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A complex mixture of diverse oligosaccharides related to the carbohydrates in glycoconjugates involved
in various biological events is found in animal milk/colostrum and has been challenging targets for sep-
aration and structural studies. In the current study, we isolated oligosaccharides having high molecular
masses (MW ~ 3800) from the milk samples of bearded and hooded seals and analyzed their structures
by off-line normal-phase-high-performance liquid chromatography-matrix-assisted laser desorption/
ionization-time-of-flight (NP-HPLC-MALDI-TOF) mass spectrometry (MS) by combination with sequen-
tial exoglycosidase digestion. Initially, a mixture of oligosaccharides from the seal milk was reductively
aminated with 2-aminobenzoic acid and analyzed by a combination of HPLC and MALDI-TOF MS. From
MS data, these oligosaccharides contained different numbers of lactosamine units attached to the nonre-
ducing lactose (Galp1-4Glc) and fucose residue. The isolated oligosaccharides were sequentially digested
with exoglycosidases and characterized by MALDI-TOF MS. The data revealed that oligosaccharides from
both seal species were composed from lacto-N-nechexaose (LNnH, Galf1-4GIcNAcp1-6[Galp1-4Glc-
NAcp1-3]Galp1-4Glc) as the common core structure, and most of them contained Fuco1-2 residues at
the nonreducing ends. Furthermore, the oligosaccharides from both samples contained multibranched
oligosaccharides having two Galp1-4GIcNAc (N-acetyllactosamine, LacNAc) residues on the Galp1-4Glc-
NAcp1-3 branch or both branches of LNnH. Elongation of the chains was observed at 3-OH positions of
Gal residues, but most of the internal Gal residues were also substituted with an N-acetyllactosamine at
the 6-OH position.

© 2009 Elsevier Inc. All rights reserved.

Specific sequences of monosaccharides occur as important
structural elements of oligo- and polysaccharides of glycopro-
teins and glycolipids, and they comprise recognition motifs for
ligand-receptor or cell-cell interactions [1-4]. Oligosaccharides
are cooperatively synthesized by actions of various glycosyl-
transferases and are usually present as a complex mixture of di-
verse oligosaccharides. In particular, the isomeric/branching
structure is the major feature, and their structural determination
is essential for understanding the biosynthesis and biological
significance,
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Mammalian milk/colostrum is a rich source of carbohydrates of
diverse structures [5-8]. Although the most dominant carbohy-
drate in mammalian milk is generally lactose, a small amount of
characteristic oligosaccharides are also present [9-13]. The milk
oligosaccharides usually have a common lactose (Galp1-4Glc) core
that is extended at the 6- and/or 3-OH positions of the Gal as lin-
ear/branched mode [14]. Furthermore, the linear/branched chains
are frequently fucosylated and/or sialylated and in a few cases
are sulfated.

Due to the similarities and complex structures of milk oligosac-
charides, structural determination of them has been a big and chal-
lenging work. Urashima and coworkers isolated various
oligosaccharides from many mammalian species’ milk/colostrum
and characterized their structural features by a combination of
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some preparative chromatographic techniques and 'H-nuclear
magnetic resonance (NMR)' spectrometry [14-21]. They reported
that milk oligosaccharides contain blood group-related antigens
and that their relative abundances are characteristic among animal
species. For example, bear milk contains oligosaccharides having
an o-Gal epitope (Gala1-3Galp1-4GIcNAc-R), A blood antigen (Gal-
NAco1-3[Fuca1-2]Gal-R), B blood antigen (Galot1-3[Fuca1-2]Gal-
R), and Lewis® antigen (Galp1-4[Fucci1-3]GlcNAc-R) [19]. Urashima
and coworkers also reported that milk samples from bearded and
hooded seals contain a large amount of neutral oligosaccharides,
including lactose (Galp1-4Glc), 2'-fucosyllactose (Fuco1-2Galpl-
4Glc), and lacto-N-fucopentaose (Fuco1-2Galp1-4GIcNAcB1-
3Galp1-4Glc) as major components [17,18]. In addition, both milk
samples also contain branched oligosaccharides having lacto-N-neo-
hexaose (LNnH, Galp1-4GIcNAcp1-6[Galp1-4GlcNAcp1-3]Galpl-
4Glc) as a core, and most of them have one or two nonreducing
0.1-2 linked Fuc. Although both milk samples contain sialylated oli-
gosaccharides with high molecular masses, structural studies were
not done because of the limited performance of the NMR method.
It has also been revealed that milk samples in monotremes such as
platypus and echidna contain Lewis® and Lewis" antigens (Fucol-
2Galp1-4[Fucp1-3]GlcNAc-R) [10,12,22]. In view of these species-
specific structural features and distribution of diverse oligosaccha-
rides in milk/colostrum of different animals, detailed structural stud-
ies are not only useful for understanding the underlying
evolutionary significance but also promising for using these unique
features for biomedical applications.

The dominant carbohydrate in mammalian milk is generally the
disaccharide lactose, whereas the milk samples of phocid species,
including hooded and bearded seals, contain a variety of oligosac-
charides other than lactose [17,18]. The oligosaccharides in
bearded and hooded seal milk contain lactose, lacto-N-neotetraose
(LNnT, Galp1-4GIcNAcp1-3Galp1-4Glc), and LNnH as core units.
Furthermore, it is noteworthy that milk oligosaccharides from both
species contain type Il chain (Galp1-4GIcNAc-R) but not type |
chain (Galp1-3GIcNAc-R). The presence of o1-3 linked GlcNAc
and type II chain suggests that seal mammary glands contain
poly-N-acetyllactosamines, which are synthesized by p(1-4)galac-
tosyltransferase as well as p(1-3)N-acetylglucosaminyltransferase.
A search for higher oligosaccharides having poly-N-acetyllactos-
amine structure is an interesting target for understanding the reg-
ulation of biosynthesis because they are further modified to form
functional oligosaccharides (e.g., sialyl Le*) and/or branched
structures.

