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For assessing carcinogenicity in animals, it is difficult and costly, an alternative strategy has been desired.
We explored the possibility of applying a toxicogenomics approach by using comprehensive gene expres-
sion data in rat liver treated with various compounds. As prototypic non-genotoxic hepatocarcinogens,
thioacetamide (TAA) and methapyrilene {MP) were selected and 349 commonly changed genes were
extracted by statistical analysis. Taking both compounds as positive with six compounds, acetaminophen,
aspirin, phenylbutazone, rifampicin, alpha-naphthylisothiocyanate, and amiodarone as negative, predic-
Keywords: : X . N N Ll ) s )
Toxicogenomics tion gnglysns of microarray (PAM) was performed. By training and 10-fold c 055 vahdatlon,_a‘clasmﬁer
Rat containing 112 probe sets that gave an overall success rate of 95% was obtained. The validity of the
Liver present discriminator was checked for 30 chemicals. The PAM score showed characteristic time-dependent
increases by treatment with several non-genotoxic hepatocarcinogens, including TAA, MP, coumarin,
ethionine and WY-14643, while almost all of the non-carcinogenic samples were correctly predicted.
Measurement of hepatic glutathione content suggested that MP and TAA cause glutathione depletion fol-
towed by a protective increase, but the protective response is exhausted during repeated administration.
Therefore, the presently obtained PAM classifier could predict potential non-genotoxic hepatocarcino-
genesis within 24 h after single dose and the inevitable pseudo-positives could be eliminated by checking
data of repeated administrations up to 28 days. Tests for carcinogenicity using rats takes at least 2 years,
while the present worlk suggests the possibility of lowering the time to 28 days with high precision, at
least for a category of non-genotoxic hepatocarcinogens causing oxidative stress.
© 2008 Elsevier Ireland Ltd. All rights reserved.

Hepatocarcinogenesis
Non-genotoxic

1. Introduction

Chemical carcinogenesis is a multistage process, ie., initia-
tion, promotion and progression (Dragan et al., 1993; Miller and
Miller, 1981; Scott et al., 1984). Based on this mechanism of action,
chemical carcinogens are classified as genotoxic (mutagenic) and
non-genotoxic {(non-mutagenic) agents (Hayashi, 1992; Melnick et
al., 1996). Genotoxic agents covalently react with DNA to form DNA
adducts within the cells of the target organ, contributing to the
initiation process. Such chemicals could be assessed by several
short-term in vitro and in vivo assays that measure DNA damage,

* Corresponding author at: Department of Pathophysiology, Faculty of Pharma-
ceutical Sciences, Doshisha Women's College of Liberal Arts, Kodo, Kyotanabe, Kyoto
610-0395, Japan. Tel.: +81 72 641 9826; fax: +81 72 641 9850.

E-mail address: turushid@dwc.doshisha.ac.jp (T. Urushidani).

0300-483X/$ ~ see front matter © 2008 Elsevier Ireland Ltd. All rights reserved.
doi: 10.1016/].tox.2008.05.013

mutagenic effects, and chromosomal aberrations (Weisburger and
Williams, 2000). In the case of non-genotoxic agents, the mecha-
nism is much more complicated. Non-genotoxic carcinogens lack
chemical reactivity with DNA and hence do not form DNA adducts,
but rather induce effects that indirectly lead to neoplastic transfor-
mation or enhance the development of tumors from pre-initiated
cells. Although the mechanism of action of such non-genotoxic car-
cinogens is not fully understood, several possibilities have been
postulated in liver, such as oxidative stress, modulation of metabo-
lizing enzymes, induction of peroxisome proliferation, alteration
of intercellular communication, and disruption of the balance
between proliferation and apoptosis (Butterworth and Bogdanffy,
1999; Cohen and Ellwein, 1990; Klaunig et al., 1998; Klaunig and
Kamendulis, 2004; Nguyen-Ba and Vasseur, 1999; Silva Lima and
Van der Laan, 2000; Williams et al,, 1996). Even more compli-
cated is the fact that many non-genotoxic carcinogens frequently
cause several of these effects at once. The effects of non-genotoxic
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carcinogens in rodents are only manifested after in vivo exposure
at high dosage levels over long periods (e.g., 2-year rodent carcino-
genicity assays). Consequently, the current strategy for evaluating
non-genotoxic carcinogens is not satisfactory because the test is
time consuming and expensive, and it requires the use of many
animals and large amounts of chemicals.

The present report is focused on the application of tox-
icogenomics for early assessment of potential non-genotoxic
hepatocarcinogenicity of chemicals. Non-genotoxic hepatocarcino-
genesis has been studied extensively, and postulated to act via a
number of mechanisms: oxidative stress, increased mitogenesis,
decreased apoptosis, interference with gap junction intercellu-
lar communication, and interference with tubulin polymerization
(Combes, 2000; Klaunig et al., 1998). Several recent publications
have described applications of microarrays and expression profil-
ing for non-genotoxic carcinogenesis in liver (Ellinger-Ziegelbauer
et al., 2005, 2008; Fielden et al, 2007; Nie et al, 2006). They
attempted to extract common gene sets coordinately deregulated
by several different classes of genotoxic and/or non-genotoxic hep-
atocarcinogenesis. It was then revealed that the modulation of
extracted genes was dependent upon the class of the carcino-
genesis. This strongly suggests that mechanism-based strategy
should be employed in order to obtain useful biomarker gene sets
for carcinogenesis. The specific aim of the present study was to
develop identifiers for early assessment of non-genotoxic hep-
atocarcinogenicity in specific class of chemical based on gene
expression profiles in reference to our large-scale database named
as TG-GATEs (genomics assisted toxicity evaluation system devel-
oped by Toxicogenomics Project, Japan) (Urushidani, 2007). Our
strategy was to focus on common gene expression changes in
livers treated with two well-known oxidative stressors, methapyri-
lene (MP) (Lijinsky et al., 1980; National Toxicology Program,
2000; Ohshima et al., 1984; Ratra et al,, 1998) and thioacetamide
(TAA) (Becker, 1983; Diez-Fernandez et al,, 1998; Duivenvoorden
and Maier, 1994; Ohtsuka et al, 1998; Sanz et al, 1995) to
identify a characteristic set of genes reflecting the early stage
of oxidative stress-mediated non-genotoxic hepatocarcinogene-
sis,

2. Materials and methods
2.1, Animals and experimental design

Five-week-old male Sprague-Dawley rats were obtained from Charles River
Japan, Inc. (Kanagawa, Japan). After a 7-day quarantine and acclimatization period,
the animals (6-week old) were assigned to dosage groups (five rats per group}usinga
computerized stratified randem grouping method based on individual body weight.
The animals were individually housed in stainless-steel cages in an animal room that
was lighted for 12 h (7:00-19:00) daily, ventilated with an air-exchange rate of 15
times per hour, and maintained at 21-25*C with a relative humidity of 40-70%.
Each animal was allowed free access to water and pellet diet (CRF-1, sterilized by
radiation, Oriental Yeast Co., Ltd., Tokyo, Japan).

