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Importance of Neonatal FcR in Regulating the Serum
Half-Life of Therapeutic Proteins Containing the Fc Domain
of Human IgG1: A Comparative Study of the Affinity of
Monoclonal Antibodies and Fc-Fusion Proteins to Human
Neonatal FcR

Takuo Suzuki,* Akiko Ishii-Watabe,* Minoru Tada,* Tetsu Kobayashi,*
Toshie Kanayasu-Toyoda,* Toru Kawanishi,” and Teruhide Yamaguchi*

The neonatal FcR (FcRn) binds to the Fc domain of IgG at acidic pH in the endosome and protects IgG from degradation, thereby
contributing to the long serum half-life of IgG. To date, more than 20 mAb products and 5 Fe-fusion protein products have
received marketing authorization approval in the United States, the European Union, or Japan. Many of these therapeutic
proteins have the Fc domain of human IgG1; however, the serum half-lives differ in each protein. To elucidate the role of FcRn
in the pharmacokinetics of Fc domain-containing therapeutic proteins, we evaluated the affinity of the clinically used human,
humanized, chimeric, or mouse mAbs and Fe-fusion proteins to recombinant human FcRn by surface plasmon resonance analysis.
The affinities of these therapeutic proteins to FcRn were found to be closely correlated with the serum half-lives reported from
clinical studies, suggesting the important role of FcRn in regulating their serum half-lives. The relatively short serum half-life of
Fe-fusion proteins was thought to arise from the low affinity to FcRn. The existence of some mAbs having high affinity to FcRn
and a short serum half-life, however, suggested the involvement of other critical factor(s) in determining the serum half-life of such
Abs. We further investigated the reason for the relatively low affinity of Fe-fusion proteins to FcRn and suggested the possibility
that the receptor domain of Fc-fusion protein influences the structural environment of the FcRn binding region but not of the

FeyRI binding region of the Fc domain. The Journal of Immunology, 2010, 184: 1968-1976.

d (1). This prolonged half-life of IgG can be explained by the

interaction with neonatal FcR (FcRn). FcRn is a heterodimer
of the MHC class I-like H chain and the B,-microglobulin (8,m) L
chain (2). Although this receptor was originally studied as
a transporter of IgG from mother to fetus, subsequent studies have
shown that this receptor also plays a critical role in regulating IgG
homeostasis (3, 4). FcRn binds to the Fc domain of 1gG at pH 6.0-
6.5 but not, or weakly, at pH 7.0-7.5 (5). Therefore, FcRa protects
IgG from degradation by binding to IgG in endosome and releases
IgG into plasma (6). As indicated by previous studies in which
amino acid substitutions in the Fc domain of IgG for modifying
the affinity to FcRn can alter the serum half-life of the IgG, the
affinity to FcRn is thought to play a critical role in determining the
serum half-life of IgG (7-12).

I n healthy humans, IgG1 exhibits a long serum half-life of ~21
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Recently, therapeutic use of mAb products has become more
important for various diseases, including cancer as well as auto-
immune and infectious diseases (6, 13, 14). In addition to the
mAbs, the Fc-fusion proteins (e.g., etanercept, alefacept, and
abatacept) have been developed and have received considerable
attention. These Fc-fusion proteins consist of an extracellular
domain of membrane receptor linked to the Fc portion of human
IgG1. They work like Abs by binding to ligands for the receptors.
The receptor portions of etanercept and alefacept are, respectively,
the extracellular ligand-binding portion of the human 75-kDa
TNFR and the extracellular CD2-binding portion of the human
leukocyte function Ag 3. Abatacept consists of the extracellular
domain of human CTLA-4 linked to the modified Fc portion of
human IgGl.