NMR spectroscopy is the most important technique that pro-
vides sequence information including linkage and o/p-anomeric
configurations. However, due to the complexity of extremely
overlapping signals of the monosaccharide residues in similar
environments, especially in the case of oligosaccharides having
poly-Galp1-4GlcNAc (N-acetyllactosamine), it is often difficult to
assign the branching pattern by only the NMR technique. In con-
trast, mass spectrometry (MS) has been an indispensable tech-
nique for structural analysis of oligosaccharides and useful for
the analysis of higher oligosaccharides with high sensitivity. Finke
and coworkers reported a method for the analysis of higher oligo-
saccharides (MW ~ 3000) by a combination of chromatographic

! Abbreviations used: NMR, nuclear magnetic resonance; LNnH, lacto-N-neohexa-
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laser desorption/ionization-time-of-flight; MS/MS, tandem mass spectrometry; CID,
collision-induced dissociation; LC-ESI-IT, liquid chromatography-electrospray ioni-
zation-ion trap; LNH, lacto-N-hexaose; pLNH, para-lacto-N-hexaose; NP, normal-
phase; QIT, quadrupole ion trap; BS, bearded seal; HS, hooded seal; 2AA, 2-
aminobenzoic acid; DHB, 2,5-dihydroxybenzoic acid; mw, molecular mass; LNnTD,
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LNnOD, lacto-N-neooctadecaose; GnT, p-N-acetylglucosaminyltransferase; iGnT, p3-
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separation and matrix-assisted laser desorption/ionization-time-
of-flight (MALDI-TOF) MS [23,24]. Recently, tandem mass spec-
trometry (MS/MS) with collision-induced dissociation (CID) has
been applied to structural analysis of various oligosaccharides
[25,26]. Chai and coworkers reported a method for the analysis
of a complex mixture of isomeric neutral oligosaccharides in hu-
man urine and milk samples by nano-liquid chromatography-
electrospray ionization-ion trap (LC-ESI-IT) mass spectrometer
and identified three novel isomeric fucosylated lacto-N-hexaoses
(LNHs) based on the studies using CID-MS/MS experiments
[27,28]. However, the MS method often cannot differentiate iso-
meric branched or linear oligosaccharides such as LNnH and
para-lacto-N-hexaose (pLNH, Galp1-4GlcNAcp1-3GalpB1-4Glc-
NAcB1-3GalB1-4Glc). Thus, it is still difficult to characterize ano-
meric configurations, branching configurations, and epimeric
forms. This information is often obtained by the analysis of the
digestion products with specific exoglycosidases. The molecular
mass obtained from MS analysis after digestion with well-defined
exoglycosidases reveals the sequence of oligosaccharides and
information on the branching pattern.

In this study, we isolated higher oligosaccharides (MW ~ 3800)
from bearded and hooded seal milk samples and analyzed their
structural characteristics by normal-phase (NP)-HPLC after desialy-
lation with neuraminidase and also by MALDI-TOF MS. Further-
more, we confirmed the branching pattern of the oligosaccharides
by a combination of sequential exoglycosidase digestions and MAL-
DI-TOF MS and MALDI-quadrupole ion trap (QIT)-TOF MS.

Materials and methods
Materials

Milk samples from bearded seal (BS) and hooded seal (HS) were
collected froma lactating female in Svalbard, Norway, and from
animals on the drifting pack ice in the southern part of the Gulf
of St. Lawrence, Canada, respectively. Both milk samples were
stored at —20 °C until use. o1-2 Fucosidase derived from Coryne-
bacterium sp. and «1-3,4 fucosidase from Streptomyces sp. 142
were purchased from Takara Biochemicals (Kusatsu, Japan).
22,3,6,8 Neuraminidase from Arthrobacter ureafaciens was kindly
donated by Yasuhiro Ohta (Marukin Bio, Kyoto, Japan). p-Galacto-
sidase and p-N-acetylhexosaminidase (both from jack beans) were
obtained from Seikagaku Kogyo (Tokyo, Japan). All other reagents
were analytical or HPLC grade.

Fractions containing acidic oligosaccharides from BS and HS milk
samples

Samples of BS and HS milk (40 and 20 ml, respectively) were
obtained after delipidation and protein precipitation according to
the reported method [17,18]. Briefly, the milk samples were di-
luted with 4 volumes of distilled water and shaken vigorously with
4 volumes of chloroform/methanol (2:1, v/v). The chloroform layer
and denatured protein were discarded. The methanol was removed
from the upper layer by a rotary evaporator, and the resulting car-
bohydrate-containing solution was freeze-dried. Carbohydrate-
containing fractions were fractionated on a Biogel P-2 column
(2.5 x 100 cm) previously equilibrated with water. An aliquot
(0.5 ml) of each fraction was analyzed for hexose by phenol-sulfu-
ric acid assay and for sialic acids by resorcinol assay [29]. Fractions
eluted earlier were pooled and lyophilized to dryness (see Fig. 1 in
Ref. [17] and Fig. 1 in Ref. [18]). The neutral oligosaccharides of
both milk samples and a part of acidic oligosaccharides of bearded
seal millk were already characterized in Urashima and coworkers’
previous studies [17,18]. The fraction (1.7 mg), which was eluted
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at void volumes, from the HS milk sample was used in the follow-
ing preparations and characterization of each oligosaccharide.
The fraction from the BS milk sample was further separated by
ion exchange chromatography, as indicated in the previous study
[18]. The lyophilized material was dissolved in 50 mM Tris-HCI
buffer (pH 8.7, 2.0 ml) and subjected to anion exchange chroma-
tography on a DEAE Sephadex A-50 (1.5 x 35 cm). The unadsorbed
oligosaccharide fractions were used for structural study of the oli-
gosaccharides in the previous study [18]. The adsorbed oligosac-
charides were eluted by linear gradient elution with changing
NaCl concentrations from 0 to 0.25 M in the same buffer. Two frac-
tions (BS1 and BS2) obtained by linear gradient elution were
pooled and lyophilized to dryness. The lyophilized material was
dissolved in water and passed through a Biogel P-2 column
(2.5 x 100 cm). The fractions eluted at the void volume were
pooled and lyophilized to dryness to yield a mixture of acidic oli-
gosaccharides (2.0 and 2.3 mg of BS1 and BS2, respectively).

Fluorescent labeling of oligosaccharides with 2AA

Fluorescent labeling of oligosaccharides was performed accord-
ing to the method reported previously [30,31]. Briefly, a solution
(250 pl) of 2-aminobenzoic acid (2AA) and NaBH;CN, prepared by
dissolution of both reagents (30 mg each) in methanol (1 ml) con-
taining 4% CH3COONa and 2% boric acid, was added to a mixture of
oligosaccharides (100 pg). The mixture was kept at 80°C for
60 min. After cooling, water (250 pl) was added, and the mixture
was applied to a small column (1 x 50 cm)of Sephadex LH-20 previ-
ously equilibrated with 50% aqueous methanol. The earlier eluted
fluorescent fractions that contained labeled oligosaccharides were
collected and evaporated to dryness. The residue was dissolved in
water (1 ml), and the solution was stored at -20 °C until analysis.

