to the similarity in
gene expression patterns between phenotypic variants; there
is still no definitive method. When considering histopatho-
logical applications in the postgenomic era, however, we
must deal with such difficult situations, and sophisticated
multiclass prediction methods are required. In this paper,
we propose a novel supervised learning approach to
multiclass classification problems,

For classifying gene expression profiles, SVM is thought
to be the most promising method in recent years, because a
larger margin of decision boundary between two classes
improves its generalization capability for class separation,
especially in a high-dimensional gene expression vector
space. SVM can originally handle binary classification
problems. In a multiclass problem, however, it needs some
device to integrate the binary classification results into the
final answer to the original multiclass (M classes)
classification problem. For the integration process, the
following simple voting heuristics have been frequently
used: 1) prepare a set of M binary classifiers, each of which
separates one class from the other classes (one-versus-the-
rest: 1R); then, a single guess is determined by voting the
outputs from the M binary classifiers [5] and 2) prepare a
set of M(M —1)/2 binary classifiers, each of which
separates one class from another (one-versus-one: 11);
then, a single guess is determined by a vote performed
by them [6]. These integration processes are generalized

Published by the IEEE Computer Society
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Fig. 1. Overview of ECOC method. (a) An example of “target” for a four class problem that represents the corresponding set of binary classification
problems. A target is represented by a three-valued row vector of length 4 (which corresponds to the number of classes), where each column’s index
corresponds to a single class label. “1” (white square) and “0" (black square) indicate positive and negative class labels for binary classification (in
this case, {1, 2} versus {4)), respectively, and “+" (gray square) indicates unused class labels. (b) Typical code matrices for the four class problem. A
code matrix consists of arbitrary target vectors, i.e., the row and column indices correspond to a target and a class label, respectively. 1R and
11 code matrices are traditional designs; 1R is the set of one-versus-the-rest targets ({1} versus {1, 2, 3}, {2} versus {1, 3, 4}, - --), and 11 is the set of
one-versus-one targets ({1} versus {2}, (1} versus {3}, -- -). AA consists of all possible targets including 1R and 11. (c) Multiclass classification by
ECOC method. In this example, the 11 code matrix and the Hamming decoder are used. First, six binary classifiers, each 11 target, are trained
based on a training data set. Then, a test pattern is classified by the six classifiers, and consequently, the binary (coded) pattern is obtained. The
decoder searches for the nearest column vector {code word) in the designed 11 code matrix with respect to Hamming distance and outputs the

corresponding class label as the final guess.

down to the framework of error correcting output coding
(ECOC) [7], which enables the use of a general set of binary
classifiers such as exhaustive coding [7] and random
coding [8]. In addition, arbitrary integration methods
rather than simple voting can be implemented in the
ECOC framework. For example, Hastie and Tibshirani [9]
proposed a probabilistic approach, which made it possible
to integrate probabilistic outputs from binary classifiers of
11 coding. Zadrozny [10] also presented a probabilistic
approach to integrate a general set of binary outputs.

There are also some comparison studies of these various
classification methods applied to multiclass cancer classifi-
cation problems. Li et al. [11] compared the performance of
several multiclass classification methods by applying them
to published data sets of gene expression profiles; they
evaluated SVMs including simple voting heuristics with 1R,
11, exhaustive, and random coding, as well as the Naive
Bayes method, KNN, and the J4.8 decision tree. They found
that SVMs showed overwhelming performance in most cases
and that choosing a set of binary classifiers, i.e., favorable
coding, was problem specific. Ramaswamy et al. [3] also
compared the performance of SVMs with IR and 11 and
concluded that 1R showed better performance. Statnikov et
al. [12] exhaustively compared the performance of several
SVMs, KNN, and neural networks by using published gene
expression data sets, concluding that multiclass SVMs [13],
[14] and simple voting (1R) were the better classification
methods; however, the best SVM algorithm among them was
again problem specific.