Most of the mAb products and Fc-fusion protein products have

the Fc domain of human IgG1 (6, 14). Accumulating evidence

regarding their clinical use has revealed that their serum half-lives
are variable, ranging from 4 to 23 d, regardless of the presence of
the Fc domain of human IgG1 (6). Although many factors such as
m.w., posttranslational modifications including glycosylation,
electrical properties, interactions with FcRs or target molecules,
and features of the target molecules may influence their serum
half-life, the reasons for the variability of half-life have not been
elucidated. Among such factors, FcRn might play a critical role in
regulating half-life; however, comparative studies between the
affinities of these therapeutic proteins to FcRn and their half-lives
in humans have not been reported. Therefore, although some Fc
domain-containing therapeutic proteins exhibit shorter half-lives
in humans, it remains unclear whether the shorter half-lives are
due to the lower affinity to FcRn or other factors.
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In this study, we examined the affinity of clinically used mAbs
and Fc-fusion proteins to recombinant human FcRn by surface
plasmon resonance (SPR) analysis. The analytes used were human
Ab (adalimumab), humanized Abs (daclizumab, omalizumab,
palivizumab, and trastuzumab), chimeric Abs (infliximab and
rituximab), mouse Ab (muromonab-CD3), and Fc-fusion proteins
(etanercept, alefacept, and abatacept). We found that the affinities
of the therapeutic proteins tested to FcRn were closely correlated
with their serum haif-lives, with a few exceptions. Because Fc-
fusion proteins, which have relatively short half-lives (4-13 d),
were shown to have lower affinity to FcRn than mAbs, we further
investigated the reason for this difference by examining the af-
finity of the proteins to FcyRI or the affinity of papain-digested
proteins to FcRn in SPR analyses. Our results suggested the
possibility that the receptor portions of Fc-fusion proteins make
a difference in the higher-order structure of the FcRn-binding
region of Fc (i.e., CH2-CH3 interface) or interfere with binding
between the Fc domain and FcRn by steric hindrance.

Materials and Methods

Therapeutic proteins and reagents

Abatacept (Bristol-Myers Squibb, Princeton, NJ), adalimumab (Abbott,
Baar, Switzerland), alefacept (Biogen Idec, Cambridge, MA), daclizumab
(Hoffmann-La Roshe, Nutley, NJ), etanercept (Takeda Pharmaceutical, Osaka,
Japan), infliximab (Tanabe Phamaceutical, Osaka, Japan), muromonab-CD-3
(Jansen Pharmaceutical, Tokyo, Japan), omalizumab (Novartis Pharma
Schweiz, Bern, Switzerland), palivizumab (Abbott Japan, Osaka, Japan),
rituximab (Zenyaku Kogyo, Tokyo, Japan), and trastuzumab (Chugai
Pharmaceutical, Tokyo, Japan) were purchased via reagent distributors.
Recombinant human TNF-a was purchased from Wako (Osaka, Japan).

Purification of human FcRn

Stably transfected CHO cells expressing both the soluble portion of the
hFcRn H chain (residues 1-267 of mature protein) and B.m were provided
by P. J. Bjorkman (California Institute of Technology, Pasadena, CA).
Expression and purification of hFcRn were performed according to the
method previously reported by West and Bjorkman (15), with slight
modifications. Briefly, the CHO cells expressing soluble hFcRn and B.m
were cultured in a-MEM containing 5% dialyzed FBS, 100 uM methio-
nine sulfoximine, and penicillin/streptomycin. Cell culture supemnatant was
collected every 2-3 d and was filtered with a 0.45-pum filter, and sodium
azide was then added to 0.05%. The harvested supernatant was acidified to
pH 5.8 and then applied to a human IgG column. After washing the col-
umn with 50 mM Bis-Tris (pH 5.8), hFcRn complexed with 8,m was
eluted with 40 mM Bis-Tris/20 mM Tris (pH 8.1). The eluted fractions
containing hFcRn were applied to a Uno-Q1 column, and hFcRn was
eluted with pH gradient using 40 mM Bis-Tris/20 mM Tris (pH 8.1) and 40
mM Bis-Tris/20 mM Tris (pH 5.8).

SDS-PAGE and Western blotting

Each fraction of protein eluted from the Uno-Qlcolumn was diluted in 1 X
SDS loading buffer and was separated in 15% polyacrylamide gel (Bio
craft, Tokyo, Japan). After the electrophoresis, the gels were stained with
Imperial protein stain (Pierce, Rockford, IL). For Western blotting, pro-
teins separated by SDS-PAGE were electroblotted onto polyvinylidene
difluoride membranes (Millipore, Billerica, MA). The membranes were
immunoreacted with rabbit anti-hFcRn H chain peptide (Leu'*-Gly'#%)
Ab produced by Medical and Biological Laboratories (Nagoya, Japan) and
then with HRP-conjugated secondary Abs (Cell Signaling Technology,
Danvers, MA). The bands of hFcRn were detected using ECL Plus Western
blotting detection reagents (Amersham Biosciences, Piscataway, NJ).