Preparation of asialo-oligosaccharides

A mixture of 2AA-labeled acidic oligosaccharides (~10 pg) was
dissolved in 20 mM acetate buffer (pH 5.0, 50 pl), and neuramini-
dase (10 mU, 10 pl) was added to the mixture. After incubation
at 37 °C for 24 h, the reaction mixture was kept in the boiling water
bath for 5 min. After centrifugation of the mixture at 10,000g for
10 min, a portion of the supernatant was used for the analysis.

a-Fucosidase digestion

A mixture of 2AA-labeled asialo-oligosaccharides (~2 pg), as
described above, was dissolved in 20 mM phosphate buffer (pH
7.5, 50 pl) for o1-2 fucosidase digestion or in 20 mM phosphate
buffer (pH 6.0, 50 pl) for a1-3,4 fucosidase. o1-2 Fucosidase
(40 pU, 2 ) or o1-3,4 fucosidase (10 pU, 10 ul) was added to
the mixture. After incubation at 37 °C for 24 h, the reaction mix-
ture was kept in the boiling water bath for 5 min, and centrifuged
at 10,000g for 10 min. The supernatant was diluted with water to
adjust the volume of 200 pl. A portion of each solution (5 pl) was
used for NP-HPLC analysis.

Sequential exoglycosidase digestion of oligosaccharides

Each oligosaccharide isolated by NP-HPLC was dissolved in
20 mM citrate buffer (pH 3.5, 8 ul), and p-galactosidase (1 mU,
2 pl) was added to the mixture. After incubation at 37 °C for
12 h, the reaction mixture was kept in the boiling water bath for
5 min. After centrifugation of the mixture, the supernatant was di-
luted with water (10 pl). A portion of the solution (2 pl) was ana-
lyzed by MALDI-TOF MS. Another portion (5 pl) was mixed with
30 mM citrate buffer (pH 5.0, 5 pl) containing p-N-acetylhexosa-
minidase (5 mU), and the reaction mixture was kept at 37 °C for

12 h. The supernatant was diluted with water (10 pl), and then a
portion of the solution (2 pl) was also analyzed by MALDI-TOF MS.

Separation of the 2AA-labeled oligosaccharides

HPLC was performed with a Shimadzu apparatus equipped with
two LC-6ADvp pumps and an FP-920 fluorescence detector
(Waters). Separation was done with an Amide 80 column (TOSOH,
4.6 mm i.d. x 250 mm) using a linear gradient formed by 2% acetic
acid in acetonitrile (solvent A) and 5% acetic acid in water contain-
ing 3% triethylamine (solvent B). The column was initially equili-
brated and eluted with 70% solvent A for 2 min. After 2 min,
solvent B was increased to 95% over 80 min and kept for further
20 min [32]. Fluorescence detection was performed at 410 nm by
irradiating at 325 nm light.

MALDI-TOF MS

MALDI-TOF mass spectra were acquired with a Voyager DE-
PRO mass spectrometer (PE Biosystems, Framingham, MA, USA).
A nitrogen laser was used to irradiate samples, and an average shot
of 50 times was taken. The instrument was operated in a linear
mode at an accelerating voltage of 20 kV. An aqueous sample solu-
tion (2 pl) was mixed with a matrix solution (2 pl) of 1% 2,5-dihy-
droxybenzoic acid (DHB) in methanol/water (1:1). The mixture
was applied to a polished stainless-steel target and then dried in
atmosphere for a few hours.

MALDI-QIT-TOF MS

MALDI-QIT-TOF mass spectra were acquired on an AXIMA-
QIT-TOF mass spectrometer (Shimadzu, Kyoto, Japan). A nitrogen
laser was used to irradiate samples, and an average shot of 50
times was taken. Argon was used for CID. The instrument was
operated in positive and reflectron mode. An aqueous sample solu-
tion (2 pl) was mixed with a matrix solution (2 pl) of 1% DHB in
ethanol/water (1:1), and the mixture was applied to a polished
stainless-steel target and dried in atmosphere for a few hours.

Results

Acidic oligosaccharides having high molecular masses in BS and HS
milk samples

The method for the preparation of the oligosaccharide samples
used in the current study was reported previously [17,18]. Two
fractions (BS1 and BS2, 2.0 and 2.3 mg, respectively) from the BS
milk sample (40 ml) and a fraction containing acidic oligosaccha-
rides (HS, 1.7 mg) were used in the current study. Because the oli-
gosaccharides from the HS and BS milk samples contained type I
chain (Galp1-4GIcNAc-R) but not type I chain (Galp1-3GIcNAc-
R), we add “neo” to all core oligosaccharide structures.

Oligosaccharides obtained from BS1 and BS2 were fluorescently
labeled with 2AA and analyzed by MALDI-TOF MS. As shown in
Fig. 1A, a large number of ion signals were observed at the range
from m/z 1484.8 to m/z 3530.4. In BS1, two major molecular ions
were observed at m/z2362.3 and 2653.3, which were due to mono-
fucosyl LNnH with one and two NeuAc residues (NAc1H4N2F1-
2AA and NAc2H4N2F1-2AA). lons at mfz 2151.0, 3027.9, and
3318.6 are 80 mass units larger than the m/z values of monofucosyl
LNnH (theoretical molecular mass [mw] 2071.2), difucosyl lacto-N-
neotetradecaose (LNnTD, theoretical mw 2946.7), and monosialyl
difucosyl LNnTD (theoretical mw 3238.6), respectively. These data
indicate that these oligosaccharides are substituted with one SOsH
group. In BS2, we observed two major ions at m/z 2337.2 and
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Fig. 1. MALDI-TOF MS and NP-HPLC analysis of higher oligosaccharides from bearded and hooded seal milk. (A) MALDI-TOF MS analysis of sialo-oligosaccharides from
bearded and hooded seal milk. (B) NP-HPLC analysis of asialo-oligosaccharides from bearded and hooded seal milk. (C) MALDI-TOF MS and NP-HPLC analysis of
defucosylated asialo-oligosaccharides from hooded seal milk. BS1, DEAE-adsorbed fraction 1 in BS milk oligosaccharides; BS2, DEAE-adsorbed fraction 2 in BS milk
oligosaccharides; HS, higher oligosaccharide fraction in HS milk oligosaccharides; digestion product of HS with &1-2 fucosidase. The monosaccharide compositions of asialo-

oligosaccharides are summarized in Table 1.

2549.4, which were due to difucosyl decaose with one SO3;H group
(H5N5F2-S03;H-2AA) and monosialo-difucosyl neodecaose with
one SO;H group (NAc1H5N5F2-SO3H-2AA), respectively. The
molecular ion observed at m/z 3384.8 was due to monosialo LNnTD
with three Fuc residues (NAcTH8NGF3-2AA).

