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Inner ear cell therapy for sensorineural hearing loss
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COCHLEAR OUTER HAIR CELLS IN A DOMINANT-NEGATIVE
CONNEXIN26 MUTANT MOUSE PRESERVE NON-LINEAR
CAPACITANCE IN SPITE OF IMPAIRED DISTORTION PRODUCT

OTOACOUSTIC EMISSION

A. MINEKAWA,? T. ABE,” A. INOSHITA.? T. lIZUKA,?
S. KAKEHATA,® Y. NARUI,? T. KOIKE,® K. KAMIYA,?
H.-O. OKAMURA,° H. SHINKAWAP AND K. IKEDA®*

2Department of Otorhinolaryngology, Juntendo University School of
Medicine, Tokyo, Japan

bDepartment of Otorhinolaryngology, Hirosaki University School of
Medicine, Hirosaki, Japan

°Department of Mechanical Engineering and Intelligent Systems, The
University of Electro-Communications, Tokyo, Japan

Abstract—Mutations in the connexin26 gene (GJB2) are the
most common genetic cause of congenital bilateral non-syn-
dromic sensorineural hearing loss. Transgenic mice were es-
tablished carrying human Cx26 with the R75W mutation that
was identified in a deaf family with autosomal dominant nega-
tive inheritance [Kudo T et al. (2003) Hum Mol Genet 12:995-
1004]. A dominant-negative Gjb2 R75W transgenic mouse
model shows incomplete development of the cochlear support-
ing cells, resulting in profound deafness from birth [Inoshita A
et al. (2008) Neuroscience 156:1039-1047]. The Cx26 defect in
the Gjb2 R75W transgenic mouse is restricted to the supporting
cells; it is unclear why the auditory response is severely dis-
turbed in spite of the presence of outer hair cells (OHCs). The
present study was designed to evaluate developmental
changes in the in vivo and in vitro function of the OHC, and the
fine structure of the OHC and adjacent supporting cells in the
R75W transgenic mouse. No detectable distortion product oto-
acoustic emissions were observed at any frequencies in R75W
transgenic mice throughout development. A characteristic phe-
notype observed in these mice was the absence of the tunnel of
Corti, Nuel’s space, and spaces surrounding the OHC; the OHC
were compressed and squeezed by the surrounding supporting
cells. On the other hand, the OHC developed normally. Struc-
tural features of the lateral wall, such as the membrane-bound
subsurface cisterna beneath the plasma membrane, were in-
tact. Prestin, the voltage-dependent motor protein, was ob-
served by immunohistochemistry in the OHC basolateral mem-
branes of both transgenic and non-transgenic mice. No signif-
icant differences in electromotility of isolated OHCs during
development was observed between transgenic and control
mice. The present study indicates that normal development of
the supporting cells is indispensable for proper cellular func-
tion of the OHC. © 2009 IBRO. Published by Elsevier Ltd. All
rights reserved.

Key words: hereditary deafness, connexin26, Gjb2, outer hair
cell, prestin, electromotility.

*Corresponding author. Tel: +81-3-5802-1229; fax: +81-3-5840-7103.
E-mail address: ike@juntendo.ac.jp (K. Ikeda).

Abbreviations: C,,,, membrane capacitance; C,, nonlinear capacitance;
Cx26, connexin26; DAPI, 4’,6-diamidino-2-phenylindole; DPOAE, dis-
tortion product otoacoustic emission; GJB2, connexin26 gene; OHC,
outer hair cell; P, postnatal day; PB, phosphate buffer; PBS, phos-
phate-buffered saline; PFA, paraformaldehyde.

The organ of Corti in mammals is a complex three-dimen-
sional structure containing both sensory and supporting cells
sitting on the basilar membrane. The supporting cells, includ-
ing the pillar cells and Deiter’s cells, form a rigid scaffold
adjacent to and surrounding the outer hair cell (OHC) and
confer essential mechanical properties for efficient transmis-
sion of stimulus-induced motion of the hair cells between the
reticular lamina and the basilar membrane. Although devel-
opment of pillar cells and the formation of a normal tunnel of
Corti are required for normal hearing (Colvin et al., 1996), the
physiological function of the supporting cells in postnatal
development remains unclear.