SPR analyses

Analysis of affinity between FcRn and Fc domain-containing therapeutic
proteins. The purified recombinant hFcRn was diluted with 10 mM sodium
acetate (pH 5.0 or 4.5) and was immobilized onto a CMS5 biosensor chip
(Biacore, Uppsala, Sweden) using an amine coupling kit (Biacore) at
relatively low densities (mainly 300-350 resonance units) to avoid mass
transport limitation. The reference cell was treated with N-hydrox-
ysuccinimide/1-ethyl-3-(3-dimethylaminopropyl) carbodiimide and etha-
nol amine using an amine coupling kit without injecting the FcRn. Fc
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domain-containing proteins were diluted with the running buffer (50 mM
sodium phosphate/150 mM NaCl [pH 6.0]) and injected at 25°C. The
running buffer was allowed to flow at a rate of 20 pl/min. The injections
were performed using the KINJECT mode (volume, 40 pl; dissociation
time, 150 s). For regeneration, the regeneration buffer (100 mM Tris/200
mM NaCl [pH 8.0]) was injected for 4 min. Kinetic constants were cal-
culated from the sensorgrams using the bivalent analyte model of BlAe-
valuation software 4.1.

To obtain the consistent results, we would indicate two points. First, it is
necessary to set the bulk refractive index to zero to avoid wrong fitting,
because the binding is rapidly reached to the near-equilibrium state. Second,
it is necessary to set the injection point correctly. For example, if the
sensorgrams of infliximab shown in Fig. 2 were analyzed with the injection
point shifted to 0.5 s earlier, the values of k,, k;, and Kp were 1.95E+05
M~ 's7!,0.136 57", and 697 nM, respectively. When the injection points of
the sensorgrams are unclear, it may be better to use the average values of
data resulting from two or more different injection points.

Analysis of affinity between FcyRI and Fc domain-containing therapeutic
proteins. Recombinant human FcyRl, which consists of human FcyRI
(GIn'®-Pro?*®%) and His-tag, was purchased from R&D Systems (Minne-
apolis, MN). Fc domain-containing proteins were immobilized to a CMS5
biosensor chip in 10 mM sodium acetate (pH 5.0) using an amine coupling
kit. Kinetic analyses of FcyRI binding were performed according to
Ellsworth et al. (16) with some modifications. The running buffer, HBS-EP
(10 mM HEPES, 150 mM NaCl, 3 mM EDTA, and 0.005% Surfactant P20
[pH 7.4]) (Biacore), was allowed to flow at 20 pl/min. The injections of
FcyRI were performed using the KINJECT mode (volume, 40 wl; disso-
ciation time, 150 s). To regenerate the immobilized proteins, the re-
generation buffer (10 mM glycine-HCI [pH 1.8]) was injected for 15 s.
Kinetic constants were derived from the sensorgrams using the 1:1 binding
model of BIAevaluation software 4.1.

Papain digestion

The papain (Wako) was activated in the buffer (50 mM sodium phosphate/
150 mM NaCl [pH 6.0}, 1 mM cysteine, 4 mM EDTA, and 1 mg/ml papain)
at 37°C for 15 min. Next, | mg/ml Ab or Fc-fusion protein was digested
with 0.1 mg/ml activated papain in 50 mM sodium phosphate (pH 6.0), 150
mM NaCl, 0.1 mM cysteine, and 4 mM EDTA at 37°C for 24 h.