In this study, we propose a novel framework to obtain
problem-specific optimal coding. We first revisit the
probabilistic approach proposed in [9], leading to our
modification called the maximum a posteriori (MAP)
method. In order to deal with the optimal coding problem,

then, we introduce weights to the constituent binary
classifiers, which are optimized so as to maximize the
classification performance for the training data set; this is
called a weighted MAP (WMAP) algorithm. It can obtain a
better “graded” set of binary classifiers than the conven-
tional 1R and 11 by solving the optimal coding problem. We
show that the proposed method improves classification
performance over simple voting heuristics by binary
classifiers not only for a synthesized problem but also for
several difficult multiclass cancer classification problems.

2 ECOC aND OpTiMAL CODING PROBLEM

The primary objective of supervised multiclass prediction
is to construct a predictor that predicts the class label
i™ € C of the nth sample from its pattern vector z™,
where C' = {1,...,M} is a set of M > 3 class labels. The
predictor is constructed based on the training data set
consisting of N samples accompanied by their class
labels, L = {z™,i™}, _

In the framework of ECOC [71, [15], each multiclass
problem is decomposed into multiple binary prediction
problems, which are denoted by a code matrix
{71,770, " «"Y>M where | represents the number of
binary prediction problems (see Fig. 1). We call the
configuration of a code matrix “coding” or “coding
method.” For example (Fig. 1a), when the jth row of the
code matrix includes “1” as the first and second elements,
“0” as the fourth element, and “+” as the third element,
this row indicates that the jth binary predictor ideally
outputs “0” and “1” for input sample patterns belonging
to classes {1, 2} and {4}, respectively; the jth predictor
does not care about the sample patterns belonging to the
third class. We call the pair of subsets corresponding to
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the jth row of the code matrix, {1, 2} and {4} in this case,
the jth “target.” For an input sample z whose multiclass
label is being predicted, multiple outputs from all the
binary predictors defined by the code matrix are aggre-
gated and “decoded” into a multiclass output i if the set
of binary outputs was most similar to the ith column of
the code matrix, which is termed “code word” (Fig. 1c).
Although some binary predictors may make errors in
actual cases, if the number of errors is not too large, an
appropriate “decoding procedure” can correct the errors
to restore the correct multiclass label. This is the basic idea
of ECOC,

To design an effective classifier according to the ECOC
framework, selecting the appropriate “code matrix” and
“decoding procedure” is essential. Conventional proce-
dures of multiclass prediction based on the one-versus-the-
rest (1R) or one-versus-one (11) methods are understood as
practical examples of ECOC employing simple code
matrices representing 1R or 11 (Fig. 1b) and the simplest
Hamming decoding procedure. In the ECOC framework,
favorable coding can be selected from the heuristics
candidates such as 11 and 1R and all-possible-combinations
(AA, see Fig. 1b). Although an optimal coding (or an
optimal code matrix), if it exists, is expected to enhance the
resultant multiclass prediction, which code matrix is the
optimal one has been found to depend on each situation
[16]. In our study, instead of looking directly for the optimal
coding, we intend to optimally weigh the binary classifiers
whose set is given arbitrarily as an initial code matrix. Since
this weight optimization is performed so as to exhibit the
best performance based on a given data set, we expect that
the optimal coding problem can be solved in a consistent
manner in each situation. The validity of this novel idea is
examined through experiments using a synthesized data set
and some difficult bioinformatics data sets.

3 COMBINING PROBABILISTIC GUESSES OF BINARY
CLASSIFIERS BY STATISTICAL ESTIMATION

Our framework employs a probabilistic decoding, which
was first proposed by Hastie and Tibshirani [9], in particular,
for 11 coding and later extended by Zadrozny [10] as a
general coding method. It decodes a probabilistic guess on
the multiclass problem from the aggregated probabilistic
guesses on the binary problems.

