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Table 6: Space-time power distribution P,(/, s, t | s*, t*) for the Rockaways (s* = 5) on Day 33 (t* = 3) with high risk (RR = 8. 48), where
tis a temporal length of detected cluster, and the raw all cells of which have zero powers of both tests is not shown. The mark "*" is
the powers of accurate detection.

(A) flexible (K = 20)

includes s assumed areas

| 2 3 4 5
3l- 3l- 31- 32- 3l- 32- 33 31- 32- EX)
length | of areas t=3 t=3 t=3 2 t=3 2 | =3 2 | total
| 0 0
2 0 0 6
3 0 2 6 0 2
4 0 0 20 0 181 I 0 204
5 0 0 22 0 50 0 0 *571 2 0 626
6 0 0 3 0 26 I 0 23 I 0 52
7 0 0 I 0 9 0 0 54 I | 66
8 0 0 I 0 2 0 0 ] 0 0 14
9 0 0 I 0 2 0 0 6 0 0 8
10 0 0 0 0 0 0 0 | 0 0 |
I 0 0 0 0 0 0 0 | 0 0 |
12 0 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0
17 0 0 0 0 0 0 0 0 0 0 0
18 0 0 0 0 0 0 0 0 0 0 0
19 0 0 0 0 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0 0 0 0 0
total 0 8 48 0 270 2 0 667 4 | 1000
(B) cylindrical (K = 20)
includes s assumed areas
length | of areas | 2 3 4 5
31- 31- 31 32- 3 32- 33 3l- 32- kK]
t=3 t=3 t=3 2 t=3 2 I t=13 2 I total
| 2 2
2 0 8 8
3 0 0 52 | 53
4 0 0 0 0 B76 6 | 883
5 0 0 | 0 3 0 0 *0 0 0 4
6 0 0 0 0 32 0 0 0 0 0 32
7 0 0 0 0 14 | 0 I 0 0 16
8 0 0 0 0 2 0 0 0 0 0 2
9 0 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0
13 0 0 ] 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0 0 0 0
17 0 0 0 0 0 0 0 0 0 0 0
18 0 0 0 0 0 0 0 0 0 0 0
19 0 0 0 0 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0 0 0 0 0
total ? 8 53 | 927 7 | I 0 0 1000
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The extended power is based on the bivariate distribution
Py(/ s| s*) and penalties introduced for the FPs and FNs
of the geographical detection as

I(w“,w")-—-ZZW{f,s; w”,w)Py(l,s|5%) (8)

121 520

where W[/ s, w, w*) is a weight function such that

V"( 1 =minfw(s* -5).1} }[ L=minfw'{I-3).1}),

(sshoss<s" 180,
a, (otherwise)

W(lsiw  w')=

9)
and w and wr are the predefined penalties for the FNs and
FPs (per region), respectively. This power includes the fol-
lowing three special powers:

1. The standard power as /{0, 0).

2. The power to detect the geographical true cluster accu-
rately as /1, 1).

3. The power for which the MLC includes all the regions
within the true cluster as /{1, 0).

Takahashi and Tango |26] also proposed the profile of the
extended power as

Q(r|s*)=A1/s* 1/5*), (0=r<1)

(10)
where r= w*/w with w = 1/s*, because it is difficult to set
the value of w and w~ in advance. Figure 3 shows the plots
of the profile Q(r| s*) against r(0 < r< 1) for flexible and
cylindrical scan statistics applied to (a) the cluster A5 and
(b) the Rockaways, both on Day 33 with high risk, based
upon Tables 5 and 6. Figure 3(a) shows the flexible scan
statistic has higher extended power when r= 0 i.e. penal-
ties for the FP w* = 0, {1/5, 0) = 0.978 for the flexible and
0.954 for the cylindrical, while the extended power of
cylindrical scan statistic is higher for large r as /[1/5, 1/5)
= 0.765 for the flexible and 0.862 for the cylindrical. On
the other hand, Figure 3(b) shows the flexible scan statis-
tic is more uniformly powerful than the cylindrical one for
the Rockaways cluster, f{1/5, 0) = 0.958 and f{1/5, 1/5) =
0.913 for the flexible, and /(1/5, 0) = 0.885 and f1/5, 1/
5) = 0.872 for the cylindrical, respectively.

Sensitivity and positive predictive value

As other measures of accuracy of cluster detection tests, we
shall consider sensitivity and positive predictive value
[27,28]. These measures can be defined in terms of either
the number of regions or the population. First, we define
sensitivity of cluster detection tests as the probability of
detecting the regions that actually constitute the cluster,

http://www.ij-healthgeographics.com/content/7/1/14

i.e, proportion of the number of regions correctly detected
from the true cluster, s/*. We shall present the expected
value;

.

. S O S
P, = E[_*]z 27P0(+,s|s*).

] s=0 3

(11)

Positive predictive value (PPV) of cluster detection tests is
defined in a similar manner as the proportion of the
number of true regions in the detected cluster, i.e, s/
under /> 0, and the expected value is presented:

*
PP, = [§ L>0} =¥ V- Pollsls )
L 121 520 Epo(++s™)
Based upon the population, we can define the following
sensitivity 77% and positive predictive value PP;:

(12)

E(Total population of the detected S true regions)

TP, =
Total population of the 5" reigons of true cluster
(13)
ppy =8| - Total popul.anon of S true I'Engll'lS 150
T'otal population of L. detected regions
(14)

All these summary measures are better the larger they are
with 100 being the optimal.

Table 7 shows the sensitivity and PPV of the flexible and
cylindrical space-time scan statistics for each cluster with
a high relative risk. For cluster A, the cylindrical scan sta-
tistic has higher PPV and higher sensitivity than the flexi-
ble one. For cluster A5 and the cylindrical has higher PPV
on all days and higher sensitivity on day 31, but the flexi-
ble scan statistic has higher sensitivity on days 32 and 33.
The same is true for the Rockaway cluster. For the Hudson
River cluster, the flexible scan statistic has higher PPV than
the cylindrical. The flexible scan has higher sensitivity
than for the cylindrical with the same upper constant K=
20 on the number of regions in the detected cluster, but
lower sensitivity compared to the cylindrical scan with a
50% upper limit on the cluster size. Note though, that this
difference in sensitivity is less than the difference in PPV
that goes the other way.