Results

Purification of soluble human FcRn

FcRn binds to the Fc domain at acidic pH and then releases it at
neutral pH. Recombinant soluble hFcRn expressed from CHO cells
was purified using a human IgG column by binding at pH 5.8 and
releasing at pH 8.1. The fraction purified by the IgG column was
electrophoresed at lane 10 of SDS-PAGE gel (Fig. 1B). This
fraction was then purified using an anion-exchange column with
a pH gradient elution. The elution diagram is shown in Fig. 1A.
Three main peaks were observed. The proteins in these peaks were
electrophoresed (Fig. 1B) and subjected to Western blot analysis
using anti-hFcRn H chain peptide Ab (Fig. 1C). Several bands
were observed at ~32 kDa in these fractions, and these bands were
immunoreactive to anti-hFcRn H chain peptide Ab. These results
indicated that the purified FcRn had several isoforms, possibly
because of the difference in posttranslational modification, in-
cluding glycosylation or proteolysis. As shown in Fig. 1C, the
signals of the higher m.w. bands of hFcRn tend to be weak. There
is a possibility that the sugar chain at Asn'® of hFcRn interfered
with the reactivity of the hFcRn to the anti-hFcRn H chain peptide
Ab used. We analyzed the affinity of therapeutic mAbs and Fc
fusion proteins to FcRn by SPR using the peak I, II, or I fractions
eluted from the anion-exchange column. The Kp values were
higher when peak I was used as a ligand in SPR analyses than
when peaks II or [Tl were used (data not shown). Because the m.w.
of the proteins in peak I was smaller than that in peak II/TII and the
protein content of peak I varied depending on the lot of the cell
culture supernatant, peak I seemed to consist of immature FcRn.
The Kp values calculated from the experimental data using peaks
IT and IIT were comparable (data not shown). We, therefore, used
the main peak (i.e., peak III) in the following experiments.
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FIGURE 1. Purification and electrophoretic characterization of re-
combinant human FcRn. A, The elution diagram of the anion-exchange
chromatography used for the purification of recombinant human FcRn. B,
SDS-PAGE of the proteins in the fractions indicated in A. The protein
applied to the anion-exchange column was electrophoresed in lane 10. The
gel was stained with Imperial protein stain. C, Western blot analysis of
eluate from the anion-exchange column by anti-hFcRn H chain Ab.

SPR analyses of the affinity between FcRn and Fc
domain-containing proteins

Purified FcRn was immobilized onto a CMS5 biosensor chip at rel-
atively low densities as described in Materials and Methods. Five or
six concentrations of Fc domain-containing therapeutic proteins
were then injected. Because injection at higher concentrations
caused nonspecific binding to flow cells, we analyzed the affinity of
therapeutic proteins using sensorgrams obtained at the concen-
trations at which nonspecific binding was not observed. For ex-
ample, infliximab was injected at concentrations of 670, 335, 168,
84, and 42 nM. and we analyzed the affinity to FcRn with the bi-
valent analyte model (Fig. 2). The colored lines were observed
sensorgrams, and the black lines were fitting lines generated by the
BIAevaluation software. The Kp, value (= kq,/k,,) calculated from
these sensorgrams was 727 nM. The affinities of adalimumab and
etanercept to FcRn were 672 and 3612 nM, respectively (Fig. 2).
The affinities of the 11 kinds of Fc domain-containing proteins to
FcRn were measured (Fig. 3). Adalimumab, daclizumab, infliximab,
palivizumab, and rituximab were injected at concentrations of 42—
670 nM. The concentrations of abatacept, alefacept, and etanercept
used were 168-5360 nM, and those of muromonab-CD3, omalizu-
mab, and trastuzumab were 84—1340 nM. Under this condition, the
tested therapeutic proteins, except for muromonab-CD3, bound to
FcRn. The Kp values measured in our experiments and the serum
half-lives in humans reported in the literature are shown in Fig. 3A.

e Infliximab
= nflixima
= (70 nM
Z 250 =35 au
== 168 nM
= 200 —si nu
= 42 n)
= 150
g 100
50
0
0 50 100 150 200 250 300 350 400
Time (sec)
5 250f Adalimumab —670nM
Z 200 68
£
2 150
Z 100
-3
S0
0
0 50 100 150 200 250 300 350 400
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~ 160—
= 140} Etanercept 5360 nM
= -—D0680 nM
= 120 7340 nM
= 100 670 nt{
g 80 168 nM
2 60
40

9
>
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Time (sec)

Infliximab  Adalimumab Etanercept

k1 (1'Ms) 2.09E-05 2.41E+05 371E+04
ksl (1's) 0.152 0.162 0.134
k2 (1 RUs) 4.56E-05 3.98E-05 3.27E-0S
kg2 (1) 9.78E-03 8.80E-03 544E-03
Rmax (RL) 3.76E-02 3.47E+02 1.93E+02
Chi2 1.80E 01 1.74E+01 5.37E+00

K =k 1k 1 727 aM 672nM 3612 nM

FIGURE 2. Representative sensorgrams of SPR analyses. Infliximab
(upper panel) or adalimumab (middle panel) was injected at concentrations
of 42-670 nM and etanercept (lower panel) at concentrations of 168-5360
nM. The colored lines are the observed sensorgrams, and the black lines
are fitting lines generated by the bivalent analyte model of BIAevaluation
software. The association of KINJECT was started at ~100 s, and the
dissociation of KINJECT was at ~220 s. The table describes the kinetic
values calculated from the sensorgrams of infliximab, adalimumab, and
etanercept.

