conformational relaxation of the binding pocket of CDK2,
allowing wider protein residues to move in MD simulations and
longer MD simulations are required. The former is an especially
important parameter for improving the enrichment performance,
although it would increase the computational cost. In our next
study, which will focus on the extent of the mobility of protein
residues, along with simulation time and force-field parameters for
organic small molecules, we will attempt to optimize the MD setup
using a recent widely used dataset of decoy compounds [49].

The computational screening of large compound libraries
involves the use of hierarchical multiple filters, such as ligand-
and structure-based approaches. Molecular docking plays the
primary role in these filters. With advancements in computer
performance and computational chemistry, docking programs
have become morce accurate, but their ability to enrich hit
compounds remains unsatisfactory. In order to improve the
enrichment performance of molecular docking, we attempted to
usc the MM/PB-SA method [50] as a post-molecular docking
filter. The basis of our approach was to perform massive MD
simulations of protein-ligand conformations obtained from
molecular docking, aim at the refinement/relaxation of protein-
ligand conformations after docking, and predict more accurate
binding free energies using the MM/PB-SA method in a practical
time for lead discovery. Combining molecular docking and MD
simulations basically allows ecach of them to neutralize the other’s
defects, but certain problems remain even with MD simulations,
particularly with regard to compound screening applications. The
major drawback of MD simulations is insufficient sampling due to
the significant computational cost involved. To solve this problem,
we performed MD simulations using various docking conforma-
tions obtained by molecular docking. However, the computational
cost of this technique was approximately five to six times that of
MD simulations using single docking conformations, such as the
top-scored docking conformation. The enormous computational
time needed for MD simulations is a serious problem. Here, we
solved this problem by accelerating most of the time-consuming
operations of the MD simulation using a high-performance
special-purpose computer for MD simulations, “MDGRAPE-3”
[27,28]. Accordingly, our approach could be performed in a
practical time (about a week) for lcad discovery. The evaluation in
this study provides valuable information on in-silico drug design.
Further, a more rigorous MD-based filter is under consideration
for further improving the enrichment performance. This tech-
nique will also be applied to the lcad optimization stage of drug
development rescarch.

In conclusion, our approach could improve the enrichment of
virtual screening by molecular docking. Among the 12 types of
binding free energies, G06, which was obtained from the MD
simulations using multiple poses, showed the highest and most
stable ability to enrich the active compounds. The strategy of
multiple poses can be used to sample the potentially correct poses
of active compounds; thus, it increases the enrichment perfor-
mance. Since the GO06 enrichment factors for the top 100
compounds ranged from 4 to 10 (see Table 4), which indicates
approximately 1.6-4.0 times higher values than the enrichment
performance of molecular docking, with the exception of CDKZ2, it
is obvious that a stable and high enrichment can be achieved after
molecular docking. In addition, GO6 is suitable for compound
screening because its computational cost is the least among those
of the other MM/PB-SA encrgies obtained from the MD
simulations. We also confirmed that GOl, which was obtained
from the MM calculations, showed good enrichment ability
despite its low computational cost. This result agreed with that of
the previous study [25]. The ability of GOl to enrich active
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compounds was lower and less stable than that of G06, but we
believe that GOl acted as an effective filter between molecular
docking and the MD-based MM/PB-SA method. From this study,
we conclude that the application of MD simulations to virtual
screening for lead discovery is effective and practical, but that
further optimization of the MD simulation protocols is required
for the screening of various target proteins, including kinases.

Materials and Methods

Preparation of the Target Protein

We applied our approach to four target proteins: trypsin, HIV
PR, AChE, and CDK2. These structures with crystallographic
resolutions of less than 3.0 A, were retrieved from the Protein
Data Bank (PDB) because the conformations of residues in the
binding pocket affect the molecular docking results (PDB Id: 1G58
{trypsin) [51], tHWR (HIV PR) {52], 1E66 (AChE) [53], and
IFVV (CDK2) [46]). All of the bound crystal water molecules,
ligands, and other organic compounds were removed from each
protein. Hydrogen atoms were added, and energy minimizations
on the hydrogen atoms were performed using the Molecular
Operating Environment (MOE) program (Chemical Computing
Group Inc. [54]).