Gap junction proteins in the cochlear supporting cells are
believed to allow rapid removal of K* away from the base of
hair cells, resulting in recycling back to the endolymph (Kiku-
chi et al., 1995). In addition to these effects on K*, gap
junction proteins act to mediate Ca®* and anions such as
inositol 1,4,5-trisphosphate, ATP, and cAMP as cell-signal-
ing, nutrient, and energy molecules (Beltramello et al., 2005;
Zhao et al., 2005; Piazza et al., 2007; Gossman and Zhao,
2008). In the developing postnatal cochlea, Tritsch et al.
(2007) further found that within a transient structure known as
Kolliker's organ, ATP can bind to P2X receptors on the inner
hair cells, thus causing depolarization and Ca®* influx, while
also mimicking the effect of sound.

In the organ of Corti, most gap junctions are assembled
from connexin (Cx) protein subunits, predominantly connexin
26 (Cx26, Gjb2 gene) and co-localized Cx30 (Forge et al.,
2003; Zhao and Yu, 2006). Mouse models have confirmed
that Cx26 encoded by Gjb2 is essential for cochlear function
(Cohen-Salmon et al., 2002; Kudo et al., 2003). A dominant-
negative Gjb2 R75W transgenic mouse model shows incom-
plete development of the cochlear supporting cells, resulting
in profound deafness from birth (Inoshita et al., 2008). Char-
acteristic ultrastructural changes observed in the developing
supporting cells of the Gjb2 R75W transgenic mouse model
include (i) the absence of the tunnel of Corti, Nuel's space, or
spaces surrounding the OHCs; and (ji) reduced numbers of
microtubules in the pillar cells. On the other hand, the devel-
opment of the OHCs, at least from postnatal day 5 (P5) to
P12 was not affected. The Cx26 defect in the Gjb2 transgenic
mouse is restricted to the supporting cells; it is thus difficult to
explain why the auditory response is extensively disturbed
despite the presence of the OHCs.

The present study was designed to evaluate develop-
mental changes in the in vivo and in vitro function of the OHC
together with the ultrastructure of the OHC and its adjacent
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supporting cells in the R75W transgenic mouse, to provide a
better understanding of the functional properties of the sup-
porting cells, and to gain new insights into the molecular and
physiological mechanisms of Gjb2-based deafness.

EXPERIMENTAL PROCEDURES
Animals and anesthesia

All mice used for this study were obtained from a breeding colony of
R75W transgenic mice (Kudo et al., 2003) and maintained at the
Institute for Animal Reproduction (Ibaraki, Japan). R75W transgenic
mice were maintained on a mixed C57BL/6 background and inter-
crossed to generate R75W transgenic animals. The animals were
genotyped using DNA obtained from tail clips and amplified with the
Tissue PCR Kit (Sigma, Saint Louis, MO, USA). The animals were
deeply anesthetized with an intraperitoneal injection of ketamine (100
mg/kg, Ohara Pharamaceutical Co., Ltd., Tokyo, Japan) and xyla-
zine (10 mg/kg) in all experiments. All experiment protocols were
approved by the Institutional Animal Care and Use Committee at
Juntendo University School of Medicine, and were conducted in
accordance with the US National Institutes of Health Guidelines for
the Care and Use of Laboratory Animals.

Distortion product otoacoustic emission

All electrophysiology was performed within an acoustically and
electrically insulated and grounded test room. Distortion product
otoacoustic emission (DPOAE) responses at 2f1—f2 were mea-
sured through the meatus using a measuring system (model
ER-10B, Etymotic Research Inc., Elk Grove Village, IL, USA) with
a probe developed for immature mice according to a previous
paper (Narui et al., 2009). DPOAE stimuli were administered at
two primary frequencies, f1 and 2, such that f1<f2. DPOAE
input/output functions at f2=12, 30, and 45 kHz with f2/f1=1.2
were constructed. At each frequency pair, primary levels L1 (level
of f1 tone) and L2 (level of f2 tone) were increased incrementally
by 5 dB steps from 30 to 80 dB (f2=12 kHz and 30 kHz), and 30
to 70 dB (f2=45 kHz) with L1=L2. The DPOAE threshold level
was defined as the dB level at which the 2f1—f2 distortion product
was more than 10 dB above the noise level.

