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The 3-phosphoinositide-dependent kinase-1 (PDK1) plays an impor-
tant role in the regulation of cellular responses in multiple organs by
mediating the phosphoinositide 3-kinase (PI3-K) signaling pathway
through activating AGC kinases. Here we defined the role of PDK1 in
controlling cardiac homeostasis. Cardiac expression of PDK1 was
significantly decreased in murine models of heart failure. Tamoxifen-
inducible and heart-specific disruption of Pdk? in adult mice caused
severe and lethal heart failure, which was associated with apoptotic
death of cardiomyocytes and pi-adrenergic receptor (AR) down-
regulation. Overexpression of Bcl-2 protein prevented cardiomyocyte
apoptosis and improved cardiac function. In addition, PDK1-deficient
hearts showed enhanced activity of PI3-Kv, leading to robust g4-AR
internalization by forming complex with B-AR kinase 1 (BARK1).
Interference of BARK1/PI3-Ky complex formation by transgenic over-
expression of phosphoinositide kinase domain normalized Bi-AR
trafficking and improved cardiac function. Taken together, these
results suggest that PDK1 plays a critical role in cardiac homeostasis
in vivo by serving as a dual effector for cell survival and g-adrenergic
response.

AGC kinase | apoptosis | heart failure | receptor internalization

eart failure, a major cause of morbidity and mortality world-

wide, is a clinical syndrome in which the heart is incapable of
pumping blood at a rate commensurate with systemic demands (1).
Injurious stresses from extrinsic or intrinsic origins trigger the
complex intracellular signaling pathways in cardiomyocytes and
thereby activate the compensatory mechanisms involving alter-
ations in survival and growth signals, calcium handling, and energy
production (2). Simultaneously, the sympathetic nervous, renin-
angiotensin-aldosterone, and cytokine systems are activated to cope
with a decline in cardiac performance. Although these compensa-
tory systems initially maintain cardiac function within a physiolog-
ical range, prolonged activation of these systems paradoxically leads
to cardiac damage and worsens clinical prognosis (2). Therefore, for
the elucidation of the pathophysiology of heart failure, it is very
important to dissect the inherent complexity of intracellular sig-
naling pathways that coordinate the cellular homeostasis and
neurohumoral responses in cardiomyocytes.

The 3-phosphoinositide-dependent protein kinase-1 (PDK1) is a
member of the AGC serine/threonine kinase family that functions
downstream of phosphoinositide 3-kinase (PI3-K) and activates
several AGC Kkinases, including Akt, p70 ribosomal S6 kinase
(p70S6K), and serum- and glucocorticoid-induced protein kinase 1
(SGK1), by phosphorylating these enzymes at their activation loops
(3). The physiological functions of PDK1 have been investigated by
targeted disruption of Pdkl gene. Mouse embryos systemically
deficient for Pdkl were lethal during early embryogenesis, display-
ing multiple abnormalities that included lack of somites, forebrain,
and neural crest-derived tissues (4). Alessi et al. (5) recently
generated striated muscle-specific PDK1 conditional knockout
mice (PDK1-MCKCre) by crossing mice harboring a “floxed” PdkI
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allele with transgenic mice expressing Cre recombinase under the
control of the muscle creatine kinase (MCK) promotor. PDK1-
MCKCre mice died of heart failure by 11 weeks of age. Interest-
ingly, PDK1-MCKCre mice showed attenuation of cardimyocyte
cell growth and impairment of left ventricular (LV) contraction. It
was reported that cardiomyocytes deficient for Pdk] were sensitive
to hypoxia (5), and that ischemic preconditioning failed to protect
Pdk1-hypomorphic mutant mice against myocardial infarction (MI)
(6). However, the mechanisms of how PDK1 deficiency induces
these cardiac abnormalities remain to be resolved.

In this study, we found that the expression levels of PDK1 protein
were significantly decreased in the failing hearts of murine models.
We generated tamoxifen-inducible and heart-specific PDK1 con-
ditional knockout mice (PDK1-MerCre) to elucidate the relevance
of PDKI1 to the pathogenesis of heart failure. We disrupted the
Pdkl gene in the adulthood and demonstrated that PDK1 plays a
role in the regulation of normal cardiac function by preventing
cardiomyocyte apoptosis and by preserving responsiveness to -
adrenergic stimulation.