The Kp values and the average values of the serum half-lives are
plotted in Fig. 3B. The Kp, values were closely correlated to the half-
lives (contribution ratio = 0.8675) when the results were analyzed
after excluding the data for infliximab, rituximab, and trastuzumab
(Fig. 3C). Concerning infliximab, rituximab, and trastuzumab,
which have relatively short half-lives and comparable affinity to
other long half-life Abs to FcRn, other critical factor(s) seemed to be
involved in regulating their half-lives (see Discussion). Although it
was impossible to plot the data for mouse mAb muromonab-CD3,
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2 Affi to Fe
Structure Nonpropeictery Binding target Affinityto cRa Half-life (days) cited from the literature
name S K (nM)
Human antibody Adalimumab INFa 672 147-19.3  Wesmanet al., 2003
Humanized anuibody  Daclizumab CD23 S46 20 Vincenti et al., 1998
Omalizumab It 1237 20 Casale etal.. 1997
Palivizumab RSV F protein 750 19-27 Subramanian ctal., 1998
Trastuzumab HER2 773 2.7-10 Tokuda et al., 1999
Chimenic antibody Infliximab T™Fa 727 95 Comilhe etal . 2001
Rituximab D20 S08 9.4 Maloney etal.. 1997
. Mouse antibody Muromonab-CD3 CD3 ND 0.78 Hooks etal., 1991
FIGURE 3. Kp values of binding between Fc
domain-containin therapeutic  proteins  and Fe-fusion protein Abatacept CDROGCDS6 2633 13.1 prescribing information
2 . ith thei half Alefacept D2 2506 1.3 prescribing information
hFcRn and the correlation with their serum half- Etanercept INFa 3612 4 Lee et al.. 2003
lives. A, The Kp, values obtained in our study and
the half-lives in humans cited from the literature.
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which exhibited no significant binding to human FcRn, the half-life
of this Ab in humans is the shortest (0.75 d) among the therapeutic
proteins examined in this study (21). These results also show the
importance of the binding affinity to FcRn in determining the serum
half-life. The correlation described above was also observed when
other fractions of hFcRn described in Fig. 1 (peaks I and II) were
used in SPR analyses (data not shown).

The affinity between FcyRI and Fc domain-containing proteins

Because the affinities of Fc fusion proteins (etanercept, alefacept,
and abatacept) to FcRn were lower than those of mAbs, the FcRn-
binding region (CH2-CH3 domain interface) of Fc-fusion proteins
seems to be structurally different from that of mAbs. We also
analyzed the affinity of these proteins to FcyRI to test whether the
structural environment around the FcyRI-binding region (hinge
proximal region of CH2) is different between Fc-fusion proteins
and Abs. Because the regeneration procedure in the SPR assay
inactivated FcyRI but not Fc domain-containing therapeutic pro-
teins, therapeutic proteins were immobilized to CMS5 biosensor
chips, and FcyRI was used as an analyte. The sensorgrams of Fc-
fusion proteins (abatacept, alefacept, and etanercept) and mAbs
(adalimumab and infliximab) are shown in Fig. 4A. The data were

analyzed with a 1:1 binding model. The K, values of the two Fc
fusion proteins (alefacept and etanercept) and Abs (adalimumab
and infliximab) were comparable (Fig. 4B). The Ky values ob-
tained in this study were similar to the data reported for IgG
[reviewed by van de Winkel and Anderson (26)]. In contrast,
abatacept had a lower affinity to FcyRI. In abatacept, a series of
selected mutations those can alter the binding affinity to FcyR
were introduced to reduce Fc-mediated cytotoxic effects (Fig. 5)
(28, 29). Therefore, the data in Fig. 4 show that the change in the
affinity of Fc domain to FcyR], which is caused by amino acid
substitutions, was detected in our experiments. These results
suggest that the region interacting with FcyRI (i.e., the hinge
proximal region of CH2) was not structurally different between Fc
fusion proteins, except for abatacept, and Abs examined.