Table 1 lists the overview of the compounds used in this study. A total of 30
cempounds {10 nen-genotoxic hepatocarcinogens and 20 non-hepatocarcinogens)
were available in the database when the present analysis was performed. They
were subdivided in a training set, consisting of 2 non-genotoxic carcinogens (pos-
itive training set) and 6 non-hepatocarcinogens (negative training set) with the
test set for additional validation consisting of 8 non-genotoxic carcinogens and 14
non-hepatocarcinogens.

According to the standard protocol in our project (Takashima et al., 2006), five
rats per group were orally administered at three doses with these compounds
suspended or dissolved either in 0.5% methylceliulose (MC) solution or corn oil
according to their dispersibility. Traditionally, carcinogenicity studies for chemi-
cal agents have relied upon the maximally tolerated dose (MTD) as the standard
method for high dose selection. In the present study, the MTD was chosen based on
data derived from preliminary toxicity studies of 7 days duration.

For single-dose studies, rats were sacrificed at 3, 6, 9 and 24 h after dosing (3H,
6H, 9H and 24H, respectively). For repeated dose studies, the animals were treated
daily for 3, 7, 14 and 28 days, and sacrificed 24 h after the last dosing [day 4 (4D), 8
(8D), 15 (15D) and 29 (29D), respectively]. The animals were euthanized by exsan-
guination from the abdominal aorta under ether anesthesia, and the liver samples

were obtained from the left lateral lobe of the liver in each animal immediately after
sacrifice for examination,

The experimental protocols were reviewed and approved by the Ethics Review
Committee for Animal Experimentation of National Institute of Health Sciences.

2.2. Histopathology of livers treated with MP or TAA

For light microscopical examination, the liver sample of each animal was fixed
in 10% neutral buffered formalin, dehydrated in alcohol and embedded in paraffin.
Paraffin sections were prepared and stained by a routine method with hematoxylin
and eosin (H&E).

2.3. Microarray analysis

An aliquot of the sample (about 30 mg) for microarray analysis was obtained
from the left lateral lobe of the liver in each animal immediately after sacrifice,
kept in RNAlater® (Ambion, Austin, TX, USA) overnight at 4-C, and then frozen at
~80-C until use. Liver samples were homogenized with the buffer RLT supplied in
RNeasy Mini Kit {Qiagen, Valencia, CA, USA)}, and total RNA was isolated according to
the manufacturer’s instructions. Microarray analysis was conducted on three out of
five samples for each group by using GeneGhip® RAE230A probe arrays (Affymetrix,
Santa Clara, CA, USA). The procedure was basically conducted according to the man-
ufacture’s instructions as previously reported (Uehara et al., 2008a,b). Microarray
Analysis Suite 5.0 (MAS; Affymetrix) was used to quantify microarray signals and
the intensities were normalized for each chip by setting the mean intensity to 500
{per chip normalization).

2.4. Selection of persistently up/down-regulated genes in common with MP and
TAA

By using statistical and clustering tools, persistently up/down-regulated genes
in common with MP and TAA throughout the study periods were extracted. First,
data were imported into GeneSpring 6.0 software {Silicon Genetics, Redwood City,
CA), and comparisons among time-matched groups from each study of MP and TAA
were performned using one-way analysis of variance (ANOVA) with Tukey's multi-
ple comparison test for post hoc comparisons when significance was determined
by ANOVA with a false discovery rate (p <0.05). Probe sets exhibiting significant
changes in expression by Tukey’s multiple comparison testin both high- and middle-
dose groups for one or more time points in each study were selected. In the next
step, significant selected probe sets {452 probe sets) were divided into subsets
with distinct expression profiles by K-means clustering using Tigr Mev 3.1 soft-
ware (http://www.tm4.org/mev.html) (current metric: Euclidean distance; divided
into nine clusters) based on logarithm {log2) of the ratio to control for individ-
ual gene expression. Genes not categorized in the clusters showing clear time- and
dose-independent expression pattern were excluded from further analysis. Finally, a
subset of 348 probe sets containing 276 up-regulated and 73 down-reguiated probe
sets was selected for common intersection to single and repeated studies of MP and
TAA (for more information, see supplemental figures).

2.5. Class discrimination by prediction analysis of microarray (PAM)

Prediction of potential carcinogenesis was performed by an approach using PAM
for R package (http://www-stat.stanford.edu/~tibs/PAM). PAM makes sample clas-
sification using the nearest shrunken centroid method with an automated gene
selection step integrated into the algorithm (Tibshirani et al., 2002). it employs a
parameter threshold A to select genes for class discrimination. PAM training is per-
formed by comparing 2 positive compounds as non-genotoxic carcinogenesis (MP
and TAA, high dose group only) with 6 negative compounds, i.e., APAP (lida et al.,
2005; National Toxicology Program, 1993), ASA (Giri, 1993), PhB (Meakawa et al.,
1987; National Toxicology Program, 1990}, RIF (Sodhi et al., 1997), ANIT (Jean and
Roth, 1995; Leonard et al., 1981) and AM (Agoston et al., 2003; Delaney et al,, 2004)
for the ratio of expression levels of the selected 349 probe sets at various time points
(a total of 64 training samples).