Results

Generation of Tamoxifen-Inducible and Heart-Specific PDK1 Knockout
Mice. We examined alterations in the expression levels of PDK1 in
failing hearts. Heart failure was induced in mice by producing
myocardial infarction or administering doxorubicin i.p. Two weeks
after operation of myocardial infarction or doxorubicin injection,
expression levels of PDK1 were significantly decreased in the failing
hearts, compared with control hearts (Fig. S1).

To assess the pathophysiological significance of PDK1 down-
regulation, we created a model of temporally regulated inactivation
of Pdk1 specifically in the adult hearts. We crossed PdkIo¥flox mice
(7, 8) with transgenic mice expressing tamoxifen-inducible Cre
recombinase protein fused to two mutant estrogen-receptor ligand-
binding domains (MerCreMer) under the control of the a-myosin
heavy chain promoter (9). In the resulting PdkI"¥"X/MerCreMer*
mice (PDK1-MerCre) at the age of 10 weeks, we administered
tamoxifen successively for 5 days and confirmed by immunoblot
analysis that functional PDK1 expression was almost undetectable
specifically in the hearts on day 7 after the initiation of tamoxifen
treatment (Fig. S2A4).

Next, we examined whether the activation of kinases downstream
of PDKI1 were suppressed in the hearts of PDK1-MerCre. In
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Fig.1. Severe heartfailure observed in PDK1-MerCre mice. (A) Kaplan-Meier survival curves of PDK1-MerCre mice (n = 10) and control mice (n = 10). Mice were
injected with tamoxifen at the age of 10-11 weeks. (B) Macroscopic findings and 4-chamber sections of the hearts from PDK1-MerCre and control mice 1 and
4weeks after theinitiation of tamoxifen treatment. Ao, aorta; LA, leftatrium; LV, leftventricule; RA, right atrium; RV, right ventricule. (C) Representative M-mode
echocardiograms of mice 1 week after tamoxifentreatment. (D) Echocardiographic measurements of PDK 1-MerCre and control mice 1 week aftertamoxifentreatment.
HR, heartrate; LVDd, LV dimension in diastole; LVDs, LV dimension in systole; FS, fractional shortening; IVSth, interventricular septum thickness; LVPWth, LV posterior
wall thickness. Values represent the mean + SEM of data from 10 mice in each group. #, P < 0.01 versus control group. (£) Echocardiographic measurements of
PDK1-MerCre and control mice 4 weeks after tamoxifen treatment. Values represent the mean = SEM of data from 6 mice in each group. #, P < 0.01 versus control
group. (F) Histological sections with hematoxylin and eosin (HE) staining and Masson’s trichrome (Masson) staining of PDK1-MerCre and control mice 1 and 4 weeks
after tamoxifen treatment. (G) Surface areas of isolated cardiomyocytes (57 individual cardiomyocytes in each group) and sample pictures of isolated cardiomyocytes
from PDK1-MerCre and control mice 1 week after tamoxifen treatment. Values represent the mean =+ SEM.

guishable in appearance from control littermates. Strikingly, all
PDK1-MerCre mice died from 5 to 15 weeks after the initiation
of tamoxifen treatment (Fig. 14).

One week after tamoxifen treatment, cardiac sizes were not
significantly different between PDK1-MerCre mice and control
mice (Fig. 1B). Echocardiographic examination revealed a signifi-
cant decrease in the percent of fractional shortening (%FS), a
parameter for contractile function, as early as 1 week after tamox-
ifen treatment in PDK1-MerCre mice (Fig. 1 C and D). During this

mammalian cells, Akt is fully activated through PDK1-dependent
phosphorylation of Thr-308 and PDK1-independent phosphoryla-
tion of Ser-473 (10). Insulin-induced phosphorylation of Akt at
Thr-308 in PDK1-MerCre hearts was significantly attenuated,
compared with control hearts, while phosphorylation level at
Ser-473 was unchanged (Fig. S2B). As a consequence, Akt kinase
activity was markedly reduced in PDK1-MerCre hearts (Fig. S2C).
Consistently, insulin-induced phosphorylation levels of glycogen
synthase kinase (GSK) 3 at Ser-9, mammalian target of rapamycin

(mTOR) at Ser-2448, and p70S6K at Thr-389 (11) were attenuated
in the PDK1-MerCre hearts (Fig. S2B). Collectively, these results
indicate that Akt signaling is inhibited in PDK1-MerCre hearts.