Non-linear capacitance

OHCs were obtained from acutely dissected organs of Corti from
both transgenic and non-transgenic mice according to a previous
report (Abe et al., 2007). Briefly, cochleae were dissected, and the
organs of Corti were separated from the modiolus and stria vas-
cularis. The organs were then digested with trypsin (1 mg/ml) in
external solution (100 mM NaCl, 20 mM tetraethylammonium, 20
mM CsCl, 2 mM CoCl,, 1.52 mM MgCl,, 10 mM 4-(2-hydroxy-
ethyl)-1-piperazineethanesulfonic acid and 5 mM dextrose (pH
7.2), 300 mosmol/L, in order to block ionic conductance) for 10—12
min at room temperature and transferred into 35 mm plastic
dishes (Falcon, Lincoln Park, NJ, USA) with 2 ml external solution.
OHCs were isolated by gentle trituration. The dish was mounted
on an inverted microscope (IX71; Olympus, Tokyo, Japan).

The patch pipette solution contained 140 mM CsCl, 2 mM
MgCl,, 10 mM ethyleneglycoltetraacetic acid, 10 mM 4-(2-hydroxy-
ethyl)-1-piperazineethanesulfonic acid (pH 7.2), 300 mosmol/L (ad-
justed with dextrose).

The cells were whole-cell voltage-clamped with an Axon (Bur-
lingame, CA, USA) 200 B amplifier using patch pipettes having
initial resistances of 3-5 M(Q). Series resistances, which ranged
5-20 MQ), remained uncompensated for membrane capacitance
(C.) measurements, though corrections for series resistance volt-
age errors were made offline.

Data acquisition and analysis were performed using the Win-
dows-based patch-clamp program jClamp (SciSoft, New Haven,
CT, USA).

The C,, functions were obtained 1 min after establishment of the
whole-cell configuration. C,,, was assessed using a continuous high-
resolution (2.56 ms sampling) two-sine voltage stimulus protocol (10
mV peak at both 390.6 and 781.2 Hz) superimposed onto a voltage
ramp (200 ms duration) from —150 to +150 mV (Santos-Sacchi et
al., 1998; Santos-Sacchi, 2004). The capacitance data were fit to the
first derivative of a two-state Boltzmann function (Santos-Sacchi,
1991).

ze
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Cm: Qmaxk_-,: W + CIin

= Vi Vokem
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where Qq,a, is the maximum nonlinear charge moved, V., is volt-
age at peak capacitance or half-maximum charge transfer, V,, is
membrane potential, z is valence, C, is linear membrane capaci-
tance, e is electron charge, k is Boltzmann's constant, and T is
absolute temperature. For analyses, we quantified C,, peak, an
estimate of maximum voltage-dependent, nonlinear capacitance, as
the absolute peak capacitance minus linear capacitance.

Histology

The mice were perfused with 4.0% paraformaldehyde (PFA) and
2.0% glutalaldehyde (pH 7.4) in 0.1 M phosphate buffer (PB). The
inner ears were dissected and immersed in fixative overnight at
room temperature. Decalcification was completed by immersion in
0.12 M ethylenediaminetetraacetic acid with gentle stirring at room
temperature for a day. The cochleas were flushed again with
buffer prior to perfusion with a warm solution of 10% gelatin. They
were chilled on ice, thus allowing the gelatin to solidify, and then
cut in half under a dissecting microscope. The half cochleas were
rinsed (four times for 1 min each) with warm PB (40 °C) to remove
residual gelatin. The specimens were post-fixed 1.5 h in 2.0%
0Os0Q, in 0.1 M PB, then dehydrated through graded ethanols and
embedded in Epon. Semithin sections (1 wm) were stained with
Toluidine Blue for light microscopy. Ultrathin sections were
stained with uranyl acetate and lead citrate and examined by
electron microscopy (HITACHI H7100, Japan).

Immunohistochemistry

The cochleae were removed after cardiac perfusion with 4% PFA
(pH 7.4), placed in the same fixative at room temperature for 1 h,
decalcified with 0.12 M ethylenediaminetetraacetic acid (pH 7.0)
at 4 °C overnight. The specimens were dehydrated through
graded concentrations of alcohol, embedded in paraffin blocks
and sectioned into 5 um thick slices. The sections were washed in
several changes of 0.01 M phosphate-buffered saline (PBS; pH
7.2), blocked with 2% bovine serum albumin in 0.01 M PBS for 30
min, and then were incubated for 1 h at room temperature with
goat polyclonal antibodies to Prestin (1:100; Santa Cruz Biotech-
nology, Santa Cruz, CA, USA) (Kitsunai et al., 2007) diluted in
0.01 M PBS+1% bovine serum albumin. The following day, the
tissues were rinsed with 0.01 M PBS, incubated for 1 h at room
temperature with a Alexa-Fluor-594 conjugated donkey anti-goat
(1:1000; Molecular Probes, Eugene, OR, USA), rinsed with 0.01 M
PBS, and then mounted in Vectashield containing DAPI (Vector
Laboratories, Burlingame, CA, USA). Labeling was viewed using
a confocal laser scanning microscope (LSM510 META, Carl
Zeiss, Esslingen, Germany), and each image was analyzed and
saved using the ZeissLSM image Browzer (Carl Zeiss).
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Statistical analysis

