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Hig_hly restricted T-cell receptor repertoire in the
CD8™ T-cell response against an HIV-1 epitope with a
stereotypic amino acid substitution

Eriko Miyazaki®*, Ai Kawana-Tachikawa™*, Mariko Tomizawa®,
Jun-ichi Nunoya®, Takashi Odawara®, Takeshi Fujiib, Yi Shi¢,
George Fu Gao® and Aikichi Iwamoto™™*

Objective: In peripheral blood mononuclear cells (PBMCs) from HIV-1-positive
patients, we sought to identify CD8* T-cell populations and the corresponding T-cell
receptor (TCR) repertoires that react to an immunogenic cytotoxic T lymphocyte (CTL)
epitope with or without an escape mutation.

Methods: PBMCs from HLA-A*2402(A24)-positive patients were stimulated with pep-
tides representing a wild-type CTL epitope in the HIV-1 Nef protein [Nef138-10(wt)] or
an escape mutant with a Y to F (Y139F) substitution at the second position [Nef138-
10(2F)]. Cultured PBMCs were stained with peptide-major histocompatibility complex
tetramers containing Nef138-10(wt) or Nef138-10(2F) sequences. After in-vitro stimu-
lation of PBMCs with cognate peptides, the CD8* T-cell population was sorted into
different fractions: positive only to the wild-type tetramer (wt-positive), positive only to
the mutant tetramer (2F-positive), and positive to both wt-tetramers and mutant-
tetramers (dual-positive). TCR repertoires of sorted epitope-specific CD8" T-cell popu-
lations were determined by sequencing.

Results: A 2F-positive population was rarely observed under our culture and staining
conditions. The wt-positive CD8* T-cell populations had a diverse TCR repertoire, but
the TCR repertoires in dual-positive CD8" populations were highly restricted. In the
dual-positive CD8" T-cell populations, most clonotypes used the TRBV4-1 and TRBJ2-7
gene segments for the TCR B-chain and the TRAV8-3 and TRA}40-1 for the TCR a-chain.
The CDR3 region of the TCR B-chain showed little variation.

Conclusion: These results provide an example of restricted TCR repertoire in a specific
CTL response against the escaping epitope. We speculate that impairment of antigen

presentation in escaping viruses may underlie the restricted repertoire.
© 2009 Wolters Kluwer Health | Lippincott Williams & Wilkins

AIDS 2009, 23:651-660

Keywords: CD8" T cells, HIV infection, human leukocyte antigen, T-cell
epitope, T-cell receptor repertoire

Introduction hallmark of HIV-1 infection is the incomplete response of

CTLs. It is crucial to understand the molecular mechan-
Cytotoxic T lymphocytes (CTLs) play a very important isms of antigen presentation and recognition in the context
role in counteracting HIV-1 infection [1—3]. However, the of immunopathogenesis of HIV-1.
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CTLs use T-cell receptors (TCRs) to recognize peptide-
major histocompatibility complex (MHC) (pMHC)
complexes presented on the surface of the infected cells.
Error-prone reverse transcription of HIV-1 can result in
amino acid substitutions in the cognate peptides. Mutated
viruses may acquire selective advantage against CTLs and
become dominant escape variants [4,5]. Substitution
of amino acid residues critical for binding to MHC
molecules [6,7] or TCR recognition [8,9] can result in
escape mutants. Even substitution of the amino acids
flanking the cognate peptides can result in escape mutants
by altering the peptide processing and decreasing the
number of pMHC molecules that are recognized by
CTLs [10-14].

Amino acid substitutions in the HIV-1 escape mutants
may be stereotypic in different individuals sharing the
same MHC haplotypes [12,15]. We previously reported
that HIV-1 with a stereotypic substitution from Y
[Nef138-10(wt)] to F [Nefl38-10(2F)] at the second
position in an immunodominant HLA-A*2402(A24)-
restricted CTL epitope in the Nef protein (Nef138-10)
has a strong selective advantage in A24-positive patients
[12]. There is a high prevalence of A24 in the Japanese
population, and unprotected sexual contact has trans-
mitted the 2F substitution among A24-positive individ-
uals throughout Japan. How HIV-1 with the Nef138-
10(2F) substitution could have a selective advantage in
A24-positive patients remains an enigma, as we detected
vigorous CD8 positive T-cell (CD8™) responses not only
against Nef138-10(wt) but also against Nef138-10(2F) in
PBMC:s from A24-positive patients [12].