The affinity between FcRn and Fc domains generated by
papain treatment

In Fig. 5, the amino acids sequences of abatacept, alefacept, eta-
nercept, adalimumab, infliximab, and omalizuamb are aligned.
The differences in the primary structure of the Fc regions were
Glu®7® and Met*™ of etanercept, which are attributed to the IgG1
allotype, and Ser'®?, Ser'®®, and Ser'”* of abatacept, which are due
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to the engineering for decreasing affinity to FcyR and improving
protein production (28). To test the possibility that this limited
structural difference or posttranscriptional modifications such as
glycosylation can give rise to the difference in binding affinity to
FcRn, we digested the Fc-fusion proteins or mAbs with papain
and analyzed the affinity of their Fc domains to FcRn. The elec-
trophoretic pattern of etanercept and adalimumab digested with
papain is shown in Fig. 6A. Both etanercept and adalimumab were
digested sufficiently for 24 h at 37°C under the conditions de-
scribed in Materials and Methods, whereas digestion was not
sufficient after incubating for 2 h. Therefore, the therapeutic
proteins digested with papain for 24 h were used for the SPR
analyses. The sensorgrams of etanercept (670 nM) and adalimu-
mab (670 nM) were much different without incubation with pa-
pain, but they became almost identical after papain digestion (Fig.
6B). We measured the affinities to FcRn of five therapeutic pro-
teins (etanercept, alefacept, adalimumab, infliximab, and omali-
zumab) digested with papain (Fig. 6C). Etanercept and alefacept
are Fc-fusion proteins with low affinity to FcRn, and omalizumab
is an Ab showing lower affinity to FcRn than other Abs. Because it
was possible that the proteins were cleaved, in part, into smaller
fragments than the Fc domain, the estimated Kp, values may have
been larger than the actual values. However, it was very clear that
the affinities of etanercept, alefacept, infliximab, and omalizumab
were increased by papain treatment (Fig. 6C).

The affinity of Fc-fusion protein and Abs became comparable
after papain digestion, showing that the differences in amino acid
sequences or posttranslational modification of the Fc domain did

not contribute to the difference in the binding affinity of these
proteins to FcRn. It therefore seems likely that the receptor domain
of the Fc-fusion protein makes a difference in the higher-order
structure of the FcRn-binding region of Fc (i.e., CH2-CH3 in-
terface) or interferes with the binding between Fc domain and FcRn
by steric hindrance. Moreover, such a difference or interference
seems to be involved in determining the affinity to FcRn for some
kinds of Abs, because the Kp, values of infliximab and omalizumab
were also increased significantly by papain treatment.

The affinity between FcRn and therapeutic proteins binding
with target molecules

On the basis of the results suggesting the possibility that another
region besides the Fc domain influences the affinity of Fc domain-
containing proteins to FcRn, we assumed that binding with the
target molecule would also change the affinity to FcRn. Because
adalimumab, infliximab, and etanercept bind to the same target
molecule, TNF-a, we analyzed the effects of binding with TNF-a
on the affinity of these therapeutic proteins to FcRn. First, 0-2680
nM TNF-a was added to 335 nM infliximab and incubated for at
least 1 h. The resulting mixture was then injected into the flow
cell, and the affinities to FcRn were analyzed. By adding TNF-a,
the shape of the sensorgram was drastically altered (Fig. 7A). The
Abs (adalimumab and infliximab) can maximally bind to two
TNF-a trimers, whereas etanercept binds to one TNF-a trimer.
When the relative concentrations of TNF-a are low, three mole-
cules of the Ab can bind to each TNF-« trimer, and cross-linked
TNF/Ab complexes are formed (30). To evaluate the affinity
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between FcRn and TNF-a-binding proteins, excess TNF-a was
added to adalimumab, infliximab, and etanercept (8-fold molar
excess to 42670 nM Abs and 4-fold to 168-2680 nM etanercept)
to avoid forming nonuniform complexes. The sensorgrams were
fitted by the bivalent analyte model (Fig. 7B). Although the fitted
lines did not completely match the observed sensorgrams, the Kp
values of infliximab, adalimumab, and etanercept to FcRn were
calculated to be 2057, 1321, and 4286 nM, respectively (Fig. 7C).
The affinity of infliximab—~TNF-a complex or adalimumab-TNF-a
complex was lower than that of infliximab or adalimumab, re-
spectively (Fig. 7C). These results suggest that at least for these
anti-TNF-a Abs, binding with target molecules decreases the
affinity to FcRn. They may also suggest that the anti-TNF-a Abs
complexed with TNF-a will be degraded more rapidly than anti—
TNF-a Abs free from TNF-a in vivo.