HS showed characteristic ladder ions between m/z 1400 and m/
2 4500. These ladder ions were classified into five groups based on
the number of lactosamine (Galp1-4GIlcNAc) units. The ions ob-
served at mjz 1484.9 and 1631.5 have the composition of
NAcTH4N2-2AA and NAc1H4N2F1-2AA, respectively, and are
due to mono- and difucosyl LNnH with one NeuAc residue. Molec-
ular ions at m/z 1851.1 and 1997.1 are due to the oligosaccharides
having compositions of NAc1H5N3-2AA and NAcTH5N3F1-2AA,
respectively. A series of the ions at m/z 2216.2, 2362.3, 2508.4,
and 2653.3 were observed abundantly in HS and are due to the oli-
gosaccharides having monosialo lacto-N-neodecaose (LNnD) core
(NAcTH6N4-2AA) to which 0, 1, 2, and 3 Fuc residues are attached.
Five signals from m/z 2946.4 to m/z 3530.4 were consistent with
oligosaccharides of NAcTH8N6-2AA having 0 to 4 Fuc residues.
In addition, we found characteristic glycans having extremely large
molecular masses, as observed for the series of ions observed from
m/z 3676.5 to m/z 4404.7. These oligosaccharides are considered to
have the core of LNnTD to which 0 to 5 Fuc residues are attached.

To determine linkages of Fuc residues in HS oligosaccharides,
we carried out specific fucosidase digestion. A mixture of HS asi-
alo-oligosaccharides was digested with a1-3/4 fucosidase and
a1-2 fucosidase, respectively, and the products were analyzed
with MALDI-TOF MS. We found that o1-3/4 fucosidase did not
act on these oligosaccharides, whereas digestion with o1-2 fucosi-
dase (Corynebacterium sp.) caused disappearance of most ions, and
six ions were observed at m/z 1193.5, 1558.5, 1924.3, 2288.7,

2653.1, and 3385.2 (Fig. 1C(1)). These ions are consistent with
the theoretical m/z values of H4N2-2AA, H5N3-2AA, H6N4-2AA,
H7N5-2AA, H8N6-2AA, and H10N8-2AA, respectively.

The oligosaccharides obtained from milk samples were also
analyzed by HPLC using a TSK-Gel Amide-80 column after remov-
ing sialic acids with neuraminidase to improve resolution (Fig. 1B)
[32]. We collected the major peaks and observed the molecular
ions by MALDI-TOF MS. The results are summarized in Table 1.

BS1-1 obtained from the BS1 fraction was assigned as LNnH
having two LacNAc units and core Galp1-4Glc unit from its molec-
ular ion (mfz 1193.5) (Fig. 1B, top panel). Molecular ions (m/z
2071.8) of BS1-3 and BS1-4 are consistent with the theoretical
m/z values of HGN4F1-2AA, suggesting the presence of isomers
of monofucosyl LNnD. The peak observed at 30 min (BS1-5) gave
two molecular ions (m/z 2802.6 and 2949.0). The molecular ion
at mfz 2802.6 is consistent with the theoretical m/z value of
H8NG6F1, suggesting the structure of monofucosyl LNnTD. Likewise,
the molecular ion at m/z 2949.0 was assigned as difucosyl LNnTD.
Minor peaks (BS1-6 to BS1-9) were due to the oligosaccharides
having a core structure of LNnD or LNnTD to which a sulfate group
is attached (for confirmation of the structure, see the following
section).

In the BS2 fraction, BS2-1 and BS2-3 are composed of H3N3F1-
2AA and H5N5F2-2AA, respectively. Digestion of BS2-1 and BS2-3
with a1-2 fucosidase caused the loss of one and two fucose resi-
dues, respectively. The defucosylated oligosaccharides gave molec-
ular ions corresponding to the theoretical m/z values of H3N3-2AA
and H5N5-2AA. From the monosaccharide compositions, these oli-
gosaccharides are considered to be hexa- and decasaccharide, hav-
ing LacNAc units at the reducing end (for confirmation of the
structure, see the following section). Oligosaccharides observed be-
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Table 1
List of asialo-oligosaccharides observed in bearded and hooded seal milk.
Peak Observed Calculated Composition ,
number mass mass
(a) BS1
-1 1193.5 1194.1 H4N2-2AA
-2 2110.8 21119 H5N5F1-2AA
-3 2071.8 2071.2 H6N4F1-2AA
~4 2071.8 2071.2 H6N4F1-2AA
-5 2802.6 2801.7 H8N6F1-2AA
2949.0 2947.9 H8N6F2-2AA
-6 2151.0 2151.2 H6N4F1-50;H-2AA
3027.0 3027.9 H8N6F2-S03H-2AA
-7 2150.8 2151.2 H6N4F1-503H-2AA
3026.9 3027.9 H8NG6F2-S0;H-2AA
-8 2150.5 2151.2 H8N6F2-503H-2AA
3026.6 3027.9 H6N4F1-503H-2AA
-9 2151.2 2151.2 H6N4F1-S03H-2AA
(b) BS2
-1 1381.6 1381.3 H3N3F1-2AA
=2 2111.6 2111.9 H5N5F1-2AA
-3 2259.5 2258.2 H5N5F2-2AA
-4 2217.7 2217.7 H6N4F2-2AA
=5 2217.2 2217.7 H6N4F2~-2AA
2363.5 2363.7 H6N4F3-2AA
-6 2988.7 2988.0 H7N7F2-2AA
3134.6 3134.1 H7N7F3-2AA
-7 31340 31341 H7N7F3-2AA
-8 2948.7 2947.9 H8N6F2-2AA
-9 3094.4 3093.5 HB8N6F3-2AA
-10 3240.5 32392 H8N6F4-2AA
~-11 2338.1 2338.2 H5N5F2-S03H-2AA
-12 2338.2 2338.2 H5N5F2-503H-2AA
-13 23378 * 2338.2 H5N5F2-503H-2AA
-14 23375 2338.2 H5N5F2-S03H-2AA
-15 3215.5 3215.1 H7N7F3-S03H-2AA
(c) HS
-1 1193.2 1194.1 H4N2-2AA
-2 1339.3 13404 H4N2F1-2AA
-3 1558.6 1559.0 H5N3-2AA
-4 1704.9 1705.4 H5N3F1-2AA
-5 1761.9 1762.8 H5N4-2AA
-6 1923.9 1924.4 H6N4-2AA
-7 2068.7 2070.0 H6N4F1-2AA
-8 2069.5 2070.0 H6N4F1-2AA
-9 2215.2 2216.3 H6N4F2-2AA
-10 2215.5 2216.3 H6N4F2-2AA
-1 2288.8 22894 H7N5-2AA
2363.5 2362.3 HEN4F3-2AA
-12 2435.6 2435.5 H7N5F1-2AA
2492.7 2492.4 H7N6-2AA
-13 2580.9 2581.5 H7N5F2-2AA
2637.0 2638.5 H7NF1-2AA
-14 2652.7 2654.0 H8NG6-2AA
-15 2798.6 2799.7 H8N6F1-2AA
-16 2944.5 2945.7 H8N6F2-2AA
-17 3089.9 3091.7 H8NG6F3-2AA
-18 32364 3237.7 H8NG6F4-2AA"
-19 3236.7 3237.7 H8N6F4-2AA
-20 3382.8 3384.1 H10N8-2AA
=21 3528.8 3530.0 H10N8F1-2AA
-22 3674.6 3676.3 H10N8F2-2AA
-23 3819.8 3822.0 H10N8F3-2AA
-24 3820.0 3822.0 H10N8F3-2AA
(d) Defucosyl HS
a 1193.5 1194.1 ! H4N2-2AA (lacto-N-neohexaose)
b 1924.2 1924.4 H6N4-2AA (lacto-N-neodecaose)
c 2288.4 2289.4 H7N5-2AA (lacto-N-
neododecaose)
d 2653.1 2654.0 H8N6-2AA (lacto-N-
neotetradecaose)
e 33825 3384.1 H10HN8-2AA (lacto-N-
neooctadecaose)