In this study to explore the effector side, we stimulated
cultured CD8™ T cells obtained from A24-positive, HIV-
1-infected patients and stained them simultaneously with
two A24 tetramers that presented either Nef138-10(wt)
or Nef138-10(2F). We then sorted the epitope-specific
CD8™ T cells that recognized wild-type or 2F or both and
analyzed the TCR repertoire.

Materials and methods

Study patients

We analyzed CTL response in peripheral blood
mononuclear cells (PBMCs) from seven patients who
were HIV-1 infected and HLA-A*2402 positive. Patients
were randomly selected among patients participating
in an ongoing HIV-1-immunopathogenesis study at an
HIV outpatient clinic affiliated with the Institute of
Medical Science, the University of Tokyo. All but one of
the seven subjects (S15) were antiretroviral therapy naive.
The study was approved by the internal review board of
the Institute of the Medical Science of the University of
Tokyo (No. 11-2), and all patients provided informed

consent.

Cell media and study reagents

Culture media and supplements were purchased from
Sigma (St Louis, Missouri, USA) except as otherwise
noted. R(—) medium consisted of RPMI 1640 supple-
mented with 100 U/ml penicillin, 100 pg/ml streptomy-
cin, 10mmol/1 4-(2-hydroxyethyl)-1-piperazineethane-
sulfonic acid (HEPES) and 2 mmol/] L-glutamine. R10
medium was R (—) medium supplemented with 10% heat-
inactivated fetal calf serum (FCS).

Synthetic peptides Nefl138-10(wt) (RYPLTFGWCEF),
Nef138-10(2F) (REPLTFGWCF) were purchased from
Sigma-Genosys (Ishikari-shi, Hokkaido, Japan).

Enzyme-linked immunosorbent spot assay
Enzyme-linked immunosorbent spot (ELISPOT) assay
was performed using freshly prepared PBMCs (5 x 10*
cells) as previously described [16].

In-vitro stimulation with Nef138-10 peptides
PBMCs were divided into two aliquots and prepared for
in-vitro stimulation with Nef138-10 peptides as pre-
viously described [17]. To prepare antigen-presenting
cells, PBMCs of 5x 10° patients were pulsed with
10 nmol/1 Nef138-10(wt) or Nef138-10(2F) at 37°C for
1h. Cells were washed twice with R10, then cultured in
R10 with 1 x 10° fresh autologous PBMCs and 4 x 10°
irradiated (3300 rads) PBMCs from healthy individuals.
After 4 days, recombinant human IL-2 (rIL-2; Whako,
Osaka, Japan) was added to 50 U/ml. The culture was
continued for 2 weeks, with medium changed every 3—4
days (R10 with 50 U/ml rIL-2).

Preparation of major histocompatibility
complex-class | tetramers presenting Nef138-
10(wt) or Nef138-10(2F)

Soluble forms of pMHC molecules were produced in
CV-1 cells using a Sendai virus (SeV) vector expression
system and purified from the supernatant as described
previously [18]. After affinity purification, pMHC
molecules were biotinylated with BirA enzyme (Avidity,
Aurora, Colorado, USA) and purified by gel filtration
chromatography with a Superdex 200 column (GE
Healthcare, Piscataway, New Jersey, USA).

Biotinylated Nef138-10(wt)/HLA-A24 (Nef138-10(wt)/
A24) or Nef138-10(2F)/HLA-A24 (Nef138-10(2F)/A24)
complexes were tetramerized with allophycocyanin
(APC)-labeled or phycoerythrin-labelled streptavidins
(Invitrogen, Eugene, Oregon, USA), respectively

Flow cytometry and sorting of cytotoxic T
lymphocytes

Stimulated PBMCs were incubated at 37°C for 15 min in
the presence of Nefl38-10(wt)/A24-APC or Nef138-
10(2F)/A24-PE or both. The final concentrations of
Nef138-10(wt)/A24-APC and Nef138-10(2F)-PE in
monomer pMHC were 11 and 8 ug/ml, respectively.
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Cells were washed with fluorescence-activated cell sorter
(FACS) buffer (PBS supplemented with 2% FCS and
0.02% NalN3) and further stained with either fluorescein
isothiocyanate (FITC)-labeled or Pacific Blue-labeled
anti-CD8 Tcell antibodies (BD Pharmingen, San Jose,
California, USA) or anti-TCR B-chain V gene 4-1
antibodies (TRBV4-1) (Beckman Coulter, Fullerton,
California, USA) at 4°C for 30min. Cells were then
washed with FACS buffer and fixed by a 20-min
incubation at reverse transcriptase in the dark in PBS
containing 1% paraformaldehyde.