For the nth sample with a sample pattern vector z™, we
assume a class membership probability vector p™ whose
component is a true but unobserved membership prob-

ability pl ) to each class label i € C:
M0, Yo p = )
ieC

We attempt to estimate p™ and call the estimate a
probablhshc guess of the primary multiclass problem. Let
q]( = Pr(i € 1;|z™,i € 1;U0;) be a probabilistic guess of
the jth bmary pred1ctor to the nth sample, where 1, Cc C
and 0; C C are class subsets corresponding to the bmary
outputs “1” (positive) and “0” (negative) of the jth binary

1.In Fig. 1a, 1; = {1,2} and 0; = {4}. In Fig. 1b, 1; and 0; are denoted by
white and black squares, respectively.

predictor, respectively.’ Let ¢™ = {¢{"}, 5 denote the set of
class membership probabilities, where B is the set of binary
predictors defined by a code matrix. It is noted that the code
matrix B can be represented by an arbitrary set of code
words (each of which corresponds to a class), not restricted
as 1R or 11, according to our approach (Fig. 1b). Thus, the
class membership probability vector for the entire data set,
{g™},_; ..y, is determined by a set of binary classifiers in
B, based on the training data set L. In the following, we
omit the argument “(M” when that does not risk causing
confusion.

Since our study aims at presenting a good methodology
to deal with the optimal coding problem, our task is, in
principle, free from the choice of binary classifiers. For
frequently used binary classifiers such as linear discrimi-
nant analysis and SVM, probabilistic outputs are not
available straightforwardly. In this study, we use SVM as
an individual binary classifier, to which we apply logistic
regression whose parameter is determined by cross valida-
tion with the training data set [17], in order to obtain a
probabilistic guess from the discriminant function value of
the SVM (for details, see Appendix A). The dependence on
individual binary classifiers will be briefly discussed in
Section 6.

Next, we proceed to an estimation procedure of multiclass
membership p from the set of binary membership probabil-
ities g. Based on the assumption of the true multiclass
membership probability p, the true binary class probability
with respect to the jth target, 7;(z) = Pr(i € 1;}z,i € 1;U0;),
is given by

Dy

™ py; +p0;” @)
where membership probability, p;, to a subset of class labels
1 € 2€ is given by a simple summation of class membership
probabilities to single classes, py = > ;7. To obtain a p,
which allows « to best fit the observed ¢, a weighted
Kullback-Leibler (KL) divergence between ¢ and = is

minimized with respect to p:
—41 ®)

m

where w; is a confidence weight variable corresponding to
the jth target, which could be set at w; = 1 in the simplest
case. In the next section, we will consider how to determine
the w; value appropriately, which corresponds to the
optimal coding process. Since the natural distribution of p
is multinomial, we introduce a Dirichlet prior to (3) for
regularization, and the problem is formulated as maximiza-
tion of the following objective function:

KL(g;w(p)) = ij{q] log + (1- q])log
jeB

V(p) = > w;{g;logpy, + (1 — g;) log po, — log(py, + po,) }
jeB
+> logpi + R,
ieC

4)

where g is a hyperparameter that controls the intensity of
the Dirichlet prior, and R is a constant independent of p.
The Dirichlet prior term controls prior knowledge of the
rate of random mislabels and contributes to stabilizing the
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optimization algorithm. We set g = 0.001 in this study,
which leads to stability, whereas its variation did not affect
the results very much. By maximizing objective function
V(p) with respect to p under constraint (1), we obtain the
probability estimate of class membership p. This maximiza-
tion can be performed by the steepest descent method with
a Lagrange multiplier. In the simplest case where all the
weight variables {w;},.p are set at unity, this probabilistic
estimation is similar to the existing probabilistic decoding
[9] and is subsequently called the MAP method. The
pseudocode for the MAP method is presented as Algo-
rithm 1 in Appendix B.