Conclusion

In this paper, we have proposed a flexible space-time scan
statistic to detect arbitrarily shaped disease outbreaks. We
have also presented a tri-variate power distribution which
is useful for evaluating the performance of cluster detec-
tion tests, informing us about the spatial and temporal
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Figure 3

Profile of the extended power Q(r | s*) for flexible
and cylindrical scan statistics applied to the cluster
(a) Cluster A5, and (b) The Rockaways.

accuracy of the detected clusters in addition to the stand-
ard statistical power.

For the benchmark data evaluated in this paper, the cylin-
drical scan statistic performs better for the small single
zip-code cluster, although by the third day of the outbreak
both methods are almost perfect. For the small irregular
shaped clusters, A5 and Rockaways, the cylindrical per-
forms better on the first day of the outbreak, but as more
data accumulates, the flexible scan statistic has certain
advantages in determining the precise size and shape of
the outbreak. For the large and narrow Hudson River clus-
ter, the flexible scan statistic performs better than the
cylindrical one, with slightly higher standard power,
much higher PPV and slightly higher or lower sensitivity
depending on the type of cylindrical method used. Results
may be different for other types of regular and irregularly
shaped disease outbreaks, but the four examples used in

http://www. ij-healthgeographics.com/content/7/1/14

this paper gives some sense of the proposed methods per-
formance.

For early detection, timeliness is much more important
than geographical accuracy. When monitoring an occur-
ring outbreak, on the other hand, geographical accuracy
becomes critical and is then the key objective since we
already know the outbreak is there. Our results suggest
that we may use both the cylindrical and flexible scan sta-
tistic for disease outbreak detection, but for different pur-
poses. Specifically, for detecting new outbreak that, one
may want to use the cylindrical scan statistic. That is espe-
cially if we expect the outbreak to start locally, within a
reasonably small and compact area containing only a few
ZIP-codes. On the other hand, once the outbreak has
spread to a larger area, and we want to monitor that
spread, one may want to use the flexible scan statistic,
with its ability to accuratly determine the precise geo-
graphical extent of irregular shaped outbreaks. This is
especially true ones the outbreak has left its local area of
origin.

To evaluate the performance of space-time scan statistic,
we applied the extended power for purely spatial cluster
detection test (8), which is defined as the weighted sum of
the bivariate power distribution wherein the weight is
given by the geometric mean of (1-penalty for the false
negatives) and (1-penalty for the false positives), includ-
ing the standard power as a special case. Also we applied
the profile Qr / s*) proposed by Takahashi and Tango
[26]. This plot gave us a detailed description regarding
power of cluster detection tests. Needless to say, it is pos-
sible to extend it to space-time version if we could con-
sider the penalties for temporal false negatives and false
positives, but we leave this problem for future work. Also,
for the profile of the extended power, we chose to use a
fixed cost of w = 1/s* for false negatives and a smaller or
equal cost for false positives. For more general situations,
we could plot the full bivariate extended power function
on the unit square.

Similarly to the flexible spatial scan statistic in the purely
spatial situation, the flexible space-time scan statistics pro-
posed in this paper has a limitation of cluster size, because
of the limitation of the speed of computation. The pro-
posed scan statistic works well for small to moderate sized
clusters. Although we set the maximum length of the geo-
graphical window to K= 20, this is not large enough to
detect the 20 ZIP codes of the Hudson River cluster accu-
rately because this cluster is too long to be the subset of
the 20-th nearest neighbors of any region. Computation
time depends on the size of the data set and K Indeed, for
the August 11 analysis of respiratory syndrome data in
Massachusetts, with 385 ZIP codes, a maximum temporal
length of 7'= 7 days, a maximum spatial size of K= 20, and
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Table 7: Sensitivity and positive predictive value (PPV) of the flexible and cylindrical space-time scan statistics.

zip codes population
traditional power sensitivity (%) PPV (%) sensitivity (%) PPV (%)
Cluster A; s* = | high risk
Day 31 flexible (K = 20)
cylindrical (K = 20) 0.860 85.30 89.45 85.30 91.50
cylindrical (50% pop) 0.862 85.90 88.79 85.90 90.84
Day 32 flexible (K = 20) 0.988 98.80 84,50 98.80 87.80
cylindrical (K = 20) 0.996 99.50 97.44 99.50 98.18
cylindrical (50% pop) 0.996 99.50 97.33 99.50 98.08
Day 33 flexible (K = 20) 0.999 99.90 96.27 99.90 9732
cylindrical (K = 20) 0.999 99.90 99.48 99.90 99.65
cylindrical (50% pop) 0.999 99.90 99.48 99.90 99.65
Cluster A5; s* = 5; high risk
Day 31 flexible (K = 20) 0.797 66.08 55.93 67.29 63.00
cylindrical (K = 20) 0.850 69.62 80.35 71.65 84.21
cylindrical (50% pop) 0.847 70.62 78.17 71.62 82.02
Day 32 flexible (K = 20) 0.994 92.22 70.17 92.94 76.73
cylindrical (K = 20) 0.99¢6 88.78 85.14 90.86 89.4|
cylindrical (50% pop) 0.996 88.96 848l 91.05 89.11
Day 33 flexible (K = 20) 1.000 95.88 80.02 96.64 85.25
cylindrical (K = 20) 1.000 91.42 87.32 93.66 91.67
cylindrical (50% pop) 1.000 9142  87.30 9366  91.65
The Rockaways; s* = 5; high risk
Day 31 flexible (K = 20) 0.769 60.68 72.09 69.04 73.58
cylindrical (K = 20) 0.855 62.32 91.63 74.45 91.76
cylindrical (50% pop) 0.840 61.40 91.04 73.65 91.15
Day 32 flexible (K = 20) 0.992 86.76 87.36 94.17 89.86
cylindrical (K = 20) 0.997 77.00 96.84 92.75 97.46
cylindrical (50% pop) 0.997 7700 96.84 9275  97.46
Day 33 flexible (K = 20) 1.000 92.16 93.81 97.15 95.97
cylindrical (K = 20) 1.000 78.50 98.06 94.51 98.59
cylindrical (50% pop) 1.000 78.50 98.06 9451 98.59
Hudson River, s* = 20; high risk
Day 31 flexible (K = 20) 0.656 20.07 64.99 26.00 69.72
cylindrical (K = 20) 0.597 14.23 61.10 18.16 65.18
cylindrical (50% pop) 0.632 26.15 50.70 31.26 53.71
Day 32 flexible (K = 20) 0.964 3217 73.59 41.81 78.36
cylindrical (K = 20) 0.933 24.13 61.55 31.58 66.69
cylindrical (50% pop) 0.949 42.90 50.27 51.50 53.96
Day 33 flexible (K = 20) 0.998 34.9| 79.39 46.27 84.17
cylindrical (K = 20) 0.994 27.23 60.56 36.75 66.20
cylindrical (50% pop) 0.995 48.14 47.34 58.54 51.34

with 999 Monte Carlo replications, the flexible space-time
scan statistic took 87.7 minutes to run on a 3.06-GHz Pen-
tium 4 computer, while the cylindrical space-time scan
statistic took only 9.8 minutes.