Data were expressed as mean+SEM. Input/output function data of
the amplitudes were analyzed via a non-repeated measures analysis
of variance (ANOVA). The significance of DPOAE amplitudes was
analyzed further by post hoc multiple comparison tests using the
Bonferroni procedure. The statistical difference of DPOAE threshold
was determined by a two-sided Mann-Whitney's U-test. P<0.05 was
accepted as the level of significance.
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DPOAE responses were examined during postnatal devel-
opment. Non-transgenic mice started to show a measur-
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Fig. 1. Input/output function of the amplitudes of non-transgenic (A, B, C) and R75W transgenic (D, E, F) mice at 8 kHz, 20 kHz and 30 kHz frequencies
(2f1-2) from P11 to P27. DPOAE data were plotted as mean=SEM. The dotted line is the noise level. Non-Tg: non-transgenic mice, R756W+: R75W

transgenic mice.
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ences of the DPOAE amplitudes of the non-transgenic
mice in comparison to noise levels appeared at P12—14 for
the different stimuli tested. In contrast, there were no sta-
tistically significant differences between noise level and
DPOAE amplitudes at 8 kHz, 20 kHz, and 30 kHz through-
out postnatal development in the R75W transgenic mice.
Furthermore, no DPOAE was detected at any frequencies
in R75W transgenic mice throughout postnatal develop-
ment (Fig. 1D, E, F).

The mean DPOAE thresholds of non-transgenic mice
were abruptly reduced around P13-P14 to reach the adult
level by P16. In contrast, the mean DOPAE thresholds of
R75W transgenic mice stayed at high level throughout
postnatal development (Fig. 2).
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Fig. 2. DPOAE thresholds at 8 kHz (A), 20 kHz (B), and 30 kHz (C)
frequencies of non-transgenic mice (open circle) and R75W transgenic
mice (filled circle) from P11 to P27. The DPOAE threshold level was
defined as the dB level at which the 2f1—f2 distortion product was more
than 10 dB above the noise level. In the case of no DPOAE, the
threshold level was defined as 90 dB. *: Significant difference between
non-transgenic and transgenic mice (P<0.05). Non-Tg: non-trans-
genic mice, R75W+: R75W transgenic mice.

Histology and immunohistochemistry

The cytoarchitecture of the organ of Corti of the R75W
transgenic mouse was remarkably different from that of the
non-transgenic mouse (Fig. 3A, B). Transverse sections of
the organ of Corti in R75W transgenic mouse revealed
compression and squeezing of the OHC by the surround-
ing supporting cells, and Nuel's space around each OHC
was occupied by Deiter’s cells (Fig. 3B). Structural changes
in the OHCs and adjacent cells are likely to restrict the elec-
trically-induced motility of the OHC. The mesothelial cells
associated with the basilar membrane in the transgenic
mouse were cuboidal and more densely packed in contrast
to a flattened layer in the control mouse. However, the
ultrastructure of the OHCs in the non-transgenic mouse
was comparable to that of the R75W transgenic mouse
(Fig. 3C, D). The OHC of both mice showed consistent
characteristic features; (i) a relatively high proportion of
cytoplasm having a basally located nucleus, (ii) a smooth
plasma membrane lined by a thick layer of subsurface
cisternae, (iii) numerous mitochondria along the lateral
membrane, and (iv) no vacuole formation in the cytoplasm
and no condensation of chromatin in the nucleus.

Immunofluorescence microscopy of cross-cochlear sec-
tions was used to examine the distribution of prestin in the
apical turns of the cochlea of non-transgenic and R75W
transgenic mice at P12. Prestin labeling was clearly visible
on the whole OHC basolateral wall in both the control (Fig.
4A) and R75W+ mice (Fig. 4B) at P12. On the other hand,
the nucleus and the cuticular plate of both mice were
devoid of immunostaining.

These ultrastructural and immunohistochemical results
support the notion that the OHC are equipped with the
morphological and molecular bases to produce electromo-
tility.