Lethal Heart Failure in PDK1-MerCre Mice. Without tamoxifen treat-
ment, PDK1-MerCre mice survived normally and were indistin-

8690 | www.pnas.org/cgi/doi/10.1073/pnas.0900064106

period, there was no increase in LV dimension or thinning of LV
wall, which was consistent with the macroscopic findings (Fig. 1 B
and D). However, 4 weeks after tamoxifen treatment, progression
of contractile dysfunction together with global chamber dilatation
and wall thinning was observed in PDK1-MerCre mice (Fig. 1 B and
E). Histologically, interstitial fibrosis was increased at 1 week in
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PDK1-MerCre hearts and further enhanced at 4 weeks after
tamoxifen treatment (Fig. 1F). These results suggest that PDK1-
MerCre mice exhibited cardiac dysfunction as early as 1 week after
tamoxifen treatment and LV remodeling at 4 weeks.

It was reported that PDK1-MCKCre showed marked reduction
both in the heart size and in cardiac contractility (5). Since the MCK
promoter directs expression of Cre recombinase before birth (5,
12), retardation of heart growth that was not proportional to
somatic growth after birth might lead to cardiac dysfunction.
However, the surface areas of caridomyocytes were not significantly
different between PDK1-MerCre mice and control mice 1 week
after tamoxifen treatment (Fig. 1G). Given that LV dysfunction was
already observed as early as 1 week after tamoxifen treatment (Fig.
1 C and D), we suppose that reduction of cardiomyocyte size is not
critically involved in the impairment of LV contraction observed in
PDK1-MerCre hearts.

Increased Cardiomyocyte Apoptosis in PDK1-MerCre Mice. We next
examined whether cardiomyocyte apoptosis was involved in the
pathogenesis of heart failure in PDK1-MerCre mice. TUNEL
staining revealed that the number of apoptotic cells was dramati-
cally increased in PDKI1-MerCre hearts 1 week after tamoxifen
treatment (Fig. 24). TUNEL-positive cells were cardiomyocytes,
because these cells were positively stained with anti-sarcomeric
a-actinin antibody (Fig. 2B). In addition, immunostaining revealed
an increase in cardiomyocytes positively stained for cleaved
caspase-3 in PDK1-MerCre hearts (Fig. 2C). The prevalence of
TUNEL-positive cardiomyocytes was 1.14 = 0.05% of total cardi-
omyocytes (Fig. 2D). Therefore, cardiomyocyte loss through apo-
ptotic cell death may play an important role in the pathogenesis of
heart failure in PDK1-MerCre mice.

In the hearts of PDK1-MerCre, the expression level of proapo-
ptotic Bax was increased, whereas those of anti-apoptotic molecules
such as Bcl-2 and Bel-xL were unchanged (Fig. 2E). SGK1 has been
reported to be functionally anti-apoptotic in the hearts (13). The
basal level of phosphorylated SGK1 was reduced in PDK1-MerCre
hearts (Fig. 2F). It has been reported that SGKI1, in concert with
Akt, mediates cell survival by phosphorylating and inactivating the
Forkhead transcription factor FOXO3a (13, 14). FOXO3a is phos-
phorylated at Thr-32 and Ser-315 by SGK1, and Akt favors the
phosphorylation of Thr-32 and Ser-253 (14). In PDK1-MerCre
hearts, phosphorylation levels of FOXO3a at Thr-32 and Ser-253
were significantly decreased (Fig. 2F). Collectively, these results
suggest that up-regulation of Bax protein and reduction of Akt and
SGKI activity were potentially involved in enhancing susceptibility
of cardiomyocytes to apoptosis in PDK1-MerCre mice.

Overexpression of Bcl-2 Protein Prevented Cardiomyocyte Apoptosis and
Partially Rescued Cardiac Dysfunction in PDK1-MerCre Mice. To examine
whether cardiomyocyte apoptosis plays a causative role in the
pathogenesis of heart failure in PDK1-MerCre mice, we crossed
PDK1-MerCre with transgenic mice with cardiac-specific overex-
pression of Bcl-2 (Bcl2-Tg mice) (15). In PDK1-MerCre X Bcl2-Tg
hearts, the number of TUNEL-positive cardiomyocytes was signif-
icantly decreased in comparison with PDK1-MerCre hearts (Fig.
2G), and the %FS showed partial but significant improvement (Fig.
2H). These results suggest that cardiac dysfunction is caused in part
by cardiomyocyte loss through apoptosis in PDK1-MerCre mice.