tween 30 and 38 min (BS2-4 to BS2-10) are considered to have
multi-Fuc residues. BS2-4 and BS2-5 have the core structure of

the LNnH unit and contain Fuco1-2 residues at the nonreducing
ends because these fucose residues were specifically released by
digestion with o1-2 fucosidase (data not shown). BS2-6 and BS2-
7 showed molecular ions at m/z 2988.7 and 3134.6, respectively,
which correspond to the compositions of H7N7F2-2AA and
H7N7F3-2AA. Peaks BS2-8 to BS2-10 were LNnTD containing mul-
tiple Fucat1-2 residues. As a group of characteristic oligosaccha-
rides in BS2, oligosaccharides having 80 mass units larger than
BS2-3 were observed between 42 and 49 min. Oligosaccharides
(BS2-11 to BS2-14) showed molecular ions at m/z 2338.2, indicat-
ing the composition of HSN5F2-S03;H-2AA. These oligosaccharides
are considered to be isomers having both Fuc and sulfate groups at
different positions.

We found 24 oligosaccharide peaks in total in the HS milk sam-
ple. These oligosaccharides had LNnH, LNnD, lacto-N-neododeca-
ose (LNnDD), LNnTD, and lacto-N-neooctadecaose (LNnOD) as
core structures (Table 1, part ¢). HS-1 and HS-2 observed at 20.0
and 21.5 min, respectively, gave molecular ions at m/z 1193.2
and 1339.3, which correspond to H4N2-2AA and H4N2F1-2AA,
respectively. HS-6, -7, -8, -9, and -10 showed molecular ions at
m(z 1923.9, 2068.7, 2069.5, 2215.2, and 2215.5, respectively. The
molecular ion of HS-6 is consistent with the theoretical mw of
HE6N4-2AA, suggesting the structure of LNnD. HS-7/8 (m/z
2068.7/2069.5) and HS-9/10 (m/z 2215.2/2215.5) showed larger
molecular ions than those of HS-6 by one Fuc (146 mass units)
and two Fuc (292 mass units), respectively. From these results,
we concluded that these oligosaccharides had the core structure
of LNnD to which different numbers of Fuc residues were attached
(for confirmation of the structures, see below). The most abundant
group of peaks (HS-14 to HS-19) commonly contains LNnTD (HS-
14 at m/z 2652.7) as the core structure. HS-15, -16, -17, and -18/
19 showed m/z values larger than LNnTD by one (146 mass units)
to four (584 mass units) Fuc residues. These results indicate that
HS-14 to HS-19 have LNnTD unit to which different numbers of
Fuc residues are attached. The peaks (HS-20 to HS-24) having high
molecular weights (m/z 3382.8 to 3820.0) were also observed be-
tween 50 and 54 min. These ladder peaks contained LNnOD (theo-
retical mw 3384.1) as the core structure to which one to four
fucose residues are attached.

Urashima and coworkers reported that GIcNAc residues of LNnT
and LNnH units in BS and HS oligosaccharides are not fucosylated.
In contrast, most GIcNAc residues in bear milk oligosaccharides are
fucosylated at OH-3 [17,18]. After digestion of asialo-oligosaccha-
rides derived from HS with o1-3,4 fucosidase from Streptomyces
sp. 142 or o1-2 fucosidase from Corynebacterium sp., the digestion
products were analyzed by NP-HPLC. o1-3,4 Fucosidase did not
act on the HS oligosaccharides, indicating that the oligosaccharides
were not substituted at OH-3/4 on GlcNAc residues with fucose
residues (data not shown). In contrast, most peaks disappeared
on digestion with o1-2 fucosidase, and five peaks were observed
at 19 min (peak a), 32 min (peak b), 38 min (peak c), 43 min (peak
d), and 51 min (peak e) (Fig. 1C and Table 1, part d). These data
indicated that all core oligosaccharides observed in Fig. 1C(2) were
composed of one reducing terminal lactose and 2 to 8 LacNAc
units. Peaks a and b showed molecular ions at m/z 1193.5 and
1924.2, which correspond to the molecular masses of LNnH and
LNnD, respectively. Peak c showed a molecular ion at m/z 2288.4
of LNnDD. Peak d was the most abundant one in HS and showed
the molecular ion of LNnTD at m/z 2653.1. In a similar manner,
we confirmed that peak e was due to LNnOD.