Electromotility of OHCs

The signature electrical response of an adult OHC is a
bell-shaped, voltage-dependent capacitance, which repre-
sents the conformational fluctuations of the motor mole-
cule. In wild-type of C57BL/6J mice, Cv increased rapidly
during development, saturating at P18 (Abe et al., 2007).
OHCs from both R75W transgenic and non-transgenic
mice showed somatic shape change in response to the
voltage change (data not shown) and showed a typical
bell-shaped voltage dependence (Fig. 5A). Cv increased
progressively from P9 and saturated at P24. The time
course of Cv in R75W transgenic and non-transgenic mice
showed no significant difference (Fig. 5B). These results
indicate that the development of OHC motility is not af-
fected in R75W transgenic mice.

DISCUSSION

The present study demonstrated that a dominant-negative
R75W mutation of Gjb2 failed to generate a detectable
DPOAE from birth in spite of the presence of OHCs and
apparently normal electromotility. The DPOAE depends on
two factors, an intact OHC system (Long and Tubis, 1988;
Brown et al., 1989) and a positive endocochlear potential
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Fig. 3. Histology and transmission electron micrographs of non-transgenic (A, C) and R75W transgenic (B, D) mice. At P12, tunnel of Corti is detected
in non-transgenic mice (A), but not (asterisk) in R75W transgenic mice (B). Nuel's space is formed in non-transgenic mice (A, C), but not in R75W
transgenic mice (B, D). OHCs are detected in both non-transgenic (A) and R75W transgenic mice, but are squeezed by the surrounding Deiter’s in
R75W transgenic mice (B). The OHCs showed normal development, with preserved fine structure of the lateral wall, membrane-bound subsurface
cisterna beneath the plasma membrane, and enriched mitochondria in both the non-transgenic (C) and R75W transgenic mice (D). Scale bars are 10
um (A, B) and 2 um (C, D). Abbreviations used: TC, tunnel of Corti; IP, inner pillar cell; OP, outer pillar cell; BM, basilar membrane; M, mesothelial

cell.

(Brownell, 1990). The R75W transgenic mice have a nor-
mal endocochlear potential (Kudo et al., 2003). Further-
more, the OHC develops normally with apparently intact
fine structure of the lateral wall, including normal mem-
brane-bound subsurface cisterna beneath the plasma
membrane. The characteristic phenotype observed in the
R75W transgenic mice was the absence of the tunnel of
Corti, Nuel's space, and spaces surrounding the OHC,
related to abnormal development of the supporting cells.

The mammalian cochlea uses a unique mechanism for
amplification of sound signals. Cochlear amplification is
thought to originate from (1) somatic motility based on the
cochlear motor prestin and (2) hair cell bundle motor re-
lated to mechanoelectrical channel (Robles and Ruggero,
2002). Distortion and cochlear amplification are believed to
stem from a common mechanism. A recent study (Verpy et
al., 2008) postulated that the main source of cochlear
waveform distortions is a deflection-dependent hair bundle
stiffness derived from stereocilin associated with the hori-
zontal top connectors. However, the relationship between
stereocilin and prestin is still unclear.

Somatic electromotility of the OHC is a voltage-depen-
dent rapid alteration of OHC length and stiffness. The
electromotility of the OHC is thought to amplify the motion
of the basilar membrane at low sound pressure levels and
compress it at high levels (Patuzzi et al., 1989; Ruggero
and Rich, 1991; Kossl and Russell, 1992). Prestin, which
resides in the basolateral membrane of the cochlear OHC
(Yu et al., 2006), acts as a voltage-dependent motor pro-
tein responsible for OHC electromotility (Belyantseva et
al., 2000; Zheng et al., 2000; Liberman et al., 2002). The
present study demonstrated that the voltage-dependent,
nonlinear capacitance representing the conformational
fluctuations of the motor molecule progressively increased
from P10 to P18 in Gjb2 R75W transgenic mice. The
developmental changes in the OHC electromotility ob-
served in the Gjb2 R75W transgenic mice resemble those
of both the C57BL/6J mouse in a previous study (Abe et
al., 2007) and the litermate non-transgenic mice in the
present study.