4 OPTIMIZATION OF THE WEIGHTS OF
BINARY CLASSIFIERS

In this section, we propose a procedure to optimize the
weight variable w = {w;},.p, which allows us to approach
the optimal coding within the usage of initial code matrix B.
To optimize the weight w, we define a gain function U that
represents the concordance between the class membership
probability estimate p and the true class label i

A7
U=U{p"}pet s (8}, ) = Zzt§"’m(p§")),
n=1 ieC
(5)

where t(" = (t§"), - ,tﬁf})) is an M-dimensional binary vector
that indicates a single class label; t§") =1 if sample n
belongs to class i, otherwise, tﬁ") = 0. mx(p;) is a soft-max
function:

mx(p) = 2202 7 S exp (),

veC

where f is an inverse temperature parameter, which
controls the sharpness of the soft-max function; as
8 — +oo, mx(p;) approaches 1 for i=argmax;p;, or 0
otherwise. Since the setting of this parameter barely affects
the results, we set it at an appropriately large value.

The MAP solution does not depend on any linear scale of
the KL divergence (3), i.e., multiplication of every weight
wj, 7 € B by a constant. To remove this scale insensitivity,
we introduce a constraint:

w; 20, Y wi=1 (6)

jeB

The gain function U is an implicit function of w, namely,
U depends on p, which is obtained by maximizing a
function of w. Therefore, the optimization of U with respect
to w is to obtain the @ that satisfies

..... o

under condition (6),

™ = argmax V(p"™|w) under condition (1), (8)
)

seeny

a twofold optimization problem; outer and inner optimiza-
tion is given by (7) and (8). The optimal M-class classifier is

configured by optimizing @ for the entire data set L in the
outer optimization, and by using it, the class membership
probability estimate p(™ of each pattern vector = is given
in the inner optimization. In other words, the outer and
inner optimization corresponds to the optimal coding and
the decoding processes, respectively.

A solution to this optimization problem is shown in
Appendix C. We call this algorithm the WMAP method.
Note that we can utilize an arbitrary gain function in place
of (5), if the gain function is differentiable with respect to
p™. Accordingly, our WMAP approach looks for the
optimal “graded” coding represented as the weight vector
w within the initial setting of the “binary” code matrix B.
This optimization process is in principle free from the
choice of individual binary classifiers (fypically SVMs),
probabilistic transformation from their discriminant func-
tion (typically logistic regression), and the original code
matrix (typically AA). The pseudocode for this weight
optimization procedure is presented as Algorithm 2 in
Appendix B.

5 RESULTS
5.1 Experiment 1: Applications to Synthesized
Data Sets

We first examined the performance of the two methods,
MAP and WMAP, by applying them to a synthesized
data set. The aim of this experiment is to show
performance improvement by WMAP in each of three
designs of code matrix: 1R, 11, or AA. Assuming an
underlying 3-class structure of 2D data points, the data
set was synthesized according to the following proce-
dure. First, we generated each data point z = (z;,z)
from a 2D uniform distribution within [-2,2] x [-2,2].
Next, the class label of each data point was assigned as
argmin ||z — z.,]|> — b, based on the distance between the
dath point and the centroids of the three classes:
g, = (-v2,-v2), zg = (V2,V2), ¢, =(—V2,v/2), and
Zo = (V2,—V2)}, where b, = 210g(0.35), by, = 2log(0.20),
be, = 210g(0.50), and b, = 210g{0.75). Note that ¢; and ¢
represent the same class: that is, this class has two class
cenfroids. We generated 400 points (¢, ¢}, ¢, and ca:
100 points each) as a fraining data set and 600 points
(c1, ¢}, 2, and e3: 150 points each) as a test data set and
then merged ¢; and ¢ into a single class ¢; in each data
set (Fig. 2a shows the test data set). Because this data set
produces an apparently inseparable target, {1} versus
{23}, by a simple classifier, poor classification perfor-
mance would be expected when B is used as the
ECOC code matrix. When employing B44, which
includes B'F as the initial coding, the weight (con-
fidence) optimized by our WMAP for such an unreliable
target as {1} versus {2, 3} should shrink to a small value.

