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Table 7: Sensitivity and positive predictive value (PPV) of the flexible and cylindrical space-time scan statistics.

zip codes population
traditional power sensitivity (%) PPV (%) sensitivity (%) PPV (%)
Cluster A; s* = |; high risk
Day 31 flexible (K = 20)
cylindrical (K = 20) 0.860 85.30 89.45 85.30 91.50
cylindrical (50% pop) 0.862 85.90 88.79 85.90 90.84
Day 32 flexible (K = 20) 0.988 98.80 84.50 98.80 87.80
cylindrical (K = 20) 0.99 99.50  97.44 9950  98.18
cylindrical (50% pop) 0.996 99.50 97.33 99.50 98.08
Day 33 flexible (K = 20) 0.999 9990 9627 9990 9732
cylindrical (K = 20) 0.999 99.90 99.48 99.90 99.65
cylindrical (50% pop) 0.999 99.90 99.48 99.90 99.65
Cluster AS5; s* = 5; high risk
Day 31 flexible (K = 20) 0.797 66.08 55.93 67.29 63.00
cylindrical (K = 20) 0.850 69.62 80.35 71.65 84.21
cylindrical (50% pop) 0.847 70.62 78.17 71.62 82.02
Day 32 flexible (K = 20) 0.994 9222 70.17 92.94 76.73
cylindrical (K = 20) 0.996 88.78 85.14 90.86 89.41
cylindrical (50% pop) 0.996 8B.96 84.81 91.05 89.11
Day 33 flexible (K = 20) 1.000 95.88 80.02 96.64 85.25
eylindrical (K = 20) 1.000 91.42 87.32 93.66 91.67
cylindrical (50% pop) 1.000 91.42 87.30 93.66 91.65
The Rockaways; s* = 5; high risk
Day 31 flexible (K = 20) 0.769 60.68 72.09 69.04 73.58
cylindrical (K = 20) 0.855 62.32 91.63 74.45 91.76
cylindrical (50% pop) 0.840 61.40 91.04 73.65 9115
Day 32 flexible (K = 20) 0.992 86.76 87.36 94.17 89.86
cylindrical (K = 20) 0.997 77.00 96.84 92.75 97.46
cylindrical (50% pop) 0.997 77.00 96.84 92.75 97.46
Day 33 flexible (K = 20) 1.000 9216  93.81 97.15 9597
cylindrical (K = 20) 1.000 78.50 98.06 94.51 98.59
cylindrical (50% pop) 1.000 78.50 98.06 9451 98.59
Hudson River, s* = 20; high risk
Day 31 flexible (K = 20) 0.656 20.07 64.99 26.00 69.72
cylindrical (K = 20) 0.597 14.23 61.10 18.16 65.18
cylindrical (50% pop) 0.632 26.15 50.70 31.26 53.71
Day 32 flexible (K = 20) 0.964 32.17 73.59 41.81 78.36
cylindrical (K = 20) 0.933 24.13 61.55 31.58 66.69
cylindrical (50% pop) 0.949 42.90 50.27 51.50 53.96
Day 33 flexible (K = 20) 0.998 3491 79.39 46.27 84.17
cylindrical (K = 20) 0.994 2723 60.56 36.75 66.20
cylindrical (50% pop) 0.995 48.14 4734 58.54 5134

with 999 Monte Carlo replications, the flexible space-time
scan statistic took 87.7 minutes to run on a 3.06-GHz Pen-
tium 4