Impairment of B-adrenergic Responsiveness in PDK1-MerCre Hearts.
Incomplete restoration of cardiac function by prevention of cardi-
omyocyte apoptosis implies that some functional abnormalities
persist in viable cardiomyocytes in PDK1-MerCre mice. To deter-
mine whether B-adrenergic responsiveness was changed in PDK1-
MerCre hearts, we carried out Langendorff perfusion analysis in
the hearts 1 week after tamoxifen treatment, and evaluated re-
sponsiveness to isoproterenol, a B-AR agonist, and forskolin, an
activator of adenylate cyclase that increases cAMP independently
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Fig. 2. Cardiomyocyte apoptosis in the pathogenesis of heart failure in

PDK1-MerCre mice. (A) TUNEL staining. Arrowheads indicate TUNEL-positive
cardiomyocytes. (B) Double staining for TUNEL staining (brown) and sarco-
meric a-actinin (red). Arrowheads indicate TUNEL-positive cardiomyocytes. (C)
Immunostaining for cleaved caspase-3. Arrowheads indicate cardiomyocytes
positively stained for cleaved caspase-3. (D) Percentage of TUNEL-positive
caridomyocytes. Values represent the mean + SEM (3,000 cardiomyocytes in
each group). #, P < 0.01 versus control group. (E) Immunoblot analysis of Bcl-2
family proteins in the hearts. (F) Immunoblot analysis of phosphorylated-SGK 1
at Ser-78, total SGK1, phosphorylated-FOXO3a at Thr-32 or at Ser-253, and
total FOXO3a in the hearts. (G) Percentage of TUNEL-positive caridomyocytes
in control, Bcl2-Tg, PDK1-MerCre, and PDK1-MerCre X Bcl2-Tg mice. Values
represent the mean = SEM (3,000 cardiomyocytes in each group). #, P < 0.01
versus control group; *, P < 0.05, versus control group; t, P < 0.01 versus
PDK1-MerCre group. (H) Measurement of fractional shortening of control,
Bcl2-Tg, PDK1-MerCre, and PDK1-MerCre < Bcl2-Tg mice by echocardiography.
Values represent the mean + SEM of data from control mice (n = 10), control
Bcl2-Tg mice (n = 6), PDK1-MerCre mice (n = 10), and PDK1-MerCre < Bcl2-Tg
mice (n = 6).#, P<0.01 versus control mice. t, P< 0.01 versus PDK 1-MerCre mice.
FS, % of fractional shortening.

of B-AR. As shown in Fig. 34, the baseline parameters of +dp/dt
and —dp/dt were significantly lower in PDK1-MerCre mice than in
control mice. Both isoproterenol and forskolin induced positive
chronotropic and inotropic responses in control mice (Fig. 34).
However, PDK1-MerCre mice showed a significant reduction in the
maximal changes in HR, +dP/dt, and —dP/dt after the stimulation
of isoproterenol (1 X 1078 M), compared with control mice (Fig. 3B).
In contrast, the maximal changes in these parameters after the stimu-
lation of forskolin (1 X 1077 M) did not differ significantly between
PDKI1-MerCre and control mice (Fig. 3B). These results suggest that
the responsiveness of B-AR is impaired in PDKI1-MerCre mice.
Next, we measured the amount of B;-AR in the membrane
fraction by immunoblot analysis. In PDK1-MerCre hearts, the
expression levels of B;-AR in membrane fraction were markedly
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down-regulated (Fig. 3C). Inversely, the amount of B;-AR in
cytosolic fraction was increased in PDK1-MerCre hearts, com-
pared with control hearts, while the total amount of 8;-AR was
unchanged (Fig. S3 A4 and B), suggesting that receptor internal-
ization underlies B;-AR down-regulation in membrane fraction
of PDK1-MerCre hearts. In response to B-AR simulation,
increased cCAMP activates protein kinase A (PKA), which di-
rectly phosphorylates phospholamban (PLN) at Ser-16. PDK1-
MerCre hearts showed a significant decrease in cAMP concen-
trations (Fig. S3C) and phosphorylation level of PLN at Ser-16
(Fig. S3D), compared with control hearts. Phosphorylated PLN
dissociates from sarcoplasmic reticulum Ca?*-ATPase2
(SERCA2) and thereby enhances Ca®* uptake by SERCA2,
which leads to enhancement of cardiac contractility (2). These
results suggest that, in PDK1-MerCre hearts, robust p;-AR
internalization leads to contractile dysfunction.