Seeded Compound Library for Docking

For cach target protein, we prepared a test set of compounds
that included 10,000 randomly selected compounds, or decoys,
from the Maybridge library of compounds and experimentally
known active compounds. It was confirmed that 95.5% of the
selected decoy compounds obeyed the Lipinski rule of 5 [55]. The
active compounds, which had binding affinities (K, Ky, or ICsq)
below 30 um, were selected from the PDBbind database [56,57]
and by referring to the literatures [26,58]. Most of the active
compounds also obeyed the Lipinski rule of 5. The numbers of
active compounds selected for cach of the respective target
proteins was as follows: 21 (trypsin), 8 (HIV PR), 14 (AChE), and
26 (CDK?2) (see Figure S1, 82, S3, S4). For each compound of the
test set, a 3D conformation was generated, ionized, and energy
minimized using LigPrep (Schrédinger Inc. [59]), assuming a pH
of 7.0.

Docking

Molecular dockings were performed using the Genetic Optimi-
sation of Ligand Docking (GOLD) version 3.1 [9,10]. This
program employs a GA to explore the possible binding modes.
The standard default settings for the GA parameters were used.
The binding site radius was 12 A. We performed the docking run
three or four times using the GoldScore or ChemScore function
for each target protein and sclected the result that showed the best
enrichment. GoldScore (default settings) was used as the scoring
function for trypsin and HIV PR. In contrast, ChemScore (default
settings) was used for AChE and CDK2 because docking runs
using GoldScore can detect few of the successfully docked active
compounds for AChE and CDK2. For AChE alone, the torsional
rotations of Phe-330 (chil and chi2) were treated as flexible in the
docking process. For each docking run, the 10 highest-scoring
docking poses were saved to obtain a variety of binding modes.

Post-processing of the Docking Results

First, among the 10 highest-scoring docking poses saved for
each compound, those in which the compound did not occupy the
binding pocket or did not interact with the important residues
were removed. The latter was used only for trypsin and HIV PR
The important residues were Aspl80 for trypsin and Asp24 in
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cach monomer for HIV PR. These treatments had the cffect of
reducing the false positives for molecular docking. The docked
compounds were then arranged in descending order from the
highest score with respect to the multiple docking poses, and the
top 1,000 compounds were sclected from the test sct. Finally, for
the top 1,000 compounds, the docking poses of each compound
were clustered using the root mean square deviation of 0.9 A
(complete link method [60]). After post-processing, approximately
6,000 docking poses were selected for the 1,000 compounds, which
were then used as the initial conformations for MD simulations.
Some active compounds were not ranked in the top 1,000. The
numbers of active compounds in the top-scoring 1,000 were 10, 6,
7, and 17 for trypsin, HIV PR, AChE, and CDK2, respectively. In
addition, the compounds in the top-scoring 1,000 were rescored
with ChemScore (trypsin and HIV PR) or GoldScorc (AChE and
CDKZ2) because it is known that the rescoring approach increases
the enrichment performance [61}. Furthermore, we analyzed
ROC curves using molecular weight as classifier (Figure S7). From
statistical analysis, it is obvious that the differences in the ROC
values between GO6 and molecular weight were statistically
significant for trypsin, HIV PR, AChE.

MD Simulation Protocols

We performed MD simulations of each complex (ligand-bound
protein), protein, and ligand to obtain various types of binding free
energies (see the following subsection). The active sites of the
protein-ligand complexes were immersed in an approximately 28—
30 A sphere of transferable intcrmolecular potential 3 point
(TIP3P) water [62] molecules. The radius of the water droplet was
selected such that the distance of the atoms of all the docked
compounds from the water wall was greater than 15 A (sce
Figure 6). The total number of atoms in the respective systems was

Figure 6. System for MD simulation of trypsin. The protein is
shown by the space-filled model, and the ligand is colored blue. The
peripheral residues around the active center (red region), a ligand, and
water molecules were allowed to move in the MD simulation. The
protein residues (grey) were restrained to the X-ray structure by a
harmonic energy term. Similar systems were used for the other target
proteins.

doi:10.1371/journal.pcbi.1000528.9006
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approximately 8,000-12,000. On the solvent boundary, a half-
harmonic potential (1.5 kcal/mol-A?) was applicd to prevent the
cvaporation of the water molecules. The ligand, water molecules,
and protein residucs that were approximately 12 A of the active
center were allowed to move, but other protein residues were
restrained to the X-ray structure by the harmonic energy term
(1.5 keal/mol-A?) in all of the MM calculations, namely the MM
energy-minimization, and MD simulations. For the simulations of
the ligands, each ligand was immersed in a water droplet, and this
structure was used as the initial structure for the MD simulation of
the ligand. In addition, the simulation of each protein (trypsin,
HIV PR, AChE, and CDK2) was performed in the same manner
as that of the complex.