Ten-fold cross validation was performed to find out the optimal classifier perfor-
mance, which minimized classification errors for training sets. During the validation,
a threshold 4 was varied in search of the optimal classifier performance. The A value
that settled at the lowest classification error with the fewest genes was favored as
the optimal. For validation of the classifier, the optimized threshold value ohtained
from training was subsequently used for prediction of potential carcinogenicity for
the total of 30 compounds, including training sets. PAM prediction results were
expressed as a logarithm transformed score (PAM prediction score) of the ratio of
positive class probability relative to negative class probability associated with the
classification of each sample, ie.,

class probability : positive
class probability : negative

PAM prediction score = log
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Table 1
Overview of the compounds used for prediction analysis of microarrays training and/or test
Compound Abbreviation CAS-number Mode of action Supplier Vehicle Dose {mg/kg) PAM
training/test
Non-genotoxic hepatocarcinogens®"
Methapyrilene MP 135-23-9 Oxidative stress Sigma 0.5%MC 10, 30, 100 Positive
induction training/test
set
Thigacetamide TAA 62-55-5 Oxidative stress Sigma 0.5%MC 4,5,15,45 Positive
induction training/test
set
Coumarin CMA 91-64-5 Oxidative stress Tokyo Chemical Corn oil 150 Test set
induction Industry
Ethionine ET 67-21-0 Oxidative stress Tokyo Chemical 0.5%MC 250 Test set
induction Industry
Carbon tetrachioride CCL4 56-23-5 Oxidative stress Wako Pure Chemical Corn oil 300 Test set
induction Industries
Phenobarbital PB 57-30-7 Hepatic enzyme Sigma 0.5%MC 100 Test set
induction
Hexachlorobenzene HCB 118-74-1 Hepatic enzyme Tokyo Chemical Corn ol 300 Test set
induction Industry
Clofibrate CFB 637-07-0 Peroxisome Wako Pure Chemical Corn oil 300 Test set
proliferation Industries
Gemfibrozil GFZ 25812-30-0 Peroxisome Sigma Corn oil 3c0 Test set
proliferation
Wy-14,643 Wy 50892-23-4 Peroxisome Tokyo Chermical Corn oil 100 Test set
proliferation Industry
Nen-hepatocarcinogens®®
Acetaminophen APAP 103-90-2 - Sigma 0.5%MC 600 Negative
training set
Aspirin ASA 50-78-2 - Wako Pure Chemical 0.5%MC 450 Negative
Industries training set
Phenylbutazone PhB 50-33-9 - Sigma 0.5%MC 200 Negative
training set
Rifampicin RIF 13292-46-1 - Wako Pure Chemical 0.5%MC 200 Negative
Industries training set
Alpha-naphthytisothiocyanate ANIT 551-06-4 - Tokyo Chemical Corn oil 15 Negative
Industry training set
Amiodarone hydrochloride AM 1951-25-3 - Sigma 0.5%MC 200 Negative
training set
Allopurinol APL 315-30-0 - Sigma 0.5%MC 150 Negative test
set
Allyl alcohol AA 107-18-6 - Tokyo Chernical Corn oil 30 Negative test
Industry set
Benzbromarone BBr 3562-84-3 - Sigma 0.5%MC 200 Negative test
set
Bromobenzene BBZ 108-86-1 - Tokyo Chemical Corn oil 300 Negative test
industry set
Carbamazepine CBZ 298-46-4 - Sigma 0.5%MC 300 Negative test
set
Chlorpromazine CPZ 69-08-0 - Wako Pure Chemical 0.5%MC 45 Negative test
Industries set
Diclofenac sodium DFNa 15307-79-6 - Cayman Chemical 0.5%MC 10 Negative test
Company set
Diazepam DZpP 439-14-5 - Wako Pure Chemical 0.5%MC 250 Negative test
industries set
Isoniazid INAH 54-85-3 - Sigma 0.5%5MC 200 Negative test
set
Nitrofurantoin NFT 67-20-9 - ICN Biomedicals 0.5%MC 100 Negative test
set
Phenytoin PHE 57-41-0 - Tokyo Chemical 0.5%MC 600 Negative test
Industry set
Propylthiouracil PTU 51-52-5 - Tokyo Chemical 0.5%MC 100 Negative test
Industry set
Sulfasalazine SS 599-79-1 - Sigma 0.5%MC 1000 Negative test
set
Valproate sodium VPA 1069-66-5 - Sigma 0.5%MC 450 Negative test

set

# Genotoxicity is based on in vitro genotoxicity tests (Salmonella and mammalian gene mutation tests) as reviewed in NTP (http://ntp-serverniehs.nih.gov/), IARC
(http:/fmonographs.iarc.fr.) and several published papers.
b Carcinogenicity is based on reviews by NTP (http://ntp-server.niehs.nih.gov/), JARC (http://monographs.iarc.fr.) and several published papers.
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2.6. Gene ontology (GO) analysis of PAM classifier

The identified probe sets were subjected to GO analysis by DAVID
(database for annotation, visualization, and integrated discovery; http://appsl.niaid.
nih.gov/david/) using Fisher’s exact test. Level 3 analysis was adopted.

2.7. Measurement for hepatic total glutathione contents

Hepatic total glutathione was measured in the liver of rats receiving a high
dose of MP, TAA or BBZ, and their corresponding controls. Measurements were
performed for three rats (gene expression was measured) per group using Glu-
tathione Quantification Kit (Dojindo Mol. Tech, Inc., Kumamoto, Japan). In brief,
the liver tissue was homogenized in 5% 5-sulfosalicylic acid and the particulate
cellular debris was removed by centrifugation (8000 x g) for 10min. The inter-
nal standards consist of serial dilutions of glutathione (1000, 750, 500, 250, 100,
50 and O pM). The change in absorbance at 405 nm was measured and total glu-
tathione was calculated according to the glutathione standard curve. The results
were analyzed with the use of an unpaired two-tailed Student’s t-test or Welch's
t-test as appropriate, and a p-value of <0.05 was considered statistically signifi-
cant.

3. Results
3.1. Histopathology

Except for the death of one animal in the high dose group of MP
on 20D, there were no other deaths in these studies of MP and TAA.

MP- or TAA-treated rats revealed typical liver damage through-
out the study periods. Although the extent of the liver damage
differed slightly among the animals, a similar pattern was obtained
for those in the same dose group.