It has been reported that phosphorylation of B-AR by B-AR
kinase 1 (BARKI, commonly known as G protein-coupled receptor
kinase 2) regulates receptor internalization (16). In the hearts of
PDK1-MerCre mice 1 week after tamoxifen treatment, the expres-
sion levels of BARKI (Fig. 3C) and BARKI-associated p110y, a
catalytic subunit of PI3-Kv, were increased (Fig. 3D). Notably,
PI3-K activity immunoprecipitated with antibodies to either p110vy
or BARKI was enhanced (Fig. 3E) in PDK1-MerCre hearts.
BARKI forms complex with PI3-Ky through the phosphoinositide
kinase (PIK) domain, and protein kinase activity of PI3-Ky in this
complex is required for receptor internalization (17). Therefore,
these results suggest that enhanced PI3-Kvy activity in PDKI-
MerCre hearts increases BARK1/PI3-Kvy complex formation, and
that BARKI phosphorylates B-AR to cause robust receptor inter-
nalization.

Disruption of BARK1/PI3-Ky Complex Restored S-AR Internalization and

Partially Rescued Cardiac Dysfunction in PDK1-MerCre Mice. To cor-
roborate that enhanced PI3-Kvy activity promotes B-AR inter-
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nalization by forming complex with BARKI1 and that robust
B-AR internalization causes cardiac dysfunction, we examined
whether disruption of the BARK1/PI3-Ky complex normalizes
B-AR trafficking and improves cardiac function in PDKI1-
MerCre mice. For that purpose, we crossed PDK1-MerCre mice
with transgenic mice harboring cardiac-specific overexpression
of PIK domain (PIK-Tg mice) (16), which competitively inhibits
the association between BARK1 and PI3-Ky. The amount of
BARKI-associated p110y protein was significantly decreased in
PDKI1-MerCre X PIK-Tg mice, compared with PDK1-MerCre
mice (Fig. 44). Importantly, BARKI-associated PI3-K activity
was markedly decreased in PDK1-MerCre X PIK-Tg mice,
compared with PDK1-MerCre mice (Fig. 4B, Lower), although
total PI3-Ky activity remained elevated (Fig. 4B, Upper). As a
consequence, in PDK1-MerCre X PIK-Tg mice Iweek after
tamoxifen treatment, the expression levels of §;-AR in mem-
brane fraction were restored (Fig. 4C). The %FS in echocar-
diographic examination showed partial but significant improve-
ment (Fig. 4D). Overexpression of PIK domain did not influence
cardiomyocyte apoptosis, because the prevalence of TUNEL-
positive cardiomyocytes (Fig. 4E), as well as the amount of
cleaved poly(ADP-ribose) polymerase, Bax, and phosphrylated
FOXO3a (Fig. S4), was unchanged in PDK1-MerCre hearts. In
addition, overexpression of Bcl-2 protein did not influence
B-adrenergic response, because the amount of BARKI-
associated p110y protein (Fig. 44), BARKI-associated PI3-K
activity (Fig. 4B), the expression levels of membranous B8;-AR
(Fig. 4C), as well as cAMP concentration and phosphorylation
levels of PLN at Ser-16 (Fig. S5), were unchanged in PDKI-
MerCre hearts. These results suggest that enhancement of BARKI-
associated PI3-Kvy activity induces robust B-AR internalization, and
thereby contributes to cardiac dysfunction, independently of cardiomy-
ocyte apoptosis, in PDK1-MerCre mice.
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Fig. 4.  Alleviated cardiac dysfunction in PDK1-MerCre mice by overexpres-
sion of PIK domain or Bcl-2 protein. (A) Immunoblot analysis of BARK1-
associated p110y protein inthe hearts. (B) Kinase assays for PI3-K activity in the
hearts. The hearts were subjected to immunoprecipitaion with antibody to
p110y (Upper) or BARK 1 (Lower), and the resulting precipitates were assayed
for the kinase assay. P13-K activity of control mice was adjusted to 10 arbitrary
units. (C) Immunoblot analysis of B1-AR and BARK 1 in membrane fraction in
the hearts. N-cadherin was used as an internal control for the amount of
membrane protein. (D) Fractional shortening measured by echocardiography.
Valuesrepresentthe mean + SEM of data from control mice (n = 10), control x
PIK-Tg mice (n = 6), PDK1-MerCre mice (n = 10), and PDK1-MerCre » PIK-Tg
mice (n = 6). #, P < 0.01 versus control mice. t, P < 0.01 versus PDK1-MerCre
mice. FS, % of fractional shortening. (E) Percentage of TUNEL-positive cari-
domyocytes. Values represent the mean = SEM (3,000 cardiomyocytes in each
group). #, P < 0.01 versus control group. 1, P < 0.01 versus PDK1-MerCre
group.