Characterization of the branching pattern of BS oligosaccharides
The structures of dominant oligosaccharides in BS1 (BS1-1, -3,

and -4 in Fig. 1B) were easily assigned. Digestion of BS1-1 with
B-galactosidase from jack beans caused loss of two galactose res-



Structural characterization of oligosaccharides from seal milk /M. Kinoshita et al./Anal. Biochem. 388 (2009) 242-253 247

idues (Am/z 324). Further digestion with p-N-acetylhexosamini-
dase gave a molecular ion at mz 461 corresponding to lactose
with 2AA (data not shown). From the data, we concluded that
BS1-1 was substituted with two Gal-GIcNAc residues at Gal
OH-6 and Gal OH-3 of lactose. The BS1-3 and BS1-4 were di-
gested with o1-2 fucosidase to afford an ion at m/z 1923.5 cor-
responding to LNnD. Digestion of the defucosylated
oligosaccharide with p-galactosidase caused the loss of three gal-
actose residues (Am/z 486), and the product showed a molecular
ion at mfz 1435. From these results, we concluded that the core
oligosaccharide of BS1-3 and BS1-4 is substituted with two Lac-
NAc units on either branch of LNnH (data not shown). Oligosac-
charides observed between 38 and 42 min gave molecular ions
H6N4F1-SO3H-2AA and H8N6F1-SO3H-2AA (m/z 2151.2 and
3026.6, respectively). Among these oligosaccharides, we obtained
BS1-9 as nearly pure state (Fig. 2). Digestion of the BS1-9 with
a1-2 fucosidase caused the loss of one fucose residue and gave
a molecular ion corresponding to LNnD (m/z 2005.1) with a sul-
fate group. Serial digestions of the defucosylated oligosaccharide
with p-galactosidase and B-N-acetylhexosaminidase caused the
loss of two LacNAc units and gave a molecular ion corresponding
to the composition of H4N2-SO3H-2AA (m/z 1275.6). These re-
sults indicated that the defucosylated oligosaccharide has two
nonsubstituted Gal residues at the nonreducing ends. Further
digestion of the oligosaccharide with p-galactosidase gave a
molecular ion, H3N2-S03H-2AA (m/z 1113.3). Urashima and
coworkers reported that some oligosaccharides in BS milk were
sulfated at the nonreducing terminal Gal OH-3 [18]. From this
report and our observations, we concluded that the oligosaccha-
rides from BS1-6 to BS1-9 were due to LNnD and LNnTD substi-
tuted with one sulfate group at the OH-3 position of the
nonreducing terminal Gal residue.

?QH 21512

N

Structures of dominant oligosaccharides in BS2 (BS2-1 and BS2-
3) were confirmed in a similar manner. Digestion of BS2-1 with
o1-2 fucosidase caused the loss of one fucose residue (Fig. 3A).
Further digestion with B-galactosidase gave a molecular ion (m/z
911.4) corresponding to H3N3-2AA. Finally, digestion with B-N-
acetylhexosaminidase gave a molecular ion at m/z 505.1 corre-
sponding H1IN1-2AA. Accordingly, we concluded that the core
disaccharide at the reducing end in BS2-1 was Gal-GlcNAc and that
BS2-1 was a hexasaccharide substituted with two LacNAc units at
OH-6 and OH-3 of Gal residue of the terminal Gal-GlcNAc. Oligo-
saccharide BS2-3 was also digested with o1-2 fucosidase to give
a glycan showing the molecular ion at m/z 1966.5 corresponding
to H5N5-2AA (Fig. 3B). Digestion of the core oligosaccharide with
p-galactosidase caused the loss of three galactose residues (Am/z
486). Further digestion with p-N-acetylhexosaminidase gave a
molecular ion (m/z 869.9) corresponding to H2N2-2AA. Thus, we
concluded that one of the branched units on BS2-1 was further
substituted with two LacNAc residues. The characteristic oligosac-
charides from BS2-11 to BS2-14 showed molecular ions at m/z
2238.1, which are consistent with the composition of H5N5F2-
SO3H-2AA. These oligosaccharides were digested with a1-2 fuco-
sidase to produce a signal at m/z 2046.3 corresponding to H5SN5-
SO3H-2AA. Further digestion of the defucosylated oligosaccharide
with p-galactosidase caused the loss of two Gal residues. These
observations indicated that the oligosaccharides from BS2-11 to
BS2-14 have two LacNAc branches substituted with o1-2 Fuc res-
idue (data not shown).

Characterization of the branching pattern of HS oligosaccharides
Digestion of the core oligosaccharide (A, peak a in Fig. 1C(2))

with B-galactosidase caused the loss of two galactose residues
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Fig. 2. Stepwise exoglycosidase digestion of characteristic oligosaccharide BS1-9 observed in Fig. 1B. Conditions for the enzymatic reaction with exoglycosidases are shown in
Materials and methods. Symbols: open circles; Gal; filled circles, Glc; filled squares, GIcNAc; filled triangles, Fuc. Linkage positions are assigned tentatively.



248 Structural characterization of oligosaccharides from seal milk /M. Kinoshita et al./Anal. Biochem. 388 (2009) 242-253

A o 12354
g 1381.6
? -lue x| . g
1 @ |-2Fucosidase
2AA | 28A
|
I YTy R it ol i b L .
800 900 1000 1100 1200 1300 1400 1500 800 900 1000 1100 1200 1300 1400 1500
mz mz
9114 G2 N 505.1
adast
et
oo
\ 287 -GleNAc x 2 -
2AA
| 3-N-Acetylhexosaminidase
bt - ‘ N e
800 900 1000 1100 1200 1300 1400 1500 400 500 600 700 800 900 1000 1100 1200
nmz mz
B | 2259.5
AL 1966.5
=
| -Fucx2
1 :
«l-2Fucosidase
244 2AA |
. i |
M - _— " Abbladin poa L L i Ak i
1300 1500 1700 1900 2100 2300 23500 1300 1500 1700 1900 2100 2300 2500
myz mz
869.9
1479.4 |
i 22 GleNAexs - ) * 248
\ [ (3-N-Acetylhexosaminidase NWM
Lk hekdisitid " - sttt by
1300 1500 1700 1900 2100 2300 2500 700 800 900 1000 1100 1200

mz

mz

Fig. 3. Stepwise exoglycosidase digestion of characteristic oligosaccharides BS2-1 (A) and BS2-3 (B) observed in Fig. 1B. Symbols: open circles, Gal; filled circles, Glc; filled

squares, GIcNAc; filled triangles, Fuc. Linkage positions are assigned tentatively.

(Am/z 324) and gave a product ion at m/z 868.8 (Fig. 4A). The oli-
gosaccharide at m/z 868,8 was further digested with p-N-acetyl-
hexosaminidase, and a new ion corresponding to Gal-Glc-2AA
was observed at m/z 462.4. From these observations, we concluded
that the oligosaccharide (peak a) has the structure of Galp1-4Glc-
NAcp1-6[Galp1-4GlcNAcB1-3]Galp1-4Glc (LNnH). Digestion of
the core oligosaccharide (B, peak b in Fig. 1C(2)) with p-galactosi-
dase caused the loss of three galactose residues (Am/z 486), and
the product showed a molecular ion at m/z 1437.5 (Fig. 4B). The
oligosaccharide at m/z 1437.5 was further digested with p-N-acet-
ylhexosaminidase to release three GlcNAc residues. These observa-
tions indicated that the core oligosaccharide (peak b) has a
triantennary structure. The produced oligosaccharide correspond-
ing to Gal-GlcNAc-Gal-Glc-2AA (m/z 826.7) was again digested
with f-galactosidase to produce a peak at m/z 665.1 (GlcNAc-
Gal-Glc~2AA). The structure was confirmed by comparison of the
retention time with that of trisaccharide (GIcNAcp1-3Galpl-
4Glc-2AA) prepared by digestion of lacto-N-tetraose (Galp1-3Glc-
NAcB1-3Galp1-4Glc) with p-galactosidase using HPLC on an ODS
column and capillary electrophoresis (data not shown). These
observations indicated that the core oligosaccharide (peak b) has
two LacNAc units on the o1-3 LacNAc branch of LNnH. Digestion
of the core oligosaccharide (C, peak c in Fig. 1C(2)) with p-galacto-
sidase caused the loss of three Gal residues (Am/z 486), and the