At high dosage of MP in the single dose study, periportal hepato-
cytes exhibited hypertrophy characterized by granular eosinophilic
cytoplasm and enlarged nuclei with variable anisonucleosis at
each time point. More striking abnormalities include mononuclear
cell infiltration and hepatocellular single cell necrosis containing
shrunken cells with pyknotic nuclei randomly scattered through-
out the periportal region of the hepatic lobule. Associated with
these lesions, increased numbers of hepatocellular mitotic fig-
ures and bile duct hyperplasia were present at each time point
in the repeated dose study. At 29D, hepatocellular hyperplasia
became evident, and some affected portal regions contained an
increased number of oval cells arranged in clusters without a
distinct lumen (Fig. 1a). In addition, for the same dose group,
a pre-neoplastic altered hepatocellular focus was also observed
(Fig. 1b). Middle-dose MP treatment resulted in minimal hep-
atocellular hypertrophy, single cell necrosis of hepatocytes, and
mononuclear cell infiltration in the periportal region at 15D and
29D. Moreover, no significant histopathological alterations were
observed at early time points except hepatocellular hypertrophy.
In the low-dose MP-treated groups, no significant changes were
observed throughout the study periods except for minimal hyper-
trophy of hepatocytes, observed in one animal each at 8D and
29D.

At high- and middle-dose of TAA, centrilobular hepatocytes
exhibited hypertrophy with large, atypical nuclei in single and
repeated dose studies (Fig. 1c). Moreover inflammatory cell infil-
tration and hepatocellular single cell necrosis were also observed
at the centrilobular region. The degree of these lesions increased
in a dose and time-dependent manner. At 15D and 29D, bile duct
hyperplasia and oval cell proliferation at the periportal region
became evident, and a pre-neoplastic altered hepatocellular focus
was also observed (Fig. 1d). No significant histopathological alter-
ations were observed in the low-dose groups throughout the
study periods except degeneration of hepatocytes with gran-
ular and eosinophilic cytoplasm, observed in two animals at
29D.

3.2. Class discrimination by PAM in the training set

PAM training was performed using the training set to identify a
minimal subset of genes expected to best characterize the early
stage of non-genotoxic hepatocarcinogenesis-specific responses.
Fig. 2 shows the training and cross-validation errors for differ-
ent threshold values. Both the training and cross-validated errors
were minimized near the threshold =4.00, where 112 genes were
selected. At this threshold, both classes of the training samples were
clearly separated based on the expression pattern of these 112 genes
with an overall success rate of 95%. Namely, 13 of the 16 positive sets
(81%) and all of the negative sets (100%) were correctly classified
(Fig. 3a). However, three positive sets (MP-3H, -4D and TAA-3H)
were classified as negative, together with all of the negative sets
(Fig. 3b).

The list of the genes involved in the PAM classifier is shown in
Table 2 (for more information, see supplemental data). Genes were
sorted according to the best prediction between the two classes.
The top three important discriminators identified by PAM were
“nuclear RNA helicase, DECD variant of DEAD box family (Ddx39)",
“interferon-related developmental regulator 1 (Ifrd1)”, and “mdm2,
transformed mouse 3T3 cell double minute 2 (Mdm2)", which were
highly up-regulated by MP and TAA. In the extracted 112 probe
sets, 111 were prominently up-regulated in the positive training
set and the remaining 1 gene (cytochrome P450 4F4) was down-
regulated. Based on gene ontology, the contents of genes related to
cellular metabolism including several anti-oxidative metabolism,
cell proliferation, cell cycle, response to DNA damage stimulus were
significantly high (Table 3). These features might reflect the cellu-~
lar changes related to sustained oxidative stress in association with
non-genotoxic hepatocarcinogenesis by MP and TAA.

3.3. Validation of usefulness of the PAM classifier

The 112-gene classifier generated on the training set was next
applied to class discrimination for the 30 total compounds as a
validation test. The classifier predicted the following samples as
positive: high dose MP-6H, 9H, 24H, 8D, 15D and 29D; middle-dose
TAA-29D; high dose TAA-6H, 9H, 24H, 4D, 8D, 15D and 29D; CMA-
3H, 6H and 9H; ET-24H, 4D, 8D, 15D and 29D; WY-15D and 29D;
BBZ-24H. All of other samples (including enzyme inducers, PB and
HCB; peroxisome proliferators other than WY, such as CFB and GFZ;
and other compounds) were predicted as negative,