Discussion

Our present study revealed that PDK1 plays an integrative role
in normal cardiac function by coordinating survival signals and
B-adrenergic response (Fig. S6). Besides the fundamental role in
promoting cell growth and survival observed in many tissues
in common (18-21), PDK1 uniquely accommodates B-adrenergic
response to prevent cardiac decompensation. In addition, de-
creased expression of PDKI1 protein in experimental models of
heart failure raises a possibility that functional alterations of
PDK1 may be implicated in the pathogenesis of heart failure,
although it remains unclear how PDK1 expression is regulated in
stressed hearts.

B-AR signaling plays a pivotal role in the chronotropic and
inotropic functions in the hearts (22). In PDK1-MerCre hearts, the
activity of BARKI-associated PI3-Ky was enhanced, which en-
forced robust B;-AR down-regulation. PDK1 is a direct down-
stream effector of PI3-K and may participate in the negative
feedback regulation of PI3-K signaling pathway (20). Importantly,
overexpression of PIK-domain prevented f;-AR down-regulation
by interfering BARK1/PI3-Kvy complex formation, and alleviated
cardiac dysfunction in PDK1-MerCre mice. A recent report dem-
onstrated that PI3-Kyy negatively modulates cardiac contractility by
promoting phosphodiesterase 3B-mediated destruction of ;cAMP in
a kinase-independent manner (23), but we did not observe signif-
icant change in the activity of phosphodiesterase 3B in PDK1-
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MerCre hearts despite enhanced PI3-Kvy activity (Fig. S7). There-
fore, we suppose that impairment of B-adrenergic responsiveness
results from intense B-AR down-regulation in PDKI1-MerCre
hearts.

It remains controversial whether down-regulation and desensi-
tization of B-AR function is beneficial or detrimental in failing
hearts. Indeed, clinical trials have indicated that the use of B-AR
antagonists improves morbidity and mortality in patients of heart
failure (1). Sustained B-AR overstimulation promotes energy con-
sumption and apoptosis in cardiomyocytes (1, 24). But, accumu-
lating evidence has suggested that normalization of B-adrenergic
signaling by interfering BARK1 function rescued numerous genetic
and experimental models of heart failure in mice (16, 25-28). A
possible explanation for this discrepancy is that the therapeutic
window for optimal level of B-AR signaling may be narrow in failing
hearts (22, 28). It has been reported that the proapoptotic effect of
Bi-AR stimulation is dependent on Ca?*/calmodulin-dependent
kinase II (CaMKII) (24). The phosphorylation level of CaMKII was
decreased in PDK1-MerCre hearts, and restored to a subnormal
level by overexpression of PIK domain (Fig. S8). Importantly,
normalization of B;-AR did not induce excessive activation of
CaMKII and cardiomyocyte apoptosis (Fig. 4E and Fig. $4). Thus,
the B;-AR normalization may improve contractile function without
evoking a ‘fight or flight’ reaction, unlike the simple B;-AR
activation. Alternatively, robust B-AR internalization may activate
adverse intracellular signaling pathways through B-arrestins (29)
and abrogate the cardioprotective effects mediated by transactiva-
tion of epidermal growth factor receptor (30). Further investiga-
tions will be required to clarify the entire mechanisms of how
normalization of B-AR signaling confers therapeutic benefits on
failing hearts.

A growing body of evidence has suggested that cardiomyocyte
apoptosis plays an important role in the pathogenesis of heart
failure (31). In PDK1-MerCre hearts, the phosphorylation levels of
Akt, SGK1 and FOXO3a were reduced, which may give rise to
marked increase in cardiomyocyte apoptosis. In addition, PDK1-
MerCre hearts showed an increase in expression level of Bax
protein, a key molecule that translocates to the mitochondrial
membrane and triggers the release of cytochrome ¢ into the
cytoplasm (31). Overexpression of Bcl-2 attenuated apoptotic loss
of cardiomyocytes and alleviated cardiac dysfunction in PDK1-
MerCre mice, suggesting that cardiomyocyte apoptosis contributes
to the development of heart failure.