A limitation of length may also prevent the analysis to
present large clusters of unlikely and very peculiar shapes.
These undesirable properties produced by maximum like-
lihood ratio might suggest the use of different criterion for
model selection, including some penalized likelihood
[20,29]. Also, for larger cluster seizes, the method is not

practically feasible and a more efficient algorithm is
needed.

In this paper, we considered the rght cylinder or rght
prism of the cluster model, as an expansion of the cylin-
drical space-time scan statistic for a prospective disease
surveillance by Kulldorff [10]. This does not allow the
scanning window to adjust itself as the disease outbreak
grows or shrinks geographically over time. Recently, lyen-
gar has suggested using a square pyramid shape window
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which can model either growth (or shrinkage) and move-
ment of the disease cluster [30]. For the proposed flexible
space-time scan statistic, if we could consider the flexibil-
ity in both space and time, that is, evaluating all con-
nected subsets within a cylinder instead of ‘W in (4), we
can detect more arbitrarily shaped clusters in space-time.
For such an expansion, an efficient computational algo-
rithm will be needed for the scanning process, as well as a
more sophisticated mechanism for the interpretation of
such complicatedly shaped clusters. The implementation
and importance of such methods for disease surveillance
and monitoring, is an issue for future research.
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Kulldorff (1997) developed a circular spatial sean statistic for identifying the most
likely cluster of disease that maximizes the likelihood ratio and his software SaTScan
has been widely used for geographical disease cluster detection and disease surveil-
lance. To detect non-circular clusters which cannot be detected by Kulldorff’s circular
spatial scan statistic, several non-circular spatial scan statistics have been proposed.
However, it does not seem to be well recognized that these spatial scan statistics
tend to detect the most likely cluster much larger than the true cluster by swallowing
neighbouring regions with non-elevated risk. This paper proposes a new spatial scan
statistic free from such an undesirable property by modifying the likelihood ratio
so that it scans only the regions with elevated risk. Monte Carlo Simulation study
shows that the proposed circular spatial scan statistic is shown to have better ability
to identify the true cluster compared with Kulldorff’s one in all the cluster models
considered. The proposed circular spatial scan statisitc is illustrated with mortality

data from cerebrovascular disease in Tokyo Metropolitan area, Japan.

Key words: Cluster detection; hot-spot cluster; likelihood ratio test; Monte Carlo
testing; spatial epidemiology.

1. Introduction

Many different test statistics have been proposed for detecting disease clustering (Lawson
et al., 1999; Waller and Gotway, 2004; Kulldorff, 2006). Especially, the spatial scan statistic
proposed by Kulldorff and Nagarwalla (1995) and Kulldorff (1997) has been applied to a wide
variety of epidemiological studies and also to disease surveillance for the detection of disease
clusters along with SaTScan Software (Kulldorff et al., 2006a). The spatial scan statistic tries
to identify the most likely cluster (MLC) defined as the set of connected regions that attains the
maximum likelihood ratio. However, since it uses a circular window to scan the potential cluster
areas, it has difficulty in correctly detecting actual non-circular clusters. To detect arbitrarily

shaped clusters which cannot be detected by the circular spatial scan statistic, Duczmal and
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Assuncao (2004), Patil and Taillie (2004), Tango and Takahashi (2005) and Assungio et al. (2006)
have proposed different spatial scan statistics. It should be noted that all of these scan statistics
are based on maximizing the likelihood ratio.

Tango (2000) showed an interesting example that Kulldorff’s circular spatial scan statistic
detected an unrealistically large MLC consisting of 70 regions, much larger than expected from
an observed disease map, by absorbing neighbouring regions with non-elevated risk of disease
occurrence in his simulated data. Furthermore, Tango and Takahashi (2005) have shown exam-
ples in which Duczmal and Assungao’s procedure detected quite large and peculiar shaped MLC
that had the largest likelihood ratio among the three different MLCs, identified by three different
spatial scan statistics, Kulldorff’s, Duczmal and Assuncio’s and Tango and Takahashi’s. These
results casted a doubt on the validity of the model selection based on maximizing the likelihood
ratio.

In this paper, we shall propose a new spatial scan statistic free from such an undesirable
property by modifying the likelihood ratio so that it scans only the regions with elevated risk. The
performance of the circular spatial scan statistic with the modified likelihood ratio is compared
with Kulldorff’s original one via Monte Carlo Simulations. The proposed circular spatial scan
statistic is illustrated with mortality data from cerebrovascular disease in the areas of Tokyo

Metropolis and Kanagawa prefecture in Japan.

2. Motivating Example

As a motivating example, we shall introduce here a part of Tango and Takahashi’s (2005)
results of the application of three spatial scan statistics — Kulldorff’s, Duczmal and Assuncao’s,
and Tango and Takahashi’s — to a simulated disease map in the areas of Tokyo Metropolis
and Kanagawa prefecture in Japan wherein there are m = 113 regions that comprise wards,
cities, and villages (Figure 1). The variability of regional populations is: 25 percentile = 56, 704,
median = 142,320 and 75 percentile = 200,936. On this map, they simulated a random sample
of n =235 cases by assuming the hot-spot cluster regions {14,15,26,27} in which each region’s
relative risk was set to constant # = 3.0 and the cases to be Poisson distributed. Under the null
hypothesis of no clustering, the expected number of cases for each region was set proportional
to the population (see equation (2)). For comparison purpose, they set the maximum number
of regions for the MLC to be K = 15 and used 999 replications for the Monte Carlo hypothesis
testing (see section 3 for details). The results are shown in Table 1 and are summarized as

follows.

¢ Kulldorff’s circular spatial scan statistic detected 2 regions {14, 15} as the MLC with log like-
lihood ratio LLR= 20.1 and Monte Carlo p-value p = 1/(999 + 1) = 0.001, and the estimated
relative risk 6 = 3.47.