We constructed a total of six combinations of two
multiclass classification algorithms, MAP and WMAP,
and code matrices, 1R, 11, and AA. As an individual
binary classifier, we used an SVM with a linear kernel
K(z,z") = zT2'. We set 7=2 and 3=2,000 for the
(hyper)parameters.

These combinations were evaluated by the means and
standard deviations of the three-class classification
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Fig. 2. Application of WMAP-AA and MAP-AA to a synthesized data set.
(a) The scatter plot of the data points and the decision boundaries
estimated by WMAP-AA (the solid lines) and by MAP-AA (the dotted
lines). The dash lines represent the Bayes optimal decision boundaries.
(b) The weight optimization result by WMAP-AA. The matrix represents
AA coding of the three class problem (the symbols are same as those in
Fig. 1). Two bars located in the right of each target vector represent the
weight of the target (black: value normalized so that its maximum value
became 1) and the training accuracy of the binary classifier for the target

(gray).

accuracies for the training and test data sets over five
different and random data generations (Table 1). As
expected, WMAP-AA represented the best test accuracy
among all combinations. The effect of the weight
optimization of binary classifiers is remarkable; WMAP-
11 and WMAP-AA showed higher test accuracies than
MAP-11 and MAP-AA, which employ uniform weights.
The reason why WMAP-11 had slightly lower test
accuracy than MAP-11 could be overtraining. The
performance of WMAP-IR was significantly improved
compared to MAP-IR; the poor performance of MAP-IR
was caused by a nuisance target in B'E, {1} versus {2, 3},
which could not be discriminated well by a linear kernel
SVM, and its weight successfully became almost zero in
WMAP-1R.

The WMAP-AA result above can be seen as an example
of how weight optimization by WMAP worked. To
construct an optimal decision boundary by the whole
multiclass classifier, it is better to ignore unreliable binary
classifiers and also to appropriately weigh binary classifiers
so as to contribute to the final multiclass classification
performance; seeking effectively an appropriate “graded”
coding starting from the original coding, in this case, B44.
This experiment demonstrated that our WMAP-AA auto-
matically meets this requirement. Fig. 2 shows the decision
boundary (Fig. 2a) and the weights of the binary classifiers
(Fig. 2b) obtained by WMAP. Interestingly, the weights of
targets {1} versus {2, 3} and {2} versus {3} became 0 in this
result. Since it is difficult to train the binary classifier for the
target {1} versus {2, 3} (Fig. 2b, line 4), thus making it

TABLE 1
Classification Performance of Combinations of
Binary Classifiers for an Artificial Problem

MAP-IR
0.3625 (0.0643)
0.5567 (0.0497)

MAP-11
08785 (V.O088)
0.8687 (0.0155)

MAP-AA
0.8413 (0.0297)
(.8313 (0.0152)

Training
Test

WMAP-IR WMAP-11 WMAP-AA
Traintng  0.8670 (0.0330) 08825 (Q.0105)  0.8925 (0.0173)
Test 0.8603 (0.02113  0.8637 (0.0197)  0.8783 (0.0130)

TABLE 2
Gene Expression Data Sets of
Four Tumor Classification Problems

Dataset # of samples  # of classes  # of genes
Thyroid cancer 168 4 2,000
Esophages] cancer 141 3 1,763
SRBCT 83 4 2,308
Leukemia 72 3 {1,223

unreliable, the weight of {1} versus {2, 3} became approxi-
mately zero to ignore this classifier in the whole multiclass
classifier. On the contrary, the weight of {2} versus {3}
became approximately zero for another reason. The data
points of classes ¢; and c3 for target {2} versus {3} (Fig. 2b,
line 3) have easily separable distributions, and we obtained
a good binary classification performance for this target. If
we put trust in this target, {2} versus {3}, however, the
performance of the multiclass classification may degrade
because ¢; would be classified into ¢; or ¢; randomly, based
on the decision boundary for this target. The entire
multiclass classifier preferred to emphasize other binary
classifiers to achieve higher accuracy for ¢;. The decision for
c; and c3 was then compensated by voting by other
classifiers such as {2} versus {1, 3} and {3} versus {1, 2}. As
a consequence of grading each element in the code matrix
B#4 by optimizing the weights, the decision boundary by
WMAP-AA came to have an expanded margin to minimize
classification loss, in comparison to MAP-AA. The result of
this simple artificial problem suggests that the optimal
coding problem in ECOC can be solved by our weight
optimization method (WMAP) by making unnecessary
targets in the initial code matrix shrink.