At least three factors that could explain the discrep-
ancy between the DPOAE and the OHC electromotility
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Fig. 4. A cross-sectional immunofluorescent analysis of prestin dis-
tributed in the apical turns of the cochlea of non-transgenic (A) and
R75W transgenic mice (B) at P12. Prestin labeling (red) is clearly
visible on the whole OHC basolateral wall in both the non-transgenic
(A) and R75W transgenic mice (B) at P12. The extracellular space
around the OHC in R75W transgenic mice is narrower than that in
non-transgenic mice. On the other hand, the nucleus stained with
DAPI (blue) and the cuticular plate of both mice are devoid of immu-
nostaining. Abbreviations used: OHC, outer hair cell; IHC, inner hair
cell. Scale bars are 10 um (A, B).

arising from the failure of development of the supporting
cells can be proposed. First, mature OHCs are supported
by underlying Deiter’s cells, flanked on the lateral edge by
a several rows of Hensen’s cells, and anchored by the
reticular lamina at their apical surface. The three-dimen-
sional structure of the OHCs enable the longitudinal
changes driven by transmembrane potential changes. In
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the transgenic mouse, the OHCs were compressed by the
surrounding Deiter’s cells, thus restricting motility. Second,
vibration of the basilar membrane may be related to its
thickness, which would contribute to the sensitivity and the
production of the otoacoustic emissions (Kossl and Vater,
1985) and further to the tonotopic changes of the devel-
oping gerbil cochlea (Schweitzer et al., 1996). The thick-
ened basilar membrane observed in the transgenic mice
might suppress the DPOAE by reducing the basilar mem-
brane vibration. Structural changes in the basilar mem-
brane may also reduce the sound-induced vibration of the
cochlear partition, thus inhibiting deflection of stereocilia
on inner hair cells. This could explain why Gjb2 R75W
transgenic mice show remarkable elevation of the auditory
brainstem response threshold (Inoshita et al., 2008). Third,
morphometric analysis of the organ of Corti suggest pos-
sible changes in ionic composition of the cortilymph sur-
rounding the basolateral surface of the OHCs (Inoshita et
al., 2008). Increased K™ ions in the cortilymph would de-
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Fig. 5. Electrical responses of isolated OHC. C,, is expressed as a
function of V,, at P14 in the R75W transgenic mouse (A). Fitted
parameters are Q,,,,=0.704 pC, z=0.89. C,, peak is expressed as a
function of postnatal day (B). The number of cells in non-transgenic
(closed circle) and R75W transgenic mice (open circle) was (from P9
to P24) 1-2, 0-3, 2-3, 5-2, 3-3, and 1-1, respectively. Standard error
is plotted. Non-Tg: non-transgenic mice, R75W+: R75W transgenic
mice.
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polarize the OHCs, and decreased driving force across the
mechanosensitive channels could affect OHC electromo-
tility. The progressive degeneration of OHCs observed
in the adult R75W transgenic mice (Kudo et al., 2003)
may be brought about by disturbed homeostasis of the
cortilymph.

The secondary hair cell loss in adult R75W transgenic
mice (Kudo et al., 2003; Inoshita et al., 2008) implies that
the restoration of hearing requires the regeneration of hair
cells in addition to introduction of the Gjb2 gene. The
present study clearly showed both morphological and func-
tional maturation of OHC until late in development, sug-
gesting that a dominant-negative R75W mutation of Gjb2
does not affect the genes that determine or control the
differentiation of the OHC. Therefore, gene transfer of Gjb2
into the supporting cells before hair cell degeneration could
be used to treat deafness. Transgene expression has been
accomplished in the supporting cells of the neonatal
mouse cochlea using adeno-associated viral vectors with-
out causing additional damage to the cochlea (lizuka et al.,
2008). Therefore, the present study provides a new strat-
egy to restore hearing in Gjb2-based mutation.

CONCLUSION

OHC from the dominant-negative R75W mutation of Gjb2
showed normal development and maturation, and isolated
OHC clearly showed voltage-dependent, nonlinear capac-
itance with characteristic subcellular features. However,
the DPOAE, which serves as an index for in vivo cochlear
amplification, was remarkably suppressed in the mutant
mice. This may result from disturbed development of the
supporting cells surrounding the OHCs. The present
study confirmed that the normal development of the
supporting cells is indispensable for the cellular function
of the OHC.
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Cell therapy targeting cochlear fibrocytes

Kazusaku Kamiya

Juntendo University School of Medicine, Department of Otoralyngology

Recently, a number of clinical studies for cell therapy have been reported and clinically used for several

intractable diseases. Inner ear cell therapy for sensorineural hearing loss also has been studied using some

laboratory animals, although the successful reports for the hearing recovery were still few.