product showed a molecular ion at m/z 1801.9. The oligosaccharide
at m/z 1801.9 was further digested with p-N-acetylhexosaminidase
to produce a molecular ion at m/z 1193.8. The oligosaccharide has
the structure of HGN4-2AA. These results indicated that peak c has
a triantennary structure. The oligosaccharide (m/z 1193.8) was
again digested with p-galactosidase to produce a peak at m/z
869.1 by the loss of two galactose residues. The course of digestion
by a combination of exoglycosidases revealed that peak ¢ was a
dodecasaccharide having three LacNAc residues at nonreducing
ends, and we concluded that the oligosaccharide of peak c¢ has
two LacNAc units and one LacNAc unit on both branches of LNnH.
Digestion of the core oligosaccharide (D, peak d in Fig. 1C(2)) with
f-galactosidase caused the loss of four galactose residues (Am/z
648), and the product showed a molecular ion at m/z 2004.5. The
product was further digested with p-N-acetylhexosaminidase to
produce an ion at m/z 1193.8 corresponding to LNnH. These obser-
vations indicated that peak d has a tetraantennary structure. The
produced oligosaccharide corresponding to LNnH was again di-
gested with p-galactosidase to produce a molecular ion at m/z
869.1. From these results, we concluded that peak d was a tetra-
decasaccharide having four LacNAc residues at the nonreducing
ends and that both branches of LNnH were substituted with two
LacNAc units. The oligosaccharide (E, peak e in Fig. 1C(2)) having
the largest molecular mass (m/z 3382.5) present in HS milk caused
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GlcNAc.

the loss of five galactose residues (Am/z 810) by digestion with p-
galactosidase, and the product showed a molecular ion at m/z
2572.2. The product was further digested with p-N-acetylhexosa-
minidase to produce a molecular ion at m/z 1556.8. The oligosac-
charide was again digested with B-galactosidase to produce a
peak at m/z 1232.1. From these results, we concluded that the oli-
gosaccharide derived from peak e was an octadecasaccharide, as
shown in Fig. 4E.

Structural determination of fucosylated decasaccharides by MALDI-
QIT-TOF MS

The core oligosaccharides in HS milk are substituted with a dif-
ferent number of fucose residues, as shown by characteristic ladder
patterns (Fig. 1B). We purified monofucosylated LNnD (MFLNnD,
HS-7, and HS-8 in Fig. 1B) and difucosylated LNnD (DFLNnD, HS-
9, and HS-10 in Fig. 1B) and analyzed them using MALDI-QIT-
TOF MS. Fig. 5 shows the MS/MS spectra using [M + Na|* observed
at m/z 2093.1 for the purified MFLNnD (Fig. 5A and B). The Y ion at
m/z 1947.5/1947.2 corresponding to the loss of 146 mass units
(dHex-18 mass) from [M + Na]" indicates the presence of a Fuc res-

idue. The Y ions at m/z 1728.0/1728.1 and 1581.9/1582.0 are due to
H5N3F1-2AA and H5N3-2AA, respectively. These fragment ions
were commonly observed in HS-7 and HS-8. We also found the
set of B ion series, [H2N2]" at m/z 753.5/754.5, [H3N3]" at m/z
1118.7/1118.8, [H3N3F1]" at m/z 1264.8/1264.9, and [H4N3F1]*
at mfz 1791. Characteristic ions observed at m/z 1264.8 (Fig. 5A)
and m/z 1118.8 (Fig. 5B) suggested the difference in the linkage
positions of Fuc residues at the nonreducing Gal residues. The B
ion at m/z 1264.8 (Bsy) indicates that a Fuc residue is linked to
the most outer LacNAc residue. The B ion at m/z 1118.8 corre-
sponding to three LacNAc units suggests that one Fuc is attached
to the 6-branch side of the reducing terminal lactose. Urashima
and coworkers reported that small oligosaccharides in HS milk
contained type Il LacNAc (Galp1-4GIcNAc-R) but not type I LacNAc
(Galp1-3GIcNAc-R) [14]. Thus, the oligosaccharides HS-7 and HS-8
are assigned to those as indicated in Fig. 5.

Fig. 6 shows the MS/MS spectra of the ions at m/z 2239.8 for the
[M + Na]* of DFLNnD (HS-9 and HS-10 in Fig. 1B). The Y ions at m/z
2093.3 corresponding to a loss of 146 (dHex-18 mass) from
[M + Na|" indicate the presence of Fuc residue. In a similar manner,
in the case of MS/MS of MFLNnD (Fig. 5), the Y ions observed at m/z
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1728.1 and 1582.1 correspond to [H5N3F1-2AA] and [H5N3-2AA],
respectively. The Y ion at m/z 851.7 corresponds to the composi-
tion of [H3N1-2AA]". These fragment ions of the Y ion series were
commonly observed in HS-9 and HS-10. We also observed the set
of B ion series, [H2N2]" at m/z 753.5, [H2N2F1]* at m/z 1118.5,
[H3N3F1]" at m/z 1264.5, and [H3N3F2]" at m/z 1411.0. A charac-
teristic ion at m/z 1411.0 observed in HS-9 (Fig. 6A), which corre-
sponds to three LacNAc units having two Fuc residues, indicates
that two Fuc residues are attached to the nonreducing Gal residues
of both LacNAc branches linked to GalB1-4GIlcNAcB1-3Galpl-
4Glc, as shown in Fig. 6A. Thus, the structure of HS-9 is assigned
as shown in Fig. 6A. In contrast, a characteristic ion at m/z
1264.5 (Bs,) observed in HS-10 (Fig. 6B) indicates the attachment
of only one Fuc to the most outer LacNAc residue. Therefore, the
oligosaccharide (HS-10) is assigned to the structure as shown in
Fig. 6B.