5.2 Experiment 2: Applications to Tumor
Classification Problems

Our method was next applied to four tumor classification

problems based on gene expression profiling. The informa-

tion of the data sets is summarized in Table 2, and the

details are described below.

5.2.1 Thyroid Cancer Data Set

The thyroid cancer data set is composed of original gene
expression profiles from four tissue types of human thyroid
origin that contain 168 samples and 2,000 genes measured by
an adaptor-tagged competitive PCR (ATAC-PCR) [18]
method. The main diagnostic procedure for thyroid cancer
is fine needle aspiration, but because the tissue structure is
disrupted during the sampling process, differential diag-
nosis is extremely difficult [19], [20], [21]. Thus, diagnosis
from gene expression profiles has been anticipated, though it
would not be an easy task. The composition of the samples
are 58 (follicular adenoma: FA), 28 (follicular carcinoma: FC),
40 (normal: N), and 42 (papillary adenocarcinoma: PC).

5.2.2 Esophageal Cancer Data Set

This data set is also composed of original gene expression
profiles obtained from esophageal cancers of Japanese
patients by ATAC-PCR [22], [23]. It should be noted that
esophageal cancers in Japan are mostly squamous cell
carcinoma, while those in the US and Europe are adeno-
carcinoma, i.e., Barret tumors. The task here is differential
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diagnosis of three histological types: poorly differentiated
(the sample number is 14), moderately differentiated (97),
and well differentiated (30).

5.2.3 SRBCT Data Set [2]

Gene expression profiles about small round blue cell
tumors (SRBCTs) of childhood, which contain 83 samples
and 2,308 genes measured by cDNA microarrays, can be
accessed at http://research.nhgri.nih.gov/microarray/
Supplement/. SRBCTs, which include the Ewing family of
tumors (EWS), rhabdomyosarcoma (RMS), Burkitt lympho-
ma (BL), and neuroblastoma (NB), have some difficulty in
being distinguished solely histologically due to their similar
appearance. The composition of the samples is 29 (EWS),
25 (RMS), 11 (BL), and 18 (NB).

5.2.4 Leukemia Data Set [24]

Gene expression profiles about three types of leukemia,
which contain 72 samples and 11, 225 genes measured by
Affymetrix oligonucleotide arrays, can be accessed at
http:/ /www-genome.wi.mit.edu/cancer. The composition
of the samples is 28 (acute myeloid leukemia: AML),
24 (acute lymphoblastic leukemia: ALL), and 29 (MLL
translocation; MLL).

We prepared the six ways of aggregating binary
classifiers identically to those used in Experiment 1. For
each binary classifier to be aggregated, we prepared an
SVM with a linear kernel using all genes without any
selection procedure. It should be noted that in many
classification problems based on gene expression profiling,
employing linear kernels in SVMs has exhibited better
performance than employing more complicated kernels;
since complicated kernels implicitly assume high-dimen-
sional feature spaces, they may overfit the relatively large
noise involved in gene expression data. We preset the
(hyper)parameters of the MAP and WMAP methods at y =
2 and £ = 2,000 for the thyroid cancer, esophageal cancer,
and SRBCT data sets, and at y =2 and 8= 1,500 for the
leukemia data set. We also prepared three state-of-the-art
multiclass classification algorithms: a nearest shrunken
centroid algorithm? (NSC) [25] and two direct implementa-
tions of MC-SVM, Weston and Watkins (WW) [13], and
Crammer and Singer (CS), which is a modification of the
WW approach [14]. These methods cast multiclass categor-
ization problems as a constrained optimization problem
with a quadratic objective function by introducing a
generalized notion of the margin into multiclass problems.