In the present study, these prediction results were visualized
as a numerical score reflecting the probabilities of class discrimi-
nation between the two classes, namely the PAM prediction score.
The PAM score showed characteristic time-dependent changes by
treatment with several non-genotoxic hepatocarcinogens. In the
MP- or TAA-treated group, the score increased dose-dependently
with a peak value at 6H for MP, 9H and 24H for TAA after single dos-
ing, and then it markedly increased with repeated administrations
(Fig.4b, c,e, ). CMA, ET or WY treatment also resulted in an increase
in the score with a peak value at 6H for CMA, 24H for ET and WY,
and also showed an increase or tendency to increase with repeated
dosing (Fig. 4g, h, j). Although all of the CCL4-treated groups were
predicted as negative, the score showed a tendency to increase with
repeated dosing (Fig. 4i). On the other hand, all of the low dose MP-
or TAA-treated groups were predicted as negative without any ten-
dency to increase in the score with repeated dosing (Fig. 4a and
d). As for the enzyme inducers with carcinogenic activity, PB and
HCB (Fig. 41 and m), and peroxisome proliferators other than WY,
Le., CFB (Fig. 4n) and GFZ (within Fig. 4r), showed negative scores
throughout the time points. Of the non-carcinogenic samples, BBZ
showed a transient increase in the score at 24H but returned to
negative during repeated dosing (Fig. 4k). Other non-carcinogenic
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Table 2
The list of the genes involved in the PAM classifier
Probe ID Accession number Gene title Gene symbol
1387048.at NM.053563 DEAD (Asp-Glu-Ala-Asp) box polypeptide 39 Ddx39
1367795.at NM.019242 Interferon-related developmental regulator 1 Hrd1
1384427.at XM.001080981 Transformed mouse 3T3 cell double minute 2 homolog (mouse) (predicted) Mdm2._predicted
1388986.at - EST -
1369921.at NM.020540 Glutathione S-transferase M4 Gstm4
1368072._at NM_019290 B-cell translocation gene 3 Btg3
1387060.at NM.031642 Kruppel-like factor 6 KIfe
1376098.a.at XM._06061069724 Myosin IG Myolg
1368173.at NM.021754 Nucleolar protein 5 Nol5
1373209.at XM_001063564 Eukaryotic translation elongation factor 1 epsilon 1 (predicted) Eeflel_predicted
1388560.at NM.001008771 WD repeat domain 77 Wdr77
1374945 at NM.001007706 GCD14/PCMT domain containing protein RGD 1359191 RGD1359191
1376737.at XM.001073157 EST LOC686259
1388397 at NM.001008721 EBNA1 binding protein 2 Ebnalbp2
1371785.at NM.181086 Tumor necrosis factor receptor superfamily, member 12a Tafrsfi2a
1375895.at - EST -
1367764.at NM.012923 Cyclin G1 Cengl
1388674.at NM_080782 Cyclin-dependent kinase inhibitor 1A Cdknta
1373499.at NR.002704 Growth arrest specific 5 Gas5s
1386897.at NM._024363 Heterogeneous nuclear ribonucleoproteins methyltransferase-like 2 (S. cerevisiae} Hrmtli2
1372211.at NM.145673 v-maf musculeaponeurotic fibrosarcoma oncogene family, protein K (avian) Mafk
1386995.at NM.017259 B-cell translocation gene 2, anti-proliferative Btg2
1372510.at NM_001047858 Sulfiredoxin 1 homolog (S. cerevisiae) Srxn1l
1388900._at XM_001076548 RGD1566118 {predicted) RGD1566118 predicted
1370583.s.at NM.012623 ATP-binding cassette, sub-family B (MDR/TAP), member 1A/1B Abcbla/Abcb1b
1398756.at NM.012992 Nucleophosmin 1 Npm1
1375224 at NM.001012206 Pleckstrin homology-like domain, family A, member 3 Phlda3
1388155.at NM.053976 Keratin complex 1, acidic, gene 18 Krt1-18
1368032.at NM.022869 Nucleolar and coiled-body phosphoprotein 1 Nolct
1388629.at NM.199099 Inosine 5-monophosphate dehydrogenase 2 Impdh2
1371936.at NM.199372 Eukaryotic translation initiation factor 4A1 Eif4al
1377387.a.at - EST -
1374326.at NM_001011980 Peter pan homolog {Drosophila) Ppan
1367617.at NM.012495 Aldolase A Aldoa
1376001 .at XM.001065234 Polymerase (RNA) I associated factor 1 (predicted) Prafi_predicted
1398832.at NM_012749 Nucleolin Nel
1368121.at NM.013215 Aldo-keto reductase family 7, member A3 (aflatoxin aldehyde reductase) Akr7a3
1370174.at NM.133546 Myeloid differentiation primary response gene 116 Myd116
1398771 at NM_019283 Solute carrier family 3, member 2 Slc3a2
1389450.at XM.001071583 EST LOC360830
1371530.at NM_198370 Keratin complex 2, basic, gene 8 Krt2-8§
1367834.at NM.053464 Spermidine synthase Srm
1387282.at NM.053612 Heat shock 22 kDa protein 8§ Hspb8
1372043.at XM.001071573 EST RGD1311709_predicted
1372150.at NM_001034146 Ubiquitin-specific protease 10 Uspi0
1389569.at NM_001029915 Brix domain containing 2 Bxdc2
1371498.at NM.001037348 V1 MGC125271
1389815.at NM.172045 Protein phosphatase 1, vegulatory (inhibitor) subunit 148 Pppirtdb
1370314 at NM.031148 Sotute carrier family 20, member 1 Slc20al
1372218.at NM_199410 WD repeat domain 12 Wdr12
1372354.at - EST -
1367654.at NM.031819 Fat tumor suppressor homolog {Drosophila) Fath
1388107.at NM.144746 Protein phosphatase 2, regulatory subunit B, delta isoform Ppp2r2d
1372028.at NM.001047095 EST RGD1305727 predicted
1373767.at NM.001008363 Zinc finger, AN1-type domain 2A Zfand2a
1390579.at XM.001073162 EST RGD1305222 predicted

1388588.at
1370309.a.at
1367732.at
1399158.a.at
1389577.at
1398757.at
1370947_at
1373677.at
1388244.s.at
1388150.at
1388666.at
1367713.at
1386910.a.at
1372019.at
1373647 at
1387072.at
1388754.at
1367870.at

NM.001015013
NM_031330
NM.030987
NM.012992
NM.001009640
NM.012992
XM_001070821
XM.001061829
NM.017138
NM.053490
NM.001003401
NM.019356
NM.024148
XM 001062474
NM.001009652
NM.053794

NM.032614

Mammary tumor virus receptor 2

Heterogeneous nuclear ribonucleoprotein AJ/B

Guanine nucleotide binding protein, beta 1
Nucleophosmin 1

Cirrhosis, autosomal recessive 1A (human)
Nucleophosmin 1

EST

Sotute carrier family 39 (zinc transporter), member 10 {predicted)
Ribosomal protein SA

Exportin 1, CRM1 homolog (yeast)

Ectodermai-neural cortex 1

Eukaryotic transfation initiation factor 2, subunit 1 aipha
Apurinic/apyrimidinic endonuclease 1

EST ’

Zinc finger protein 622

Protein kinase, lysine deficient 1

EST

Thioredoxin-like 2

Mtvr2

Hnrpab

Gnb1

Npmt1

Cirhla

Npmt

Rda279
Stc39a10.predicted
Rpsa

Xpot

Enel

Eif2s1

Apex1
RGD1310128_predicted
Zfp622

Pricwnk1

Txni2
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Table 2 (Continued)

Probe ID Accession number Gene title Gene symbol
1387950.at NM._138847 Nuclear import 7 homolog (S. cerevisiae) Nip7
1387807.at NM.031763 Platelet-activating factor acetylhydrolase, isoform Ib, alpha subunit 45kDa Pafah1bi
1371378.at XM.001053247 EST LOC678808
1371735.at - EST -