The previous paper demonstrated that PDK1-MCKCre mice
showed growth retardation and contractile dysfunction of
cardimyocytes (5). In our study, PDK1-MerCre mice showed severe
heart failure without alterations in cardiomyocyte size. Besides
regulation of cell growth, PDK1 controls cardiac homeostasis by
promoting cell survival and preserving B-AR response. The phe-
notypic difference between PDK1-MerCre mice and PDKI-
MCKCre mice resulted from the timing of gene disruption. The
PdkI gene was deleted within a week in tamoxifen-treated PDK1-
MerCre hearts of adult mice, but in contrast, Pdkl disruption
commenced before birth in PDK1-MCKCre mice. The number of
apoptotic cardiomyocytes was pronouncedly increased in PDK1-
MerCre hearts, but was unchanged in PDK1-MCKCre hearts (5).
Some compensation mechanisms may prevent proapoptotic effects
of Pdkl disruption in PDK1-MCKCre mice.

In conclusion, PDK1 is a pivotal effector with dual functions to
promote survival of cardiomyocytes and to preserve B-AR response
in vivo (Fig. S6). In this regard, up-regulation of PDK1 in the hearts
may emerge as a potential therapeutic strategy for heart failure.

Methods

Generation of PDK1-MerCre Mice. Mice harboring a Pdk 17° allele were previously
described (7, 8). Mice expressing MerCreMer under the control of a-myosin heavy
chain promoter were previously described (9). Details are in S/ Methods. Bc2-Tg
mice and PIK-Tg mice were kindly gifted by Dr. Michael D. Schneider (Imperial
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College, London, U.K.) (15) and Dr. Howard A. Rockman (Duke University Medical
Center, Durham, NC) (16). All of the experimental protocols were approved by the
Institutional Animal Care and Use Committee of Chiba University.

Echocardiography and Isolated Heart Preparation. Transthoracic echocardiogra-
phy was performed on conscious mice with Vevo 660 Imaging System using a
25-MHz linear probe (Visual Sonics Inc.). For analyses of hemodynamic parame-
ters, hearts were excised rapidly and mounted on a Langendorff perfusion
system, and a balloon was inserted into the cavity of the left ventricle (32).
Isolated hearts were stabilized for 30 min by perfusion of Krebs-Henseleit buffer
followed by perfusion of isoproterenol (NIKKEN Chemical Laboratory) or forsko-
lin (Sigma). For measurement of surface areas of cardiomyocytes, hearts were
enzymatically dissociated as described previously (33).

Histological Analysis and Immunchistochemistry. Hearts were excised and imme-
diately fixed in 10% neutralized formalin, embedded in paraffin. Serial sections
at5 um were stained with hematoxylin and eosin for morphological analysis, and
with Masson’s trichrome for detection of fibrosis. For immunohistochemistry,
Vectastain ABC kit (Vector Laboratories) was used to detect the primary antibod-
ies. TUNEL assay was performed on paraffin sections, using an in situ apoptosis
detection kit (Takara Bio Inc.).

Western Blot Analysis and Subcellular Fractionation. Protein samples were frac-
tionated by SDS/PAGE, and immunoblot analysis was performed as described
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previously (34). The membrane and cytosol fractions were isolated from lysate of
the hearts as previously described (35).

Assay for PI3-K Activities. PI3-K acitivity was measured as previously described (36).
We determined Akt activity using a Akt Kinase Assay Kit according to the
manufacturer’s protocol (Cell Signaling Technology).

Antibodies. The following antibodies were used: p110y, phosphorylated-SGK,
and cleaved caspase-3 (Cell Signaling Technology), BARK1, Bax, Bcl-xL, Bd-2
(Santa Cruz Biotechnology), i-AR (Affinity BioReagents), N-cadherin (Zymed
Laboratories Inc.), SGK1, FOXO3a, phosphorylated-FOX03a (Thr-32), phosphor-
ylated-FOXO3a (Ser-253) (Upstate) and actin (Sigma).

Statistical Analysis. All data are presented as means + SEM. All data were
analyzed by one-way ANOVA followed by the Fisher procedure for comparison
of means. A probability value of P < 0.05 was considered to be statistically
significant.
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