In NSC, the shrinkage parameter A was optimized by
searching from 0 to 6 at intervals of 0.25. In the two MC-
SVM variants, a linear kernel was also employed, because it
showed the best performance. The parameters for NSC and
MC-SVM were optimized based on just the training data
sets for avoiding information leak from the test data sets.

For each data set and each method, training accuracies
and test accuracies were evaluated with a fivefold cross-
validation framework, where for each split of the five folds,
the ratios of all classes were maintained to be similar to the

2. NSC is known as a method implemented in the PAM: Prediction
Analysis for Microarrays software package (http://www-stat.stanford.edu
/~tibs/PAM/).

TABLE 3
Cross-Validation Accuracies for
Three Real Gene Expression Data Sets

MAP-IR MAP-1} MAP-AA
Thyroid Cancer
Training 1 HE{)] i
TJest 0.762 {0.065) 0.762 {0072 8,774 (0.074)
Esophageal cancer
Training 0821 (0.109) .901 (0.003) 0,901 (0.003)
Test 0.693 (0.026) 0.688 (0.076) 0.696 (0.050)
Leukemia
Training i 1 {0
Test 0.985 {0,033) 0.956 {0.068) 0969 {0,069
WMAP-IR WMAP-11 WMAP-AA

Thyroid Cancer
Teaining 1 1 1{0)
Test 0.762 (1.065) 0.762 {0.072) 8.774 (0.074)
Esophageal cancer
“Training 2901 (0.003) 0917 (0.037) 0,901 {LO03)
Test 0.693 (0.026) 0.688 (0.076) 6,703 (0.051)
f.oukemia
Training 1 {0 ()
Test 0.985 (0,069 0.936 {0.068) 0.969 (0.06%)

NSC MC-SVM (WW)  MC-SYM (CS)
Thyroid cancer (A = 0.50)

O.887 (0.022)
{.744 {0.035)
(A = (.00

[R5
0.768 {0,069

Truining
Test
Esophageat cancer

[ {11
0.762 {0.D68)

Training 0.912 (0.025) 1 {1 f{n
Test 0.675 (0.051) 0.681 (0.056) 0,673 (0065}
Leukemin (A = 0.0

Training 0972 (0.020) 1 i
Test 0.890 (0.057) 0,985 (0.034) 0.969 {((1L06Y)

other folds. The mean and standard deviation of the results
are shown in Table 3. For the SRBCT data set, all classifiers
exhibited 100 percent accuracy at both training and test; so,
the results are not shown in the table.

Comparing the proposed six ways, the BA4 coding was
often found to be better than the others; it was the best for
the thyroid and esophageal data sets and comparable to the
best for the SRBCT and leukemia data sets. For the three
data sets except esophageal, the training CV accuracy by all
of the six combinations reached the upper limit of 1.0. The
SRBCT data may be too easy to be classified perfectly even
for the test, while for the thyroid and leukemia data sets, the
training CV accuracies of 1.0 might come from overfitting
because the test CV accuracies did not reach 1.0.

Either of the two cases above can be a hazard to our
WMAP procedure, because the training accuracy is so
saturated that the room for the weight optimization is
restricted. This is why the test CV accuracies were the same
between WMAP and MAP in some cases. Even in such
saturated cases, however, the optimization with respect to
the soft-max accuracy can improve the aggregation of
multiple binary classifiers, especially when there are a lot of
constituent binary classifiers, as can be seen in Section 6.
Compared to the existing state-of-the-art multiclass classi-
fication methods, we found our proposed methods, espe-
cially with weight optimization (WMAP), exhibited better
or comparable performance.

5.3 Experiment 3: Applications to a Larger Class
Problem
When the number of classes (I/) is large, the initial setting

of the exhaustive coding (AA) becomes computationally
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