Cochlear fibrocytes play important roles in normal hearing as well as in several types of sensorineural

hearing loss due to inner ear homeostasis disorders. Recently, we developed a novel rat model of acute sen-

sorineural hearing loss due to fibrocyte dysfunction induced by a mitochondrial toxin®

2 1In this model, we

demonstrate active regeneration of the cochlear fibrocytes after severe focal apoptosis without any changes in

the organ of Corti. To rescue the residual hearing loss, we transplanted mesenchymal stem cells into the lat-

eral semicircular canal; a number of these stem cells were then detected in the injured area in the lateral

wall. Rats with transplanted mesenchymal stem cells in the lateral wall demonstrated a significantly higher

hearing recovery ratio than controls. The mesenchymal stem cells in the lateral wall also showed connexin

. . .« . . . . . 3 p—
26 and connexin 30 immunostaining reminiscent of gap junctions between neighboring cells ) These results

indicate that reorganization of the cochlear fibrocytes leads to hearing recovery after acute sensorineural

hearing loss in this model and suggest that mesenchymal stem cell transplantation into the inner ear may be

a promising therapy for patients with sensorineural hearing loss due to degeneration of cochlear fibrocytes.

Key words : cochlear fibrocyte, inner ear cell therapy, mesenchymal stem cell
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Mammalian cochlear fibrocytes of the mesenchymal
nonsensory regions play important roles in the
cochlear physiology of hearing, including the transport
of potassium ions to generate an endocochlear poten-
tial in the endolymph that is essential for the transduc-

, 6)

tion of sound by hair cells®*® It has been postulated
that a potassium recycling pathway toward the stria
vascularis via fibrocytes in the cochlear lateral wall is
critical for proper hearing, although the exact mecha-

nism has not been definitively proven®.

One candidate
model for this lon transport system consists of an

extracellular flow of potassium ions through the scala
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tympani and scala vestibuli and a transcellular flow
through the organ of Corti, supporting cells, and cells

7% The fibrocytes within the

of the lateral wall
cochlear lateral wall are divided into type I to V
based on their structural features, immunostaining pat-
terns, and general location®. Type II, type IV, and
type V fibrocytes resorb potassium ions from the sur-
rounding perilymph and from outer sulcus cells via the
Na, K-ATPase. The potassium ions are then transport-
ed to type I fibrocytes, strial basal cells and intermedi-
ate cells through gap junctions, and are secreted into

the intrastrial space through potassium channels. The
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secreted potassium ions are incorporated into marginal
cells by the Na, K-ATPase and the Na-K-Cl cotrans-
porter, and are finally secreted into the endolymph
through potassium channels.

Degeneration and alteration of the cochlear fibro-
cytes have been reported to cause hearing loss with-
out any other changes in the cochlea in the Pit-Oct-
Unc (POU)-domain transcription factor Brain-4 (Brn-4)
deficient mouse” and the otospiralin deficient mouse”,
Brn-4 is the gene responsible for human DFN3
(Deafness 3), an X chromosome-linked nonsyndromic
hearing loss. Mice deficient in Brn-4 exhibit reduced
endocochlear potential and hearing loss and show
severe ultrastructural alterations, including cellular
atrophy and a reduction in the number of mitochon-
€, 1()). In

the otospiralin deficient mouse, degeneration of type II

dria, exclusively in spiral ligament fibrocytes

and IV fibrocytes is the main pathological change and
hair cells and the stria vascularis appear normal®
Furthermore, in mouse and gerbil models of age-relat-
ed hearing loss'” ¥ degeneration of the cochlear
fibrocytes preceded the degeneration of other types of
cells within the cochlea, with notable pathological
changes seen especially in type II, IV, and V fibro-

cytes. In humans, mutations in the connexin 26 (Cx26)

Inner ear cell therapy
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and connexin 30 (Cx30) genes, which encode gap junc-
tion proteins and are expressed in cochlear fibrocytes
and non-sensory epithelial cells, are well known to be
responsible for hereditary sensorineural deafness'® ',
These instances of deafness related to genetic, struc-
tural and functional alterations in the cochlear fibro-
cytes highlight the functional importance of these

fibrocytes in maintaining normal hearing.