1398791 at NM.031614 Thioredoxin reductase 1 Txnrd!
1386958.at NM.031614 Thioredoxin reductase 1 Txnrd1
1385616.a.at XM.001059946 ASF1 anti-silencing function 1 homolog A (S. cerevisiae) (predicted) Asfla.predicted
1388990.at NM_139186 MKi67 (FHA domain) interacting nucleolar phosphoprotein Mki67ip
1388449.at XM.001071102 Eukaryotic translation elongation factor 1 beta 2 (predicted) Eef1Db2_predicted
1373850.at NM.001025737 Sphingomyelin phosphodiesterase, acid-like 3B Smpdi3b
1371539.at XM.001071992 Nucleolar protein family A, member 2 (predicted) Nola2.predicted
1387774.at NM.013011 Tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, zeta polypeptide Ywhaz
1371980.at NM.001034922 ATPase family, AAA domain containing 3A Atad3a

1373075.at XM.001061556

EST
Tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, eta polypeptide

RGD1560888_predicted
Ywhah

Cyp4fd

Rpsi9
LOC362154

Ran

Nimel

Ptdsr

Eif3s4

Tomm20
Cdk105
RGD1305605. predicted
Wdr3._predicted
PIk2
Mrps2_predicted
Itgbdbp

Bysl
Nargl.predicted
Mrps18b
Rabggtb
Cab39._predicted

1367693.at NM.013052

1387973.at NM.173123 Cytochrome P450, family 4, subfamily f, polypeptide 4
1390317.at - EST

1371377.at NM-001037346 Ribosomal protein S19

1373380.at NM.001010963 Brain zinc finger protein

1367590.at NM.053439 RAN, member RAS oncogene family

1370295.at NM.138548 Expressed i non-metastatic cells 1

1374632.at NM.001012143 Phosphatidylserine receptor

1388381.at NM.001013095 Eukaryotic translation initiation factor 3, subunit 4 (delta)
1370785.s.at NM.152935 Translocase of outer mitochondrial membrane 20 homolog (yeast)
1398801.at NM.134415 CDK105 protein

1374764.at XM.001058941 EST

1374793.at XM.001065786 WD repeat domain 3 {predicted)

1368106.at NM.031821 polo-like kinase 2 (Drosophila)

1372116.at XM._001079091 Mitochondrial ribosomal protein S2 {predicted)
1388507.at NM.001037352 Integrin beta 4 binding protein

1389200.at NM.182674 Bystin-like

1372558.at XM.001053949 NMDA receptor-regulated gene 1 (predicted)
1371809.at NM.212534 Mitochondrial ribosomal protein S18B

1387911.at NM._138708 RAB geranylgeranyl transferase, b subunit

1372243.at XM.001063411 Calcium binding protein 39 (predicted)

1372255.at XM.001065238 Arginyl-tRNA synthetase (predicted)

1370184.at NM_017147 Cofilin 1, non-muscle

1372461.at NM.001012504 EST

Rars_predicted
cfi1
Set_predicted

compounds including APL, AA, and BBr (Fig. 40—q), and remaining
16 (Fig. 4r) were correctly predicted as negative.

3.4. Additional biological validation

In order to support the class discrimination results by PAM,
hepatic total glutathione was quantified for the following selected
samples: high dose MP- and TAA-treated groups, and BBZ-treated
groups.

Hepatic glutathione contents transiently reduced with peak val-
ues at 3H for MP, GH for TAA and 9H for BBZ after single dosing, and
rapidly recovered 24H after the treatment (Fig. 5). Although hepatic
glutathione content was kept at normal or higher in the BBZ-treated
group at all time points of repeated dose study, in the MP- and TAA-
treated groups it reduced with repeated dosing (Fig. 5). These time
course changes of the glutathione contents are clearly correlated
with the change of the PAM score.

Of the PPAR« agonists, only WY, but not CFB and GFZ, showed
positive scores at 15D and 29D. If the PAM classifier detects car-
cinogenesis via the activation of PPARa and these three agonists
stimulated the receptor to the same extent, all of three agonists
should have been classified as positive. The dose of each compound
had been determined based on a 7-day repeated preliminary study
and thus the doses would not be proportional to their potency to
the receptor, To assess the biological potency of each agonist in vivo,
we compared the induction of acyl-coenzyme A oxidase 1, a gene
directly regulated by PPAR«. As shown in Fig. 6, the dose of WY
appeared to be too high, since enzyme induction reached its max-
imum by the low dose of WY, During repeated administrations,

however, the extent of the induction was almost the same as in the
high dose of these three agonists. If the positive score of WY was due
to its PPAR« activation, not only the high dose but also the middle
and low dose should be classified as positive. We then performed
PAM using the present classifier for the three doses of these three
agonists, but no positive scores were obtained other than the high
dose of WY at 15D and 29D (data not shown).

4. Discussion

The goal of the present study was to develop a classifier for
early assessment of potential non-genotoxic hepatocarcinogenic-

Table 3

GO analysis of the PAM classifier

Term Count  Percentage  p-Value
Cellular metabolism 41 34.75 5.07E-03
Primary metabolism 38 3220 1.80E-02
Macromolecule metabolism 31 26.27 8.64E~04
Cell organization and biogenesis 22 18.64 3.84E-05
Biosynthesis 14 11.86 8.19E-03
Cellular focalization 12 10.17 3.03E-04
Cell proliferation 10 8.47 6.2GE-03
Negative regulation of physiological process 10 8.47 1.66E—-02
Negative regulation of cellular process 10 847 2.75E-02
Protein localization 9 7.63 7.12E-03
Cell cycle S 7.63 1.10E-02
Cell death 8 6.78 4.27E-02
Cellular morphogenesis 7 593 2.60E-02
Response to DNA damage stimulus 5 4.24 2.58E-02
Regulation of response to stimulus 2 1.69 2.33E-02
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Fig. 1. Histopathology of rat liver treated with MP or TAA for 28 days. Repeated administrations of high dose of MP (100 mg/kg) for 28 days caused hepatocellular hyperplasia
and some affected portal regions contained increased numbers of oval cells arranged in clusters without a distinct lumen (a), and in some cases, a pre-neoplastic altered
hepatocellular focus was seen {b; arrowheads). In the centrilobular region of rat liver treated with repeated administrations of high dose of TAA (45mg/kg) for 28 days,
hepatocytes exhibited hypertrophy with farge, atypical nuclei {c). As in methapyrilene, a pre-neoplastic altered hepatocellular focus was also observed (d; arrowheads).