¢ Tango and Takahashi’s flexible spatial scan statistic detected 5 regions {14,15,26,27, 33} as

Jpn J Biomet Vol. 29, No. 2, 2008
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Fig. 1. An entire study population for simulation studies. The 113 regions that comprise
wards, cities, and villages in the areas of Tokyo Metropolis and Kanagawa prefecture in Japan.
The region number used in the text is shown. The shaded area was detected as the most likely
cluster by Duczmal and Assungao's spatial scan statistic (see section 2).

the MLC with LLR= 29.7 and p = 0.001, and 6 = 3.41.

e Duczmal and Assungao’s spatial scan statistic detected 15 connected regions {14, 15, 24, 26, 27,
31,32,33,48,54,69,77,78,90,110} as the MLC (shaded area in Figure 1) with LLR= 31.8
and p = 0.001, and 6 = 2.41.

All these spatial scan statistics rejected the null hypothesis of “Hp: there are no clusters,”
but detected different sets of connected regions as their MLC. In this example, Kulldorff’s cir-
cular spatial scan statistic detected a small cluster consisting of only two regions out of four
hot-spot cluster regions. In terms of maximizing the likelihood ratio, Duczmal and Assungao’s
spatial scan statistic is the best. However, their spatial scan statistic detected the MLC of
a peculiar shape that was considerably larger than the true cluster, which includes eight re-
gions {31,48,78,32,90,69,24,110} where each region’s relative risk is not statistically signifi-
cantly larger than 1 at 0.05 level. Table 1 shows the individual region’s one-tailed mid p-value
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Table 1. Regions detected as the most likely cluster by applying three procedures, Kulldorff’s
circular spatial scan, Tango and Takahashi’s flexible spatial scan and Duczmal and Assuncao's
spatial scan, to a simulated random sample n = 235 from the hot-spot cluster model. In
the simulation, the true cluster is assumed to be {14,15,26,27} with constant relative risk
6 =3.0. The maximum length (=number of regions) of cluster was set to be K =15 (Tango
and Takahashi, 2005).

No. region observed expected relative risk One-tailed Cumulative statistics

no. nNo. cases 1NO. cases (true) p; LLR O/E
1 14 14 3.794 3.69(3) 0.000027 8.3 3.69
15 21 6.283 3.34(3)  0.000002 20.1 3.47
Circular’s MLC = {14,15}, LLR = 20.1, = 3.47
3 26 6 1.650 3.64(3) 0.004 24.1 3.50
4 27 6 1.964 3.05(3) 0.010 27.3 3.43
5 33 4 1.257 3.18(1) 0.024 29.7 3.41
Flexible’s MLC = {14,15,26,27,33}, LLR = 29.7, § = 3.41
6 31 3 2.346 1.28(1) 0.313 28.1 3.12
7 48 1 0.696 1.44(1) 0.328 27.8 3.06
8 78 2 1.485 1.35(1) 0.312 27.2 2.93
9 32 5 4.142 1.21(1) 0.318 25.2 2.63
10 ™ 5 2.109 2.37(1) 0.042 27.2 2.60
11 90 5 2.312 2.16(1)  0.057 29.0 2.57
12 69 3 1.419 2.11(1) 0.114 30.0 2.55
13 24 8 5.534 1.45(1) 0.152 30.0 2.37
14 110 1 0.256 3.91(1) o0.127 30.7 2.38
15 54 1 0.045 22.20(1) 0.022 31.8 241

Duczmal et al.’s MLC = {14,15,26,27,33,31,...,54}, LLR = 31.8, § = 2.41

defined later in (7). This surprising result casts a doubt on the validity of the model selection

based upon maximizing the likelihood ratio. Such a doubt can also be seen in Tango and Taka-
hashi’s simulation results of Kulldorff’s circular spatial scan statistic that had non-negligible
probabilities of detecting much longer clusters than the true cluster.

3. A New Spatial Scan Statistic

Consider the situation where an entire study area is divided into m regions (for example,
county, enumeration districts, etc.). The number of cases in the region i is denoted by the
random variable N; with observed value n;(i=1,...,m) and n =n; + - -+ 4+ nm. Under the null
hypothesis Hp of no clustering, the N; are independent Poisson variables such that

Hy: E(N;) =&, N; ~Pois(§;), i=1,...,m (1)

where Pois(§) denotes Poisson distribution with mean £ and the £; are the expected number of
cases in the region i under the null hypothesis. For the calculation of the expected number of cases
adjusted for the potential confounders such as age, we can use an indirect standardization or a
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Poisson mixed-effects regression model (Kulldorff et al., 2006a). If we can ignore the confounders,
the &; can be calculated as
Ei:n—z—:?‘-::Tk, i=1,....,m (2)
where w; denotes the population size in the region i. To specify the geographical position of each
region, we will use the coordinates of the administrative population centroid.
Under this situation, Kulldorff’s circular spatial scan statistic imposes a circular window
Z on each centroid. For any of those centroids, the radius of the circle varies continuously
from zero upwards until 50 percent of the population at risk is covered, which is the standard
option for SaTScan. If the window contains the centroid of a region, then that whole region
is included in the window. In total, a very large number of different but overlapping circular
windows are created, each with a different location and size, and each being a potential cluster.
Let Zi (k = 1,...,K;) denote the window composed by the (k — 1)-nearest neighbours to region
i. Then, all the windows to be scanned by the circular spatial scan statistic are included in the

set

Z:{Z,-HIS‘ESm,lSkSK,-}

Under the alternative hypothesis, there is at least one window Z € Z for which the underlying
risk is higher inside the window when compared with outside. In other words, we are considering

the following hypothesis testing:

Ho: E(N(Z)) =&(Z), forall Ze 2
Hy: E(N(Z)) > &(Z), for some Z € Z (3)

where N() and &() denote the random variable for the number of cases and the null expected
number of cases within the specified window, respectively. For each window, it is possible to
compute the likelihood to observe the observed number of cases within and outside the window,
respectively. Under the assumption of Poisson distribution (1), Kulldorff’s likelihood ratio test

statistic is given by

3 n(Z)\"® (n—n(Z)\""®  (n(Z) n-n(2) ]
sy =2 (73) (iZhp) (@ rad) @

where n() denotes the observed number of cases within the specified window and I() is the

indicator function. The window Z" that attains the maximum likelihood ratio is defined as the
most likely cluster (MLC). However, it seems something wrong to me that the likelihood ratio
defined above does not take individual observed relative risk n;/&; into account even if the MLC
includes some regions with non-elevated risk, such as a region with n;/&; =~ 1. This property

leads to the following proposition.
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Proposition:
In the process of scanning the window based on sup Ak (Z), there is a possibility that there
Zecz

exists two disjoint windows Z, and Z; and several regions {i1},...,{i-} such that
Ak ({Z1,Z2,{ir},.... {ir}}) > max{Ak(Z1), Ak (Z2)} (5)

where
n(Z,) 51 MZ2)