Flow cytometry was performed using a FACS Calibur
(Beckton Dickinson, Franklin Lakes, New Jersey, USA)
and FACS Aria (Beckton Dickinson). Flowjo ver. 6.4.7
(Tree Star, Ashland, Oregon, USA) was used for the
analysis. For cell sorting, the cells were stained in R10
medium instead of FACS buffer, stained with propidium
iodide to remove dead cells, and sorted without fixation
using a FACS Aria.

T-cell receptor repertoire determination

Total RNA was extracted from sorted T cells using an
RNeasy Micro Kit (Qiagen, Venlo, The Netherlands).
We synthesized full-length cDNA by anchored RI-PCR
using the super switching mechanism at 5'-end of the
RNA transcript (SMART) PCR ¢DNA synthesis kit
(TakaraBio, Otsu, Shiga, Japan), according to the
manufacturer’s protocol, with the switching mechanism
at the 5’ end of RNA transcript. To amplify the variable,
diversity, and joining regions of the TCR genes, the
second PCR was done with the first primer and the
reverse primers specific for the TCR o or B constant
region: the 3’ Tocell receptor a chain constant region
(TRAC) primer (5'-GGCAGACAGACTTGTCACTG
GATTTAGAG-3) or the 3’ T-cell receptor B chain
constant region (TRBC) primer (5-TGACCC
CACTGTGCACCTC-3'), respectively. Reaction con-
ditions in the second PCR were as follows: 94°C for
1 min; 25 extension cycles of 94°C for 30, 55°C for 30s,
72°C for 1 min; and a final extension at 72°C for 7 min.
Reaction products from the second PCR were purified
with Wizard PCR preps DNA purification System
(Promega, Madison, Wisconsin, USA) and subcloned
into pGEM-T East vector (Promega).

DNA sequencing was performed using an ABI Prism
dye terminator cycle sequencing ready reaction kit
(Applied Biosystems, Foster City, California, USA) on a
Perkin-Elmer ABI-377 sequencer. Designation of TCR
genes follows the international immunogenetics (IMGT)
nomenclature [19]. We defined the CDR3 region of the
TCR B-chain as the region from aa 104 in T-cell receptor
VB (TRBV) to aa 7 in TRBJ and the CDR3 region of the
TCR a-chain as the region from aa 105 in TRAV to aa
11 in TRAJ.
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Results

Nef138-10-specific response in HLA-A%2402+
patients

We analyzed PBMCs from seven A24-positive patients
with chronic HIV-1 infection. All patients except one
(S15) were naive to antiretroviral treatment. The median
viral load was 6700 copies/ml (range, 120—24000 copies/
ml), and the median CD4 T-cell count was 437 cells/ .l
(range, 278-807 cells/pl).

Using the plasma samples obtained closest to the
following analyses, we confirmed that plasma viruses
had stereotypically Nefl138-10(2F) in all the patients
analyzed (Fig. 1). Nefl38-10-specific responses of CcDs*
T cells were analyzed by IFN-y ELISPOT assay. Although
the magnitude of specific response varied substantially
among the samples, all showed a response to Nefl38-
10(wt) and Nef138-10(2F) (Fig. 1).

Tetramer dual-staining of Nef138-10-specific
CD8* T cells

After 2-week culture in the presence of 10nmol/l
Nef138-10(wt) or Nef138-10(2F) peptides, PBMCs were
stained with Nef138-10(wt)/A24-APC [Tet(wt)] or
Nef138-10(2F)/A24-PE [Tet(2F)] or both. Using cul-
tured cells from patient S15, we examined whether dual
staining fractionated the Nef138-10-specific cells more
precisely than single staining. Single stainings with
Tet(wt) and Tet(2F) stained 9.8% (Fig. 2a) and 6.2%
(Fig. 2b) of S15 CD8" T cells, respectively, after
stimulation with Nef138-10(wt). In dual staining with
the two tetramers, 7.2% of S15 CD8™ T cells were in the
Tet(wt)-positive/ Tet(2F)-positive (dual-positive) fraction
and 4.2% were in the Tet(wt)-positive/ Tet(2F)-negative
(wt-positive) fraction (Fig. 2c). Similarly, after Nef138-
10(2F) stimulation, single staining of CD8" T cells from
patient S15 with Tet(wt) and Tet(2F) stained 6.0 (Fig. 2d)
and 6.1% of cells, respectively (Fig. 2e). With dual
staining, 3.3% of S15 CD8" T cells stimulated with
Nef138-10(2F) were dual-positive, and 2.2% were wt-
positive.