Discussion

To our knowledge, this is the first article to elucidate the affinities of
clinically used Fc domain-containing therapeutic proteinsto FcRnin
a comparative study. Because the affinities of these therapeutic
proteins to FcRn were found to be highly correlated with the serum
half-lives in humans, with the exception of infliximab, rituximab, and
trastuzumab, the importance of FcRn in regulating the serum half-life
of Fcdomain-containing therapeutic proteins was suggested. Thekey
observation was that the Fc-fusion proteins showed lower affinity to
FcRn than Abs. These data provided us with one of the answers to the
question of why the Fc-fusion proteins containing the Fc domain of
human IgG1 exhibit a shorter half-life than human IgG1.

In the current study, we used the bivalent analyte model of
BlAevaluation software. Most studies analyzing Fc-FcRn inter-
actions have used the bivalent analyte model (15, 31) or the het-
erogeneous ligand model (7, 15, 31). Although the sensorgrams in
our experiments were able to be fitted by both models, they were
better fitted by the bivalent analyte model. Considering that two
molecules of hFcRn bind to each IgG, resulting in a 2:1 binding

stoichiometry (15), the bivalent analyte model seems to be suit-
able. It has been reported that the dual bivalent analyte model
better fits the data of the FcRn-Fc interaction (32), although there
are cases in which the bivalent analyte model does not work well.
In the article about the dual bivalent analyte model, it was spec-
ulated that high-affinity and low-affinity types of FcRn existed on
the surface of the BIAcore chip and that the low-affinity type
receptor was probably an experimental artifact (32). Possibly
because the content of the low-affinity type of FcRn on the chip is
comparatively low in our immobilizing condition, the sensorgrams
in our experiments might have been well-fitted by the bivalent
analyte model.

Among the therapeutic proteins tested in this study, the Fc fusion
proteins showed relatively lower affinities to FcRn (Figs. 2, 3),
although the affinities to FcyRI are comparable to those of Abs
(Fig. 4). Although the Fc domain binds to FcRn via the CH2-CH3
domain interface (33), the primary structures of the Fc domains of
tested therapeutic proteins were almost the same, and cleavage of
the Fc domains from Fab or the receptor region gave similar Kp
values to FcRn (Fig. 6). These results suggest that the receptor
regions of Fc-fusion protein alter the conformation of the FcRn-
binding region (CH2-CH3 domain interface), not of the FcyRI-
binding region (hinge proximal region of CH2 domain), or cause
steric hindrance on the CH2-CH3 domain interface. The influence
of regions besides the Fc domain on FcRn-binding regions would
also be the case for Abs, as shown in Fig. 7.

Our results presented in this study can provide valuable in-
formation regarding the molecular design of novel Fc domain-
containing therapeutic proteins and demonstrate the usefulness
of FcRn-binding analysis in the characterization of Fc domain-
containing therapeutic proteins. In addition to the Fc fusion pro-
teins used in this study, rilonacept, a Fc-fusion protein consisting of
ligand-binding domains of the extracellular portions of the human
IL-1 receptor component (IL-1RI) and IL-1 receptor accessory
protein linked to the Fc portion of human IgG1, and romiplostim,
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FIGURE 6. Effects of papain digestion on the affinities of Fc domain-
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comparison between the sensorgrams of etanercept and adalimumab with
or without papain digestion. C, Comparison of the affinity to FcRn among
etanercept, alefacept, adalimumab, infliximab, and omalizumab, which
were digested or not digested with papain. The Ky, values were calculated
from the sensorgrams at the range of concentrations described as follows.
The concentrations of papain-digested etanercept, papain-digested alefa-
cept, adalimumab, papain-digested adalimumab, infliximab, papain-
digested infliximab, and papain-digested omalizumab were 42-670 nM;
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FIGURE 7. Effects of binding with the target molecules on the affinities of
Fc domain-containing therapeutic proteins to FcRn. A, The sensorgrams of
infliximab (335 nM) preincubated with TNF-a (0-2680 nM). B, The sensor-
grams of infliximab (upper panel), adalimumab (middle panel), and etanercept
(lower panel) preincubated with TNF-a (8-fold molar excess to 42-670 nM
Abs and 4-fold to 1682680 nM etanercept). The sensorgrams were fitted by
the bivalent analyte model. C, The Ky, values calculated from the sensorgrams
shown in B. The values of infliximab, adalimumab, and etanercept derived
from the same series of experiments are also shown as controls.

a Fc-peptide fusion protein consisting of human IgG1 Fc domain
linked at the C terminus to a peptide containing two thrombopoietin
receptor-binding domains, were approved recently (34, 35). The

those of etanercept and alefacept were 168-5360 nM, and those of oma-
lizumab were 42-1340 nM. Each bar shows the average Ky, value + SD,
which was calculated from three independent experiments. *#p < 0.01.
NS, no significant difference according to Student 7 test.
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development of Fc-fusion proteins will receive further attention.
Although the Fc domains are used with the intent of prolonging
the half-lives of receptor proteins, the half-lives tend not to be
fully prolonged to the level of IgGl. It remains unclear whether
the receptor regions of Fc-fusion proteins alter the conformation
of the CH2-CH3 domain interface or the regions cause steric
hindrance on the binding site of FcRn; however, the molecular
design of Fc-fusion proteins having a higher affinity to FcRn
might be possible in either case.