£(Z1) ~ 77 €(Za)

For example, we can easily consider the following example:

>1 and ';— <1l(i=1,...,r)

An exzample: Suppose that n =200 and two windows Z; (n(Z:) = 30, £(Z;) = 12, log Ak
(Z1) = 8.88) and Z2 (n(Z2) = 29, £(Z2) = 13, log Ak (Z2) = 7.97) were created in the process
of scanning windows. Let 5-nearest neighbours to Z; be {i1}, {i2},...,{is}, Z2 where four
regions have non-elevated risk such as (ni, =4, &, =5), (ni, =6, &, =6), (ni, =0, &, =
3), (ni, =8, &, =9). In this case, we have

log Ak ({Z1,Z2,{i1},...,{ia}}) = 9.58
which satisfies equation (5).

The above proposition and example mean that if we allow any window and/or region to be
a candidate for the MLC it causes the possibility of detecting an unrealistically large MLC by
swallowing up neighboring regions with non-significantly elevated risk due to random fluctuation
or with non-elevated risk as is shown in section 2. Therefore, to avoid such undesirable phe-
nomena, we propose the following restricted likelihood ratio test statistic by taking individual

region’s risk into account:

B n(2Z)\"® (n—-n(Z)\""® (n(Z)  n-n(Z) _
@ =g (53)  (325a) "(s(zﬁn—e(m)g"”‘“‘) @

where p; is the one-tailed p-value of the test for Ho: E(N;) = & given by the mid-p value
= Pr{N; > ni +1| Ni ~ Pois(&:)} + %pr{m =y | Vi ~ Pois(&:)} ()

and o, is the pre-specified significance level for the individual region. The reason why the mid-p
value was used is to adjust for conservatism of the ordinary definition of p-value for small &;. In
this formulation, we devised I(p: < 1) as a screening criterion and we do not mean that we are
performing multiple hypothesis tests. Therefore, as in the case of the Kulldorff’s circular spatial
scan statistic, the restricted likelihood ratio test sup Ar(Z) of the nominal aq level of 0.05, say,
can be based on its distribution derived from azleaige number of Monte Carlo replications of
the data set generated under the null hypothsis. Under this framework, the p-value is obtained
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through Monte Carlo hypothesis testing (Dwass, 1957), by comparing the rank of the maximum
likelihood from the real data set with the maximum likelihoods from the random data sets. If
this rank is R, then p = R/(1 + #(replications)).

Well, how is a; chosen? If o is chosen too small then clusters might be missed or be too
small, however, if chosen too large then it becomes equivalent to the Kulldorff’s spatial scan
statistic. So, we shall examine how sensitive the proposed method is to the selection of @, and
the optimal range of «;, by using five different values, 0.05, 0.10, 0.20, 0.30, 0.40, via Monte Carlo
simulations in section 5, which might depend on both the cluster size and risk size.

It should be noted that the restricted likelihood ratio test statistic (6) is set to scan only
for clusters with high relative risk. It also can be set to scan only for clusters with low relative
risk by replacing the inequality “>" of the indicator function I() which compares the observed
relative risks within and outside the window Z with “<” and using the following mid-p value:

pi = PI{N; S ni— 1 i N;‘ ~ POiS(ﬁ.‘,)} + %PI{NI' =T | N,' ~ Pois({.—)}. (8)

When we would like to scan for either high or low relative risk, we have only to delete the indicator
function regarding the comparison of the observed relative risks and replace a; with a;/2 in
equation (6) using either mid-p value. Needless to say, maximizing the restricted likelihood ratio
Ar(Z) can be applied not only to the circular spatial scan statistic but also to non-circular spatial
scan statistics such as Duczmal and Assungéo’s (2004) and Tango and Takahashi’s (2005).

4. Illustrations

As an illustration, we shall apply the proposed circular spatial scan statistic and Kulldorff’s
circular spatial scan statistic to the mortality data from cerebrovascular disease (female, 1993-
1997) in the areas of Tokyo Metropolis and Kanagawa prefecture in Japan. Total observed
number of deaths from female cerebrovascular disease for five years was 45,700 in this area.
Regarding the restriction of the maximum length for the MLC, we shall select a standard option
of SaTScan that the radius of the circle varies continuously from zero upwards until 50 percent
of the population at risk is covered. P-value of the spatial scan statistics is calculated using
9999 replications for the Monte Carlo hypothesis testing. Significance levels considered are
ap = 0.05 and a1 = 0.05, 0.10, 0.20, 0.30, 0.40. Results are shown in Table 2 and summarized as
follows: Irrespective of significance levels e chosen, the proposed circular spatial scan statistic
detected the same MLC consisting of six regions {23,22,7,8,6,18} (these region numbers are
shown in Figure 1) with logAr (= logAx) =126.6, § =1.23, and p= 1/(999+ 1) =0.001. All
of these six regions within the MLC are shown to have highly significantly elevated risk. In
contrast, Kulldorff’s circular spatial scan statistic added six more regions {5,1,17,21,2,16} to
the MLC detected by the proposed circular spatial scan statistic and finaly detected a larger
MLC consisting of 12 regions with log Ax = 140.6 (log A7 = 0), § = 1.17, and p = 0.001. H‘owever,
three regions {5,1,2} do not have significantly elevated risks. Especially, the region {5}, called
Jpn J Biomet Vol. 29, No. 2, 2008
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Table 2. The most likely clusters detected at ag =0.05 by the proposed circular spatial
scan statistic and Kulldorff’s circular spatial scan statistic in their application to the mortality
data from cerebrovascular disease (female, 1993-1997) in the areas of Tokyo Metropolis and
Kanagawa prefecture in Japan. The MLC detected by the proposed procedure was the same
irrespective of values of a; = 0.05, 0.10, 0.20, 0.30, 0.40.