ity of chemicals based on gene expression changes stored in our the database, i.e., the quantitative gene expression data obtained in
database, TG-GATEs. In order to utilize the classifier for practical the single platform employing standardized and enriched protocol
drug development, we did not attempt to explore an original algo- with three dose levels and eight time points (four for single and
rism but to use a well-established one, Le., PAM in the present case. four for repeated). The enrichment of time and dose in the data has

Our advantage over the previous similar works was the quality of been shown to be quite powerful in toxicological analysis in various

Number of genes
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Fig. 2. PAM training and cross validation. PAM training was performed by comparing 2 positive compounds (MP and TAA, high dose group only) with 6 negative compounds
(APAP, ASA, PhB, RIF, ANIT and AM) on the ratio of expression levels of the selected 349 probe sets for various time points{total of 64 training samples). Ten-fold cross validation
was performed to find out the optimal classifier performance, which minimized classification errors for training sets. Both the training (black symbol) and cross-validated
errors (white symbol) were minimized near the threshold = 4.00, where 112 genes (circled) were selected.
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Fig. 3. Class discrimination by PAM. PAM prediction results for the condition determined in Fig. 2 are shown. {a) Prediction results of the training sets (13 positives and 48
negatives) are shown, Note that the overall success rate was 95%, i.e., 13 of the 16 positive sets (81%) and all of the negative sets (100%) were correctly classified. (b} Prediction
result of individual sample. For each chemical, the samples are aligned with time as shown on the bottom. The samples predicted as positive are depicted with white and
negative with black. Note that two out of three errors occurred at 3 h after single dosing.

ways (Urushidani, 2007). In the present study, genes showing clear
dose- and time-dependent changes were successfully extracted by
K-means clustering, and we could detect the changes of the score
transient after single administration which then turned to be sus-
tained after repeated administration. These also helped us consider
the toxicological mechanism.

After PAM training, we produced a discriminator consisting of
112 of the mobilized probe sets that could discriminate between
both classes with a high probability, >95%. In the training procedure,
MP-3H, 4D, and TAA-3H were judged as false negatives. However,
these results were considered to be reasonable because 3H of both
compounds was too early for development of hepatotoxicity and
4D of MP treatment was the period when homeostatic recovery of
the hepatic glutathione contents occurred.

In the present experiments, MP and TAA showed similar
early morphological changes in rat liver, characterized as hep-
atocellular single cell necrosis with inflammatory response and
hypertrophy with granular eosinophilic changes. This was con-
firmed by electron microscopy as proliferation and swelling of
mitochondria (unpublished observations). In addition, hepato-
cellular altered foci were observed at 15D andfor 29D in the
MP and TAA-treated groups. It is well known that this type
of lesion is a pre-neoplastic transformation of the cells and is
induced in the early stage of non-genotoxic hepatocarcinogene-
sis in the liver (Bannasch, 1976; Fischer et al., 1983). Therefore,
early gene expression profiling in liver treated with these two
compounds is considered to be closely related to future carcino-
genesis.
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Fig. 4. PAM prediction score. The PAM class probability was converted to a score as described in Section 2 in order to enable quantitative comparison. The score is shown for
MP ((a) 10 mg/kg, L; (b) 30 mg/kg, M; (c) 100 mg/kg, H). TAA ((d) 4.5 mg/kg. L: (e} 15 mg/kg, M; (f) 45 mgfke, H), CMA ((g) 150 mg/kg), ET ((h) 250 mg/kg), CCL4 (i) 300 mg/kg),
WY ((j) 100 mg/kg), BBZ (k) 300 mg/kg), PB ((1) 100 mg/kg), HCB ({m) 300 mg/kg). CFB ((n) 300 mg/kg), APL ({0} 150 mgfkg). AA ((p) 30 mg/kg), BBr {{q) 200 mg/kg), and (r)
the other 17 chemicals. For abbreviation of the compounds, see Table 1.
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Fig. 5. Effects of MP, TAA or BBZ on glutathione contents in rat liver. Hepatic total glutathione was measured in the liver of rats receiving a high dose of MP (a), TAA (b)or
BBZ(c}, and their corresponding controls. Measurements were performed for five rats per group using Glutathione Quantification Kit. The results were expressed as percent
of control at each time point. Statistical analysis was done by an unpaired two-tailed Student’s t-test or Welch's t-test as appropriate. *p<0.05, **p <0.01, by Student's t-test,

#p <0.05 by Welch's (-test.

The gene list selected as a marker for predicting hepatic car-
cinogenicity contained oxidative stress-, oxidative DNA damage-,
and cell cycle regulation-related genes, which were changed in the
early stage of administration. The oxidative stress is due to the
production of reactive oxygen species more than the anti-oxidant
capability of the target cells. Unregulated or prolonged produc-
tion of cellular oxidants has been thought to lead to mutation
as a result of oxidant-induced DNA damage, thought to partici-
pate in non-genotoxic carcinogenesis (Klaunig et al., 1998; Klaunig
and Kamendulis, 2004). The observed expression changes in these
genes is in accordance with previous reports that the repetitive
cycle of DNA damage (initiation) and reproduction (promotion)
caused by sustained oxidative stress is closely related to the carcino-
genic process of non-genotoxic carcinogens. This does not mean
that the classifier detects any compounds causing oxidative stress.
Of the compounds used as negative sets, APAP is known as a pro-
totypic oxidative stressor, which induces glutathione depletion in
liver when overdosed (James et al., 2003; Kiyosawa et al., 2004). ASA
was reported toinduce some antioxidant enzymes and components

(Cai et al,, 1995), and stimulates some beta-oxidation enzymes,
bringing about an overproduction of H;0; (Rivero et al.,, 1994).
PhB was reported to accelerate glutathione oxidation and it induces
lipid peroxidation of microsomes (Miura et al., 2002). All of these
were successfully classified as negative, suggesting that the classi-
fier discriminates non-carcinogens causing oxidative stress.

The validity of the presently developed discriminator for car-
cinogenesis was examined on our large-scale database, and all of
the 20 chemicals except BBZ (selected as a non-carcinogen) were
judged as negative at any time points. Of the eight chemicals classi-
fied as non-genotoxic carcinogens, CMA, ET, CCl4 and WY showed
positive prediction and increase in the PAM prediction scores in
repeated administrations, whereas enzyme inducers such as PB
and HCB, and other peroxisome proliferators were all judged as
negative.