Among LNnD substituted with o1-2 Fuc residues, HS-7 and HS-
10 were abundantly present (Fig. 1B) and both oligosaccharides
have an a1-2 Fuc residue on either LacNAc on the o1-3 branch
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of the LNnH core. These observations suggest that the modification
of multibranched core oligosaccharides with a1-2 Fuc residues
proceeds preferably at LacNAc residues of the elongated branches.

Discussion

We studied structural features of oligosaccharides from the
milk samples of bearded and hooded seals by NP-HPLC and MAL-
DI-TOF MS. The combination of sequential digestion of the oligo-
saccharides with exoglycosidases and MALDI-TOF MS was a
useful technique for elucidation of the branching patterns and
modification of oligosaccharides with fucose and/or sulfate
group(s). Table 2 shows a list of asialo-oligosaccharides found in
bearded and hooded seal milk. The oligosaccharides are catego-
rized into nine core structures (A-I) based on the monosaccharide
compositions. LNnD and LNnTD (C and E in Table 2) were observed
as common core structures in both milk samples, but the two spe-
cies showed quite different features. The most characteristic fea-

ID Core structure Number of Fuc residues ID Core structure Number of Fuc residues
()} 1 2 3 4 0 1 2 3 4
A Z:})f% HS/ eiHS: e i el il g:z%%}.g HS. WS\ ms HS As
> <
B o HSY HS: = - = G < = BS = < =
ol
> 3
c S HS. 2 HS: “Hs HS = = H < & BS BS = =
BS BS BS
< <
Cs Sl BStii = - Hs % = = BSa A= =
+SO,H* +SO;H*
D g})&g HS: ' HS s e e g @.‘g S RS SR
E 5 HS . HS. “HS “HS . HS s < - = - BS
o BS:YdRsi 2 LBGl RS < =
+SO,H*
- ]
Es < = = RS o =
+SO,H*

“Core structures with sulfate group at 3-OH position of nonreducing terminal Gal.
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ture of oligosaccharides in both milk samples is that multi-
branched oligosaccharides were present and linear oligosaccha-
rides were not detected in the current study.

BS milk contained characteristic oligosaccharides having mono-
saccharide compositions of H3N3F1 (G in Table 2), H5N5F1 (H),
and H7N7F3 {I), and these oligosaccharides were confirmed as
Galp1-4GIcNAcB1-3[Galp1-4GIcNAcB1-6]Galp1-4GIcNAc - and
Galp1-4GicNAcp1-3[Galp1-4GlcNAcB1-6]GIcNAcpB1-3[Galp1-
4GIcNAcp1-6]Galp1-4GIcNAc. Free oligosaccharides having Lac-
NAc at the reducing end have been reported in bovine and caprine
colostrum [33-35]. In mammary glands, lactose is synthesized by
lactose synthase, a complex of $4 galactosyltransferase i {BGalT-I)
and a-lactalbumin [36]. fGalT-I is also involved in the synthesis
of Galp1-4GlcNAc in the case of the absence of o-lactalbumin.
However, a-lactalbumin in lactating mammary glands changes
the preferred acceptor of pGalT-I from GIcNAc to Glc [37]. Interest-
ingly, bovine colostrum contains oligosaccharides such as Neu-
Aco2-6Galp1-4GIcNAc, Galp1-4(Fucal-3)GIcNAc, and Gaipi-
3(Fucat1-4)GIcNAg, but their concentrations decrease dramatically
to the trace level 7 days after parturition [38,39]. The presence of
large oligosaccharides such as H, HS, [, and Is in BS milk strongly
suggests that biosynthesis starts from LacNAc as the core structure.

HS milk contained varieties of oligosaccharides having multi-
branched core structures (i.e., cores E and F in Table 2), In addition,
most oligosaccharides were substituted with different numbers of
a1-2 Fuc residues at the nonreducing terminal Gal residues. All
oligosaccharides in HS milk have LNnH (GalB1~4GlcNAcp1-
3[Galp1-4GlcNAcB1-6]Galp1-4GIcNAc) as a common core. They
are preferentially elongated at the Galg1-4GlcNAcp1-3 branch of
the LNnH core unit. For example, the core structure having mono-
saccharide compositions of H6N4 (C in Table 2) has two LacNAc
residues on the GalBl1-4GIcNAcf1-3 branch of LNnH (see
Fig. 4B), in contrast to the branching of lacto-N-decaose in human
milk [40]. Among the p-N-acetylglucosaminyltransferase (GnT)
family, B3-N-acetylglucosaminyltransferase (iGnT), which is a key
enzyme for the elongation of LacNAc sequence, prefers type I
chain (Galp1-4Glc/GlcNAc) [41-43]. Urashima and coworkers ana-
lyzed small oligosaccharides in HS milk by 'H NMR spectroscopy
and revealed that major oligosaccharides contained only type II
chains [14). The addition of Galp1-4 residue to terminal GlcNAc
provides the preferable acceptor for iGnT enzyme. In contrast, HS
milk contains multiantennary oligosaccharides (E in Table 2),
which have two LacNAc residues on both branches of LNnH, indi-
cating that the Gal residue on the B1-6 branch of LNnH was substi-
tuted followed by maodification of the B1-3 branch of LNnH, iGnT
was considered to be less efficient to the longer LacNAc repeats
as the acceptors {44]. Furthermore, the efficiency of iGnT may be
decreased by the presence of the Galp1-4GIcNAcB1-6 branch to
the Gal residue of Gal1-4GlcNAcp1-3Galp1-4GicNAc. In general,
the sequence of Galp1-4GlcNAcB1-3Galp1-4Glc/GlcNAc provides
the preferred acceptor for p(1-6)N-acetylglucosaminyltransferase
(IGnT), which is thought to be a key enzyme for the branching of
oligosaccharides [45-47]. It is likely that human milk oligosaccha-
rides preferentially is elongated at the Galp1-4GIcNAcp1-6 branch
of LNH, and the Galp1-3GicNAcp1-3 branch of LNH does not re-
ceive further modification with LacNAc [6]. The presence of multi-
branched oligosaccharides in seal milk suggests that enzyme
activities of IGnT and B4GalTs in seal mammary glands are higher
than those in other eutherian mammals.

In this article, we have focused on characterization of the
branching pattern of oligosaccharides of high molecular masses
in seal milk samples by means of the combination of MALD}-TOF
MS and sequential exoglycosidase digestion. Branching is one of
the major structural features of carbohydrates, and a relatively
simple set of monosaccharides can form various branching config-
urations. Techniques based on MS/MS were used for the structural

characterization of oligosaccharides. Special emphasis was made
so that the combined use of MALDI-TOF MS and sequential exogly-
cosidase digestion gave unambiguous structural details of multi-
branched oligosaccharides, including linkage positions and
anomeric configurations.
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