No. region observed expected relative risk One-tailed

no. no. cases no. cases Pi
1 23 1297 1072.3 1.21 1.5x1071
2 22 1266 1013.2 1.25 1.0x10" 4
3 18 738 522.7 141 <1.0x10°17
4 7 737 620.4 1.19 2.7x10°°
5 8 896 780.6 1.15 2.7x107%
6 6 678 550.5 123 7.7x10°8
The proposed circular scan’s MLC = {23,22,18,7,8,6}
log A = 126.6, # = 1.23, p-value = 0.001
7 548 566.3 0.97 0.778
8 1 164 144.7 1.13  0.057
9 17 1110 999.3 1.11  0.00029
10 21 1530 1335.1 1.15 9.2x10°8
11 2 267 251.3 1.06 0.161
12 16 798 743.4 1.07 0.024

Kulldorff’s circular scan’s MLC = {23,22,18,7,8,6,5,1,17,21, 2,16}
log A = 140.6, # = 1.17, p-value = 0.001

“Bunkyo-ku,” is well known as “healthy district” in this area and has a low relative risk of 0.97
and ps = 0.778 as expected. Therefore, it seems unacceptable to residents in “Bunkyo-ku” that
their region is added to the MLC.

It should be noted that three regions {17,21,16} have highly significant risk and are adjacent
to the MLC detected by the proposed procedure. Therefore, the window {23,22,7,8,6,18,17,21,
16} could be a candidate for the MLC. In fact, its log likelihood ratio is log A7 = 149.8 which
is larger than that of two MLCs. Needless to say, this non-circular window cannot be detected
by circular spatial scan statistics and thus may be detected by such non-circular spatial scan
statistic as that proposed by Duczmal and Assung¢do (2004) or Tango and Takahashi (2005) by
applying the restricted likelihood ratio test statistic.

5. Power Comparisons
In this section, we shall compare the power of Kulldorfi’s circular spatial scan statistic
with that of the proposed circular spatial scan statistic via Monte Carlo simulations at signif-
icance level ag = 0.05 and examine the effect of the choice of «; by using five different values
oy = 0.05, 0.10, 0.20, 0.30, 0.40. As an entire study population, we will use the area of Tokyo
Metropolis and Kanagawa. prefecture in Japan (Figure 1), described in section 2. In our simula-
tion study, we consider two extremes regarding the sample size n: one assume rare disease with
Jpn J Biomet Vol. 29, No. 2, 2008
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total observed number of cases n = 200, a similar sample size used in section 2 and the other
assumes non-rare disease with n = 45,700, the same n for the cerebrovascular disease illustrated
in section 4.

The same null hypothesis is used throughout, where the relative risk is set to one for each
region and case locations are independent of each other. Although the N; are independent Poisson
random variables, by conditioning on the total number of cases N, = n, the disease locations
are the values of a random sample of size n from a multinomial distribution with parameter
(&1/n,...,Em/n). We generated 10,000 random data sets with n cases and these are used to
estimate the upper 100«q percent point for significance. Under each alternative hypothesis, we
generated 1,000 random data sets with n cases.

Alternative hypotheses H; considered here assume a single cluster R = {i1,...,1,+} with

values of relative risk Or = (6;,,...,60i,.), i.e.,
Hy: N;, ~ Pois(8;, &), k=1,...,s° (9

where s* denote the size or length of the cluster assumed in the simulation. As cluster models,

we considered here two types of clusters, namely, “clinal” and “hot-spot” clusters, defined by

Wartenberg and Greenberg (1990). Clinal clusters have a monotone decrease in disease risk as dis-

tance from the point source increases. Hot-spot clusters are characterized by a constant elevated

disease risk, i.e., §;, =--- =6; . =6. Under H,, we generated a random sample (n1,...,nm) of

size n from a multinomial distribution with parameter (qi,...,gm) where
MWy

- E?:l Tk Wk (10)

qi

where
#; ifieR
i =
1, otherwise.

In order to compare the performance of the spatial scan statistic based on Monte Carlo
simulation, we shall use the bivariate power distribution P(l, s) proposed by Tango and Takahashi
(2005), which is classified according to the length ! of the significant MLC and the number s of
the assumed hot-spot regions included therein. It is estimated by

#{significant MLC has length [ and includes s true regions}

P(l,s) = #{trials for each simulation}

! (11)

where 1 <! and 0 < s < min{l,s"}. Especially, we are interested in the power around the point
(I=s", s=s")and P(s",s"), the probability of exact detection. Then, the usual power is defined
as the sum of P(l,s):

Imax min{l,s"}

P(+,+)=3_ >  P(,s)=1-P(0,0) (12)

=1 s=0
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where lpax denotes the maximum length I observed in the simulation and P(0,0) denotes the
probability that the spatial scan statistic cannot detect any clusters. However, when the support
of the bivariate power distribution is widely scattered over the plane (I,s), we do not think that
we can use the usual power as the primary criterion to evaluate the performance because the
performance of the spatial scan statistic is not only to reject the null hypothesis but also to
identify the cluster accurately.

5.1 Case of Rare Disease

We examined several sets of cluster models with different relative risk @z and cluster length
s" and we shall report here the results of the following two hot-spot clusters and two clinal
clusters since these models provided us with typical results.

1. Hot-spot cluster A = {14, 15,20} with relative risk 84 = (3.0,3.0,3.0), (s* = 3).
2. Clinal cluster B = {14,15,26,27} with relative risk 85 = (2.5,3.0,3.0,2.5), (s* =4)
3. Hot-spot cluster C = {1,4,5,12,13,14,15,16,19,20} with relative risk
6c = (2.0,2.0,2.0,2.0,2.0,2.0,2.0,2.0,2.0,2.0), (s* = 10)
4. Clinal cluster D = {12, 14,15, 20, 26,27, 31, 33,40,42} with relative risk

6 = (1.8,1.8,1.8,2.2,2.4,2.4,2.2,2.2,2.0,1.8), (s* = 10)

Two clusters A and B are examples of a very sharp increase in risk in a very small area in which
the increase in each region within the cluster has more than 65% chance of being significant at
a1 = 0.05 level. The clusters C and D are, on the other hand, examples of smaller increase in
risk in a larger area consisting of s* = 10 regions, in which the increase in each region within the
cluster has less than 50% chance of being significant at a; = 0.05 level. Regarding the shape of
cluster, the clusters A and C are circular clusters that can be in the set of the circular windows
and is expected to be identified exactly by the circular spatial scan statistic. The clusters B and
D are non-circular clusters that are not in the set of the circular windows and thus cannot be
identified exactly by the circular spatial scan statistic. The estimated bivariate power distribution
P(l,s) x 1000 is shown in Tables 3-6 for each of the three cluster models, respectively, in the form
of cross table classified by [ (“length” in tables) and s (“include” in tables).