All of the simulations were performed using AMBER 8.0 [63]
modified for MDGRAPE-3 [27,28]. The fI03 force field [64] was
adopted, and the time step was set at 0.5 5. To carcfully consider
the motion of hydrogen atoms in the interactions between the
ligands and protein residues, no bond length constraint was applied
to solute atoms. The temperature of cach system was gradually
increased to 300 K during the first 25 ps, and additional MD
simulations were performed for 700 ps for equilibration. The
temperature was maintained at 300 K by using the method
described by Berendsen et al. [65], and the system was coupled to
a temperature bath with coupling konstants of 0.2 ps. The
parameters and charges for the ligands were determined using the
antechamber module version 1.27 of AMBER 8.0 [63] by utilizing the
general atom force ficld (GAFF) [66] and the AM1-BCC charge
method [67,68]. Although the computational cost of the AM1-BCC
charge method is low, a some difference between the charge and
that of fl03 was noticeable. Since the original GAFF parameters
were insufficient to cope with the parameters of all the ligands, we
filled the missing parameters on the basis of the information on
regarding atom types, bonds, valences, angles, and dihedrals by
using an in-house program (see Text S1). (Note: these parameters
for proteins and small organic molecules arc very important to
calculate the binding free energies between proteins and ligands)

Our MDGRAPE-3 system is a cluster of personal computers,
cach equipped with two MDGRAPE-3 boards. Each board
contains 12 MDGRAPE-3 chips and has a pcak spced of
approximately 2 Tflops. The computations of non-bonded forces
and energies for MD simulations were accelerated by
MDGRAPE-3, and the other calculations were performed by
the host central processing unit (CPU). In this study, we used 50
host computers equipped with 100 MDGRAPE-3 boards. The
calculations for an MD simulation and the estimation of the
binding free energies by the MM/PB-SA method were performed
simultancously. The average computational time for a single
protein-ligand complex was 2.5 h, and the computations for
approximately 6,000 protein-ligand conformations obtained by
docking for each protein were completed in a week. The total
simulation time for each protein was 4 s, which corresponded to
an 8-pus MD simulation with a standard time step of 1 5. A single
MD simulation for the system (Figure 6), without using
MDGRAPE-3, requires more than 10 times the abovementioned
computational time. Thus, in the current state, it would be quite
difficult to use our screening approach without the MDGRAPE-3
system in a practically appropriate time for lead discovery.
Therefore, our study can provide important information for MD-
based screening.

Calculation of Binding Free Energy by the MM/PB-SA
Method

The production MD trajectory was collected for the last period
of 210 ps. In the calculation of the binding free energies by the
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MM-PB/SA method, the water molecules were replaced with
implicit solvation models. The binding free encrgy was calculated
by the following equations.

AGbina’ = Gcamp/e.\' - (Gprolein + Gligund ) (2)

G= <EMM>+<GPB>+<GSA>*~TS (3)

Eyrvg = Eing + Eete + Evaw 4)

Gsa=yA+b &)
In the above equations, << > denotes the average for a set of 30
conformations along an MD trajectory. i, includes the bond,
angle, and torsional angle energies; Eq. and E gw represent the
intermolecular electrostatic and van der Waals energies, respec-
tively. Gpg was calculated by solving the PB equation with the
DelPhi program [69,70], using the PARSE radii [71,72] and
AMBER charges. The grid spacing used was 0.5 A. The dielectric
constants inside and outside the molecule were 1.0 and 80.0,
respectively. In equation 5, which calculates the nonpolar
solvation contribution, 4 is the solvent-accessible surface area that
was calculated using the Michael Sanner’s Molecular Surface
(MSMS) program [73], and y and b are 0.00542 kcal/mol-A” and
0.92 kcal/mol, respectively. The probe radius was 1.4 A, The
conformational entropy term of the solute, 7S, was approximated
by a combination of a classical statistics expression and PCA [74],
using the PTRAJ module of AMBER 8.0 (63]. In the PCA
calculation, the last 210 ps (3,000 conformations) of each
production trajectory were used.