Generation of the animal model to study cochlear
fibrocyte
To study the role of cochlear fibrocytes in hearing
loss and hearing recovery, we developed an animal
model of acute sensorineural hearing loss due to acute
cochlear energy failure by administering the mitochon-
drial toxin 3-nitropropionic acid (3NP) into the rat

-2 3NP is an irreversible

round window niche
inhibitor of succinate dehydrogenase, a complex II
enzyme of the mitochondrial electron transport

chain'® 17,

Systemic administration of 3NP has been
used to produce selective striatal degeneration in the
B9 Our model with 3NP

administration into the rat cochlea showed acute sen-

brain of several mammals

sorineural hearing loss and revealed an initial patholog-

ical change in the fibrocytes of the lateral wall and spi-

Figure. 1

The localization and the function of cochlear fibrocytes.

In mammalian cochlea,

ATP-dependent potassium recycling pathways have been well known as the essential

mechanism for normal sound input.

Cochlear fibrocytes in lateral wall and spiral

limbus play a critical role in this potassium recycling system. They transport K+ into
the endolymph and keep high K+ concentration mainly by Na+/K+-ATPase and gap

junction.
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Figure. 2

A summary of the histological observations and our hypothesis
for the migration of the transplanted MSCs. Arrows indicate
the hypothetical route of MSC migration to the injured area.
Some MSCs formed a cell mass around the scala tympani. A
number of MSCs successfully invaded the lateral wall. The
invading MSCs migrated and proliferated in the lateral wall.
Cell migration may be induced by some chemokines such as
MCPI1 which was detedctd in our DNA microarray analysis. The
MSCs which reached the injured area continued to proliferate
and repaired the disconnected gap junction network. SV, scala
vestibuli; CD, cochlear duct; ST, scala tympani. The schematic
illustration was cited and modified from Am J Pathol, 171: 214-
226, 2007 Kamiya, et al.

ral limbus without any significant damage to the organ
of Corti or spiral ganglion. Furthermore, depending on
the dose of 3NP used, these hearing loss model rats
exhibited either a permanent threshold shift (PTS) or a
temporary threshold shift (TTS). In the following
study, we used doses of 3NP that induce TTS to
explore the mechanism of hearing recovery after
injury to the cochlear fibrocytes, and examined a novel
therapeutic approach to repair the injured area using
mesenchymal stem cell (MSC) transplantation.

Mesenchymal Stem Cell (MSC) Transplantation

MSCs are multipotent cells that can be isolated from
adult bone marrow and can be induced to differentiate
into a variety of tissues in vitro and in vivo®. Human
MSCs transplanted into fetal sheep intraperitoneally
undergo site-specific differentiation into chondrocytes,
adipocytes, myocytes, cardiomyocytes, bone marrow

stromal cells, and thymic stroma®’. Furthermore,
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when MSCs were transplanted into postnatal animals,
they could engraft and differentiate into several tissue-
specific cell types in response to environmental cues
provided by different organs®. These transplantabili-
ty features of MSCs suggested the possibility that they
could restore hearing loss in 3NP-treated rats to the
normal range. Recently, experimental bone marrow
transplantation into irradiated mice suggested that a
part of spiral ligament which consists of cochlear fibro-
cytes was derived from bone marrow cells or
hematopoietic stem cells?®. This indicates that bone
marrow derived stem cells such as MSC may have a
capacity to repair the injury of cochlear fibrocytes.

MSC transplantation accelerated hearing recover

The 3NP-treated rats showed complete hearing
recovery at low frequencies; however, there remained
a residual hearing loss at higher frequencies.
Considering that the cochlear fibrocytes that were
injured in this model are mesenchymal in origin, we
transplanted rat MSCs into the cochlea to attempt to
rescue the residual hearing loss. We used MSC which
we previously established and demonstrated their
potential as MSC, and we further confirmed the sur-
face antigen expression of the cells used for transplan-
tation in flow cytometry which showed similar expres-
sion pattern to human and murine MSCs. This sug-
gests that the cells maintained the capacity as rat
MSC at the moment of transplantation. Because there
is no barrier in the inner ear perilymph between the
cochlear and vestibular compartments, cells delivered
from the lateral semicircular canal by perilymphatic
perfusion are considered to have reached the cochlea.
Within the perilymph of the cochlea, these cells pre-
sumably spread through the scala vestibuli toward the
apical turn of the cochlea, and then, after passing
through the helicotrema where the scala vestibuli com-
municates with the scala tympani, kept moving
through the scala tympani toward the basal turn.
There is no other way in which MSCs can spread

within the cochlear perilymph.

Invasion of MSC to lateral wall tissue
Our study clearly demonstrates that rat MSCs were