Table 3 shows a good characteristic of the proposed circular spatial scan statistic. Namely,
it could detect the hot-spot circular cluster A with length s* = 3 considerably accurately with
powers P(3,3) = 0.834, 0.864, 0.767, 0.755, 0.748 for a; = 0.05, 0.10, 0.20, 0.30, 0.40, respectively.
When we also evaluate the power of detecting the true cluster plus additional one region, its power
was also high without reference to the value of o, i.e., P(3,3)+ P(4,3) = 0.882, 0.976, 0.957,
0.918, 0.906 for o1 = 0.05, 0.10, 0.20, 0.30, 0.40, respectively. The maximum length of the MLCs
among all the results was only [ = 8. On the other hand, Kulldorff’s circular spatial scan statistic
also had relatively high powers such as P(3,3) = 0.672 and P(3,3) 4 P(4,3) = 0.819. However,
the estimated bivariate power distribution had a long tail to the right on the line s = 3 and the

maximum length was 47. Usual power of the proposed circular spatial scan statistic was larger
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Table 3. Estimated bivariate power distributions P(l,s) x 1000 of Kulldorfl’s circular spatial
scan statistic and the proposed circular spatial scan statistic for the hot-spot circular cluster
A = {14,15,20} with relative risk 8 4 = (3.0,3.0,3.0) and n =200. ap = 0.05 and 1000 trials
were carried out.

Kulldorfi’s circular scan Proposed circular scan
Length Include s a1 Length Include s usual power
l hot-spot regions l hot-spot regions
a 1 2 3 0 1 2 3
1.1 £ = 0.05 111 0O 0.885
219 0 90 2(1 0 O
340 0 0 @672 3]0 0 0 834
410 0 0 147 410 0 0 48
6§10 0 © 38 5|10 0 0 1
6|0 0 O 26 0.10 111 0 0.984
T10 0 0O 8 2|10 0 0
8(0 0 O 3 311 0 0 864
9]0 0 0 1 410 0 0 112
10| 0 0 0 3 5|0 0 0 5
11.]0 0 © 3 610 0 O 1
1210 9 @ 13 0.20 I.TT D 0.978
1310 0 0 15 2|10 0 O
4184 0 0 4 3(1 0 0 767
15|10 0 @ 2 410 0 0 190
1620 ([0 0 © 13 5/0 0 o0 16
21-25 |0 0 O 6 610 0 O 3
2630 | 0 0 O 1 0.30 L3 0 0.978
31-35 | 0 0 O 2 219 o0 ©
36-40 (0 0 O 3 3|1 0 0 75
4145 |0 0 O 1 410 0 0 163
46-47 [0 0 O 1 510 o 9 42
60 0 0 16
0.40 1t 0 0.978
210 O 0O
3|10 0 0 748
410 0 0 158
5|09 @ 0 45
6|10 0 O 22
78|10 0 0O 4
Total [ 1 0 0 962

usual power = 0.963

than that of Kulldorff’s circular spatial scan statistic except for the case of a; = 0.05.

Table 4, on the other hand, shows that both Kulldorff’s and the proposed circular spatial
scan statistics had zero probability P(4,4) = 0/1000 for the exact detection since the clinal cluster
B is non-circular. In this case, the support of the estimated bivariate power distribution of Kull-
dorff’s circular spatial scan statistic was scattered over the plane {(l,8): 1 > s, 1 =1,2,...,64, s =
0,2,3,4} with the highest P(2,2) = 0.311. This type of simulation results are quite typical of
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Table 4. Estimated bivariate power distributions P(l,s) x 1000 of Kulldorff’s circular spatial
scan statistic and the proposed circular spatial scan statistic for the clinal non-circular cluster
B = {14,15,26,27} with relative risk 83 = (2.5,3.0,3.0,2.5) and n = 200. ap = 0.05 and 1000
trials were carried out.

Kulldorff's circular scan Proposed circular scan
Length Include s a1 Length Include s usual power
l clinal regions I clinal regions
0 1 2 3 4 0 1 2 3 4
1{5 0 0.05 1{9 0 0.748
2|10 0 311 214 0 709
3]0 0 6 0 310 1 25 0
410 0 5 0 0 0.10 118 0 0.754
50 0 2 0 0 213 0 689
60 0 1 0 0 312 2 4 0
7/]0 0 1 15 0 4|11 0 8 0 0
8(0 0 5 7 18 5|1 0 0 0 0
910 o0 1 1 9 0.20 1|7 0 0.685
0|0 o0 2 15 5 2|3 0 602
110 0 1 1 3 312 1 36 0
1210 0 0 3 32 4 (1 1 26 0 0
13|10 O 1 2 35 511 0 3 0 0
14|10 O 0 4 16 60 O 0 2 0
1510 0 0 1 2 0.30 116 0 0.689
1620 {0 0O 2 2 53 2|3 0 6588
21-25 (0 O 0 0 43 312 1 32 0
26-30 |0 O 0 0 16 411 1 30 0 0
31-35 | 0 O 0 0 15 511 0 4 0 0
36-40 (0 O o o0 5 6|10 0 5 11 0
4145 |0 O 0o o0 5 710 0 0o 0 0
46-50 | 0 O 0 0 7 810 1 1 1 2
51-55 | 0 O 0 1 1 0.40 1({5 0 0.693
56-60 [ 0 0 0o o0 0 2|12 0 58
61-64 [ O O 0 1 1 3y 1 3 o0
411 1 29 0 0
5|1 O 7T 0 0
60 0 4 0 0
710 0 1 3 0
810 0 2 4 2
910 0 o 2 2
10-12 | 0 O 0 2 0
Total | 5 0 338 53 266

usual power = 0.662

Kulldorff’s circular spatial scan statistic when applied to non-circular clusters in our experi-
ence. In contrast, the proposed circular spatial scan statistic was shown to have higher powers
for detecting a half of the true cluster, ie., P(2,2)+ P(3,2) = 0.733, 0.730, 0.638, 0.620, 0.613,
for a; = 0.05, 0.10, 0.20, 0.30, 0.40, respectively. Incidentally, the results that both spatial scan
statistics had the highest detection probability at (I,s) = (2,2) seem to be due to the geograph-
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Table 5. Estimated bivariate power distributions P(l,s) x 1000 of Kulldorfl’s circular spatial
scan statistic for the hot-spot circular cluster C = {1,4,5,12,13,14,15,16,19,20} with relative
risk 8¢ = (2.0,2.0,2.0,2.0,2.0,2.0,2.0,2.0,2.0, 2.0) and n = 200. ap = 0.05 and 1000 trials were
carried out.