For CMA (Lake et al., 2002; National Toxicol Program, 1993), ET
(Ogiso et al,, 1990; Svardal et al., 1988), and CCi4 (Castro et al.,
1989; Natarajan et al., 2006), oxidative stress was reported as being
involved in their hepatotoxicity and carcinogenesis. It could be con-
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Fig. 6. Effects of repeated administration of CFB, WY or GFZ on expression of acyl-CoA oxidase-1. Expression of acyl-CoA oxidase-1, a gene directly regulated by PPARq,
was measured by GeneChip, and the intensities were normalized for each chip by setting the mean intensity to 500 (per chip normalization). The results were expressed
as mean+S.D. (n=3). For each panel, C: control, L: low dose, M: middle dose, H: high dose, for CFB: 30, 100, 300 mg/kg; WY: 10, 30, 100 mg/kg; GFZ: 30, 100, 300 mg/kg,
respectively.
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cluded that sustained oxidative stress plays an important role in
their carcinogenesis, as in MP and TAA.

The induction of PPAR«x in rodents treated with peroxisome
proliferators was considered to be related to hepatocarcinogen-
esis (Holden and Tugwood, 1999). Moreover, increased levels of
Hy0, generation, hydroxyl free-radical formation and lipid per-
oxidation were found in the liver of rats following long-term
treatment with peroxisome proliferators. It was also reported that
8-hydroxydeoxyguanosine was found in the liver DNA of rats chron-
ically treated with a PPAR«a (Reddy and Lalwai, 1983; Reddy and
Rao, 1989). In the present study, our discriminator designated WY
as positive among the PPARo agonists, CFB, GFZ, and WY. This result
suggests that either the discriminator could predict the carcinogen-
esis of PPARa agonists (although its sensitivity is relatively low)
or that WY had an additional carcinogenicity differing from other
PPAR« agonists. The latter would be more likely since the low and
middle doses of WY (by which the induction of acyl-CoA oxidase
1 reached a maximum) did not classify as positive and since the
highest doses of CFB and GFZ induce acyl-CoA oxidase 1 to almost
the same extent as WY. It was also suggested that WY might share
a carcinogenic mechanism with MP and TAA apart from its PPARa
agonist's activity.

The P450 enzymes generate oxygen free radicals in the pro-
cess of metabolizing xenobiotic chemicals (Parke and Ioannides,
1990), including PB (Utley and Mehendale, 1991) and HCB (Smith
and De Matteis, 1990). Kinoshita et al. (2002) reported that PB-
induced reversible alteration to nuclear 8-hydroxydeoxyguanosine
by oxidative stress in rat liver after several days of continuous
application. Furthermore, Elrick et al. (2005) provided evidence
for the relationship between oxidative stress and PB-induced non-
genotoxic hepatic carcinogenesis. On the other hand, HCB exposure
induces long-term alterations in intercellular communication via
gap junction in rat liver. This effect is thought to be a critical
mechanism of HCB-induced non-genotoxic hepatocarcinogenesis
and tumor promotion (Plante et al., 2002). However, these chemi-
cals were classified as non-carcinogens based on gene expression
profiling. There are likely to be numerous mechanisms involved
in non-genotoxic rodent hepatic carcinogenesis. Therefore, it is
thought that these chemicals induce non-genotoxic hepatocarcino-
genesis through chemical-specific mechanisms.

For the evaluation of these results of prediction, we developed
a PAM prediction score based on the positive/negative class proba-
bility. In the present study, we compared the score with the hepatic
glutathione contents in order to examine the validity of the predic-
tion. In association with the largest decrease of hepatic glutathione
contents at 3H (MP), 6H (TAA) and 9H (BBZ), the PAM prediction
score increased with the peak at 6H (MP), 9H (TAA) and 24H (BBZ).
This could be explained as follows: hepatic glutathione was rapidly
consumed to detoxify the oxidants produced by these toxicants,
and in the subsequent glutathione-depleted state the expression
of these marker genes was up-regulated. The excess production
of glutathione for homeostasis tended to decrease in MP or TAA,
whereas its high value was maintained in BBZ during their repeated
administrations. It is known that some reactive intermediates are
conjugated with glutathione to be excreted from the cell. The hepa-
totoxicity of the acute dose of BBZ was significantly reduced by prior
sub-chronic exposure to BBZ. Therefore, the enhanced BBZ excre-
tion by glutathione conjugation could partly explain such potential
tolerance against its acute hepatotoxicity {Chakrabarti and Brodeur,
1984). It would be reasonable to speculate that BBZ, which causes
transient hepatic and DNA damage by oxidative stress at the early
stage of dosing, does not result in hepatic cancer since metabolic
protection against oxidative stress does not allow the sustained
stressful condition up to 28 days of administration, whereas a
breakdown of protection occurs in the case of MP and TAA sug-

gested by the glutathione contents. There was a close correlation
between the pattern of change in glutathione and PAM scores, sup-
porting the usefulness of the present marker genes. The present
scoring system also enables us to make a prediction based on impor-
tant toxicological points, e.g., dose- and time-dependency and it
would be a quite convenient way for evaluation of the results of
discriminant analysis.

In summary, we showed that the expression profile of 112 genes
selected by the PAM method could make a prediction of oxida-
tive stress-related hepatocarcinogenicity with high precision at the
early stage of administration. The possibility of non-genotoxic car-
cinogenicity is suggested as early as 24 h after the single dosing.
Although pseudo-positives are included in the chemicals selected
by the single dose experiments, these can be discriminated by
the prediction based on repeated administration up to 28 days. At
present, tests for carcinogenicity using rats takes at least 2 years.
The present study has suggested a possibility to enable it to take as
short as 28 days with high precision. Although neither a single gene
nor a single pathway is sufficient to predict non-genotoxic hepato-
carcinogens at present, it is evident that combinations of biomarker
gene sets appeared to be useful for prediction of carcinogenesis.
Further study is clearly necessary to clarify the pathophysiological
roles of the genes included in the marker gene list for the process
of carcinogenesis.
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