These preliminary pilot experiments suggested that dual
staining could fractionate dual-positive and wt-positive
cells regardless of the peptide used for stimulation. Under
the culture and staining conditions we used, the Tet(wt)-
negative/ Tet(2F)-positive (2F-positive) population was
minimal. As we could fractionate dual-positive and wt-
positive cells under these conditions, we inferred that the
CD8" T cells in each fraction had different affinities for
pMHC, that is, Tet(wt) or Tet(2F).

To examine the TCR repertoire in different fractions, we
cultured PBMCs from seven patients and stained the cells
with both Tet(wt) and Tet(2F) (Fig. 2g—m). In cells from
patient O14, only Tet(wt)-positive cells were more than
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Fig. 1. Study patients and Nef138-10-specific responses. Peripheral blood mononuclear cells (PBMCs) from seven patients were
stimulated with Nef138-10(wt) (RYPLTFGWCF), Nef138-10(2F) or mock. Spot-forming units (SFUs)/1 x 10® PBMCs after
stimulation are shown in subparts a-g. The viral load (VL) and CD4 T-cell count (CD4) of each patient are shown. All patients
had HLA-A*2402 and their plasma viruses had Nef138-10(2F) mutation (RFPLTFGWCF).
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Fig. 2. Tetramer staining of peripheral blood mononuclear cells stimulated with Nef138-10(wt) or Nef138-10(2F). Peripheral
blood mononuclear cells (PBMCs) from patient S15 were stimulated with Nef138-10(wt) (a, b, ¢) or Nef138-10(2F) peptides
(d, e, f). Cells were stained with Nef138-10(wt)/A24-APC-tetramer [Tet(wt)] (a, d) or Nef138-10(2F)/A24-PE-tetramer [Tet(2F)]
(b, e) or both (c, f) as described in ‘Materials and Methods’. Cultured PBMCs from seven patients were stained with both Tet(wt) and
Tet(2F) (g—m) including an S15 sample from a different culture (h). Dot plots are gated on CD8* T cells. Numbers refer to the
percentages of gated cells in each quadrant.
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1% of the population after Nef138-10(wt) stimulation
(Fig. 2g). Nef138-10(2F) failed to induce specific CcDs*
T cells in cultures derived from patient O14. In cultures
from patients S15, S46, and T26, both dual-positive and
wt-positive CD8F T-cell populations were detected
(Fig. 2h—j). Although Nef138-10-specific CD8” T cells
were induced with both Nef138-10(wt) and Nefl38-
10(2F), the former induced higher expansion of cells
derived from patients S15, $46, and T26. However, in
cultures from patients in A10, S19, and 116, higher
expansion of Nefl38-10-specific CD8% T cells was
induced with Nef138-10(2F) stimulation than with
Nef138-10(wt) stimulation (Fig. 2k-m). In cultures
derived from these three patients, the great majority of
cells after stimulation were dual-positive.

Only in patient T26 was the 2F-positive population
distinguished clearly from the dual-positive population,
though the 2F-positive population showed lower
fluorescent intensity (phycoerythrin) than did the dual-
positive population (Fig. 2j). With a 1000-fold increase,
from 10nmol/l to 10pumol/]l, in concentration of
Nef138-10(wt) and Nef138-10(2F) peptides used for
stimulation, we observed expansion of 2F-positive CD8™"
T cells from other patients {data not shown).

T-cell receptor repertonre of wt-positive and
dual-pesitive CD8" T-cell populations

Cell sorting showed substantial diversity among the study
patients in the TCR repertoire of the wt-positive
population of CD8 cells induced with Nefl138-10(wt)
(Fig. 3). The TCR repertoire also varied slightly
according to the peptides used for stimulation. We
observed 7.0 £2.2 different TCR B-chain clonotypes
per individual after stimulation with Nefl138-10(wt)
peptides, compared with 6.3 £ 3.5 different clonotypes
per individual after stimulation with Nefl138-10(2F)
peptides. Patients differed in whom [-chain V gene
(TRBV) was most frequently used after Nef138-10(wt)
stimulation. After Nef138-10(2F) stimulation, TRBV7-9
was the most common TCR. B-chain clonotype seen in
each of the three patients analyzed (patients S15, S46, and
T26) (Fig. 4a).