Kulldorff’s circular scan

Length Include s
l hot-spot regions
0 1 2 3 4 5 6 17 8 9 10
15 0
2|96 0
|0 0 @ 0
40 0 0 0 O
5§00 0 0 0 0 0
6/ 0 0 0 0 1 0 O
7|l ¢ 0 & 06 0 0O ©
/b 9 9 ¢ 6 0 B D 0
9|0 0 0 0 0O O O O 0 0
|0 0 0 0 0 0O O O 0 0 323
11/{0 0 0 0 0 O 0 O 9 0 56
2|0 0 0 0 0O O O 0 12 0 23
3/0 0 0 0 ©0 0 0 O 5 4 97
14|10 0 0 0 O O 0 O 5 1 16
5/0 0 0 0 0 O O O 0 3 32
%|/0 0 0 0 0O O O O 0 5 19
17|10 0 0 0 O O O O 0 1 28
8|0 0 0 0 0O O O O 0 0 28
{0 0 0 0 0 0O O O 0 0 12
20/0 0 0 0 0 0 0 0 0 0 9
2125 |0 0 0 O O O O O 0 0 38
26-30 /0 o 0 0 O O O O 13 0 21
31-3 |0 0 O O O O O O 4 0 11
3640 |0 0 0 0 0 O 0 O 1 6 8
41-45 |0 0 0 O O O O O 0 0 5
46-50 |0 0 0 O O O O O 1 0 4
51|/0 0o 0 0 0 O O O 0 0 1
Total | 5 0 0 0 1 0 0O 0 50 20 731
usual power = 0.807

ical configulation of the non-circular cluster B. In this case, the proposed circular spatial scan
statistic had larger usual powers than Kulldorff’s circular spatial scan statistic without reference
to the value of @;. Judging from the results shown in Tables 3-4, the result with oq =0.10
could be the best, however, the results with a; = 0.20 ~ 0.40 were also shown to be better than
Kulldorft’s results.

Tables 5-6 show the results for the hot-spot circular cluster C where the affected area of
regions is larger and the relative risk is smaller. In this instance, Kulldorff’s circular spatial
scan statistic was expected to detect changes in larger area that may not be obvious from each
region individually and had surely high usual power 0.807 with the exact detection probability
Jpn J Biomet Vol. 29, No. 2, 2008
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Table 6. Estimated bivariate power distributions P(l,s) x 1000 of the proposed circular spa-
tial scan statistic for the hot-spot circular cluster C = {1,4,5,12,13,14, 15,16, 19,20} with rela-
tive risk 8 = (2.0,2.0,2.0,2.0,2.0,2.0,2.0,2.0,2.0,2.0) and n = 200. ag = 0.05 and 1000 trials
were carried out.

Proposed circular scan

a; Length Include s usual power
l hot-spot regions
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P(10,10) = 0.323. However, the support of the estimated bivariate power distribution was again
scattered over the broad area on the plane {(I,s): Il > s, [ =1,2,...,51, s = 0,4,8,9,10} by swal-
lowing up many additional regions. In contrast, Table 6 shows that the support of the proposed
circular spatial scan statistic was distributed in a relatively confined area on the plane (1,s).
However, the results with a; = 0.05 and 0.10 were miserable, i.e., their usual power was quite
low 0.039 and 0.161, respectively. As the value of o increases, the usual power increased to
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0.548, 0.741 and 0.744 for oy =0.20,0.30 and 0.40, respectively. Although the probability of
detecting the cluster exactly was zero without reference to the value of o chosen, the proposed
circular spatial scan statistic was shown to have high probability of pinpointing eight or nine re-
gions out of s* = 10 regions, i.e., P(8,8) + P(9,9) = 0.713, 0.703 for a; = 0.30, 0.40, respectively.

Tables 7-8 shows the results for the clinal non-circular cluster D where the affected area
of regions is larger and the relative risk is smaller. Due to the non-circular shape, 1) both

Kulldorff’s and the proposed circular spatial scan statistic had zero probability of detecting the

Table 7. Estimated bivariate power distributions P(l,s) x 1000 of Kulldorff’s circular spatial
scan statistic for the clinal non-circular cluster D = {12, 14, 15,20, 26, 27,31, 33,40,42} with
relative risk #p = (1.8,1.8,1.8,2.2,2.4,2.4,2.2,2.2,2.0,1.8) and n =200. ap=0.05 and 1000
trials were carried out.

Kulldorff’s circular scan

Length Include s
1 clinal regions
o 1 2 3 4 5 6 7 8 9 10
113 0
2|10 0 0
3j|]o o 0 0
410 0 0 0 24
510 0 0 O 0 0
6o @ @ 0 0 12 0
7| 6 8 B 0 0 0 0
8|10 0 0 O 0 0 29 0 0
9]0 0 0 O 0 0 0 0 0 0
0100 0 0 0 0 0 0 32 0 0 0
1110 0 0 0 0 0 0 0 0 0 0
12219 § 0 0 0 0 0 0 6 0 0
13{0 ¢ 0 0O 0 0 0 0 0 1 0
i4: 10 9 0 0 0 0 0 1 0 0 0
is55|0 0 06 0 0 0 0 0 0o 13 0
)10 0 0 O 0 0 0 2 0 7 0
7| ¢ & 0 0 0 0 0 6 0 4 0
18106 0 0 @0 0 0 0 1 0 6 40
1910 0 0 © 0 0 0 3 0 1 90
200 0 0 o0 0 0 0 0 1 1 41
21-25 |0 O O O 0 0 0 2 T 1 147
26-30 | 0 0 0 O 0 0 1 1 0 4 63
31-35 | 0 0O O O 0 0 0 1 0 3 46
36401 0 0 O O 0 0 0 0 1 1 28
4145 |0 0 O O 0 0 1 0 0 0 7
46-50 | 0 0 O © 0 0 0 0 0 0 7
51-55 ([0 0 O O 0 0 0 0 0 0 6
5660 [0 0 0 O 0 0 0 0 0 0 2
61-62 (0 0 O O 0 0 0 0 0 0 3
Total | 3 0 0 0 24 12 31 49 156 42 480

usual power = 0.656
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