Reflecting the increasing interest in the development of mAbs and
related products, the newly revised guideline for such products was
adopted by the European Medicines Agency in 2008 (www.emea.
europa.ew/pdfs/human/bwp/15765307enfin.pdf). In the guidelines,
it is mentioned that FcRn-binding activity should be provided, as
appropriate, in product characterization. Because regions other than
the Fc domain might affect the affinity of the protein to FcRn (Figs.
6, 7), the affinity to FcRn should be evaluated as an important
quality attribute related to the pharmacokinetic profile, even if the
protein has a native Fc domain of IgG1, especially in cases of Fc-
fusion proteins. Meanwhile, because it was demonstrated that ox-
idation of two labile methionines, Met>*? and Met*?®, in human
1gGl attenuates binding of the Ab to FcRn (36), alteration of the
affinity to FeRn during the production process or storage will reflect
structural changes of the protein, including Met oxidation, that will
Jead to shortening the serum half-life. In addition to IgG, albumin is
also known to bind to FcRn in a pH-dependent manner and is
protected from degradation (37, 38). The albumin-fusion proteins
(e.g., albumin-IFN) or drugs having an albumin-binding moiety are
being developed. FcRn-binding characteristics would also be im-
portant as a quality attribute of such products, which is related to the
pharmacokinetic profile.

As mentioned above, the existence of several Abs having a short
half-life and high affinity to FcRn suggested the involvement of
other critical factor(s) in regulating the serum half-life of Abs such
as trastuzumab, rituximab, or infliximab. Trastuzumab is a hu-
manized Ab directed against human epidermal growth factor re-
ceptor 2 (HER?2), which is expressed in some types of breast cancer
cells. It has been reported that trastuzumab is taken up by HER2-
expressing cells via HER2-mediated endocytosis (39, 40). Ritux-
imab, a chimeric Ab directed against CD20, is also internalized in
an Ag-mediated manner (41). Because the ligand-dependent in-
ternalization is followed by degradation of Abs, this property
seems to be an important reason for the short half-life of trastu-
zumab and rituximab. It has been reported that, in general, the
half-life of monoclonal IgG Abs increases depending on the de-
gree of humanization in the order of murine < chimeric < hu-
manized < human (6, 41, 42). Because infliximab and rituximab
are chimeric Abs, the involvement of common factors influencing
the half-life of chimeric Abs such as the presence of human anti-
chimeric Ab would be another reason for the shorter half-life.

As shown in Fig. 7, the affinities of infliximab~TNF-a complex
and adalimumab~TNF-a complex seemed to be lower than those
of infliximab and adalimumab. If the affinity of therapeutic pro-
teins/target molecules complexes to FcRn is lower than that of the
free therapeutic proteins, the complexes will be degraded faster.
Therefore, the half-lives of such therapeutic proteins seem to be
shortened in the case that the target molecules are abundant in the
bodies of patients. In contrast, if the affinity to FcRn of therapeutic
proteins/target molecule complexes is higher than that of the free
drugs, the complexes of drug and target molecules will have
longer half-lives than free drugs. Because there are many factors
affecting the elimination of Abs [reviewed by Tabrizi et al. (41)],
further studies are necessary to elucidate the critical factors im-
pacting the half-lives of Fc domain-containing proteins, in addi-

1975

tion to the affinity to FcRn. Binding characteristics of the Fc
domain-containing proteins or their complex with target mole-
cules to FcyRs would be one of the important issues to be ex-
amined in regard to the impact on their elimination.

In conclusion, we showed the importance of the affinity to FcRnin
determining the serum half-life of Fc domain-containing therapeutic
proteins. Further investigation regarding the molecular structures that
regulate the affinity of the engineered protein to FcRn will accelerate
the development of therapeutic proteins with a desired half-life.
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