In the dual-positive population, we observed only
33415 clonotypes per patient following Nefl138-
10(wt) stimulation and 1.8+£1.0 different clonotypes
per patient following Nef138-10(2F) stimulation (Fig. 3).
There were significantly fewer clonotypes in the dual-
positive populations than in the wt-positive populations,
regardless of stimulation conditions. Following Nef138-
10(wt) stimulation, the mean number of clonotypes
observed in the dual-positive population was 3.311.6,
compared with 7.0+2.2 in the wt-positive population
(P=0.01, Mann—Whitney U-test). Following Nef138-
10(2F) stimulation, the mean numbers of clonotypes in
the dual-positive and wt-positive populations were
1.8+ 1.0 and 6.5 £ 3.5, respectively (P=0.048).
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Notably, TRBV usage was highly restricted in the dual-
positive population in all patients examined. TRBV4-1
was used in 84% of the analyzed clones, irrespective of
stimulating peptides, and was the major TRBV in ail
clones except in those from patient 116 (Figs 3 and 4a). At
the time of our analysis, the major TCR [B-chain gene
segments in patient 116 were TRBV15 and TRBV10-3;
however, further studies using frozen PBMCs obtained
from this patient 2 years earlier showed TRBV4-1/
TRBJ2-7 to be the most frequently used clonotype (data

not shown).

TCR B-chain joining gene (TRBJ) usage was more
restricted in the dual-positive population compared with
the wt-positive population, irrespective of the peptides
used for stimulation (Fig. 3). Ninety-four percent of the
dual-positive population in the analyzed clones used
TRBJ2-7, whereas in the wt-positive population, TRBJ
usage was more diverse (Fig. 4a). The CDR3 TCR
B-chain region was also conserved in the dual-positive
CD8" T-cell population. The length of the CDR3
region ranged from 12—16 amino acids in the dual-
positive population, compared with 10—19 amino acids
in the wt-positive population (Fig. 3). The CDR3 region
had a length of 13 amino acids in 63% of the dual-positive
population induced by Nef138-10(wt) stimulation and in
68% stimulated with Nef138-10(2F). More than 70% of
the dual-positive clones using TRBV4-1/TRBJ2-7
conserved proline at the variable—diversity junction (fifth
position of CDR3) and glycine and isoleucine at the
diversity—joining junction. Surprisingly, the most fre-
quent CDR3 amino acid sequence was identical in clones
from three patients (S15, S46, and S19) (Fig. 4b).
However, the nucleotide sequences were not identical,
and distinctive clones were isolated from patients S15
and S46 (Fig. 4b), clearly indicating that the same TCR

B-chain arose from different recombination events.

To examine the TCR oi-chain diversity in a population
with a highly restricted TCR B-chain repertoire, we
analyzed TCR a-chain sequences in the dual-positive
population after Nef138-10(2F) stimulation in PBMCs
from patients S46, A10, and S19. In these three patients,
the dual-positive population used TCR a-chain variable
gene (TRAV) 8-3 and joining gene (TRA]J) 40 (Fig. 4c).
The CDR3 region was highly conserved in length,
ranging from 14 to 15 amino acids and clones using
TRAVS-3/TRAJ40-conserved proline at the sixth
position. Thus, the dual-positive CD8™ T-cell population
showed a highly restricted repertoire in both TCR a and
B chains, including the CDR3 sequence.

T- cell receptor VB usage in the dual-positive
CD8" T-cell population in vivo

The analyses described above showed that dual-positive
CD8" T-cell populations expanded in vifro had a highly
restricted TCR repertoire; that is, TRBV4-1/TRBJ2-7
and TRAV8-3/TRAJ40. We hypothesized that selection
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Fig. 3. T-cell receptor B-chain repertoire of Nef138-10/A24-tetramer wt-positive and dual-positive CD8* T-cell populations.
CDR3 amino acid sequence, TRBV and TRBJ usage and relative frequency of Nef138-10-specific CD8* T cells stimulated with
Nef138-10(wt) or Nef138-10(2F) are shown. Data from Tet(wt)+/Tet(2F)—(wt-positive) population are shown in the upper column,
and data from Tet(wt)+/Tet(2F)+ (dual-positive) are shown in the lower column. Numbers in parentheses indicate frequency (%) of
each clonotype. TCRs detected in both Nef138-10(wt) and Nef138-10(2F) stimulation in the same patient are highlighted with gray
bars. The TCR clonotype conserved among patients is highlighted with yellow bars. The consensus amino acid sequences,
occurring in more than 70% clones in TRBV4-1/TRBJ2-7, are indicated with red. The designation of TRBV and TRBJ follows Folch’s
nomenclature [19].
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