The analysis of the binding free energy involved the calculation
of the energies for conformations obtained from the MM {namely,
energy-minimized) coordinates or MD trajectories. When the MM
calculations or MD simulations of a complex, protein, and ligand
were performed, we could obtain various types of binding free
energies by combining the respective coordinate sets, The
enthalpy contributions of Gyorcin and Giigang in equation 2 were
calculated in the following 2 ways: (1) by using the coordinate sets
of a protein (or ligand) obtained from the MD simulations (or MM
calculations) of the protein (or ligand) and (2) by using the
coordinate sets extracted from the MD simulation of a complex.
Similar to the enthalpy contribution, the entropy contribution was
calculated by using the MD trajectorics. When the entropy
contributions of Geomplexs Gproteins and Gligana were calculated by
using the MD trajectory of only the complex, we considered the
entropy contribution of AG,;,q to be zero because the cnergy
components were almost cancelled. In this study, in order to
thoroughly investigate which MM/PB-SA energies were suitable
for compound screening, we adopted 12 binding free energies,
G01-G12, to manage the entropy contributions independently of
the enthalpy contributions (see Table 1). It should be noted that
the coordinate scts for calculating the entropy contributions were
not always consistent with those for calculating enthalpy
contributions. Table 1 shows the enthalpy and entropy terms for
computing of Giomplew Gproteins 21d Giigana it equation 2. We
classified the 12 binding free energies into four categories.
Category 1 contained the encrgics obtained by the MM
calculations, and categories 2, 3, and 4 contained those obtained
by MD calculations. These categories were classified according to
the combination of coordinate sets used for enthalpy calculations:
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G01-G03, G04-G06, GO7-GO09, and G10-G12 belonged to
categories 1, 2, 3, and 4, respectively. Each binding free energy of
a ligand adopts the minimum encrgics from among the energies of
multiple poses. Thus, by gathering and arranging their energics,
we were able to assess the cnrichment performance of the
screening approach.

Supporting Information

Figure S1 Active compounds of trypsin. The structural formulae
and PDB ids of active compounds uscd in the sceded compound
library are shown in the following figures. The asterisks represent
the active compounds in top-scoring 1,000.

Found at: doi:10.1371/journal.pchi.1000528.5001
DOC)

Figure S2 Active compounds of HIV PR. The structural
formulac and PDB ids of active compounds used in the seeded
compound library arc shown in the following figures. The asterisks
represent the active compounds in top-scoring 1,000.

Found at: doi:10.1371/journal.pcbi.1000528.5002 (0.53 MB
DOC)

Figure 83 Active compounds of AChE. The structural formulae
and PDB ids of active compounds uscd in the seeded compound
library are shown in the following figurcs. The asterisks represent
the active compounds in top-scoring 1,000.

Found at: doi:10.1371/journal.pchi.1000528.s003 (0.06 MB
DOC)

Figure 84 Active compounds of CDK2. The structural formulae
and PDB ids of active compounds used in the sceded compound
library are shown in the following figures. The asterisks represent
the active compounds in top-scoring 1,000. Compounds 1 and 19
were selected by referencing literatures.

Found at: doi:10.1371/journal.pcbi.1000528.5004 (0.11
DOC)

Figure S5 Number of correctly docked conformations in top-
scored active compounds. These indicate the number of correctly
docked * conformations in the top-scoring poses for: active
compounds obtained from molecular docking, GOI, and GO6.
The red and blue bars indicatc the number of poses within the
root mean square deviations (RMSDs) of 2.5 and 3.5 A from those
of the experimental structure, respectively. The active compounds
in the top 1,000 were investigated. In GO6, the final MD structure
was used:
Found: at:
DOC)

Figure S6 Minimal RMSD values of computed poses from
cxperimental poses for active compounds. The horizontal axis
indicates the index number of active compounds in the top 1,000
shown in Figures S1, §2, S3, S4 and the vertical axis indicates the
minimal RMSD among all the poses. For cach protein, the poses
obtained from molecular docking, G01, and GO6 were investigat-
ed. In GO6, the final MD structure was used. The red bars indicate
the pose within the top-three scoring. For trypsin, HIV PR, and
AChE, it was found that MD simulations could improve the
binding modes and predict better binding frce energies. For
CDK2, however, it is suggested that MD simulations lead to
structural uncertainties and an inaccuratc cstimation of the
binding free cnergy.

Found at: doi:10.1371/journal.pchi.1000528.5006 (0.24 MB
DOC)

Figure S7 ROC curves using molecular weight as classifier. This
graph shows the sensitivity versus l-specificity. This indicates

(0.08 MB

MB

doi:10.1371/journal.pcbi.1000528.5005 (0.10 MB
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o)

ROC curves when the active compounds in the top 1,000
compounds arc considered as total the true positives. ROC curves
for trypsin, HIV PR, AChE, and CDK2 were drawn in blue, red,
yellow, and orange, respectively. These ROC values for trypsin,
HIV PR, ACKE, and CDK2 arc 0.454, 0.674, 0.462, and 0.430.
From statistical analysis, it is obvious that the differences in the
ROC values between GO6 and molecular weight were statistically
significant for tvpsin, HIV PR, AChE. The differences in the
ROC values between molecular docking and molecular weight
were not statistically significant for all proteins.
Found at: doi:10.1371/journal.pchi.1000528.5007
DOC)

(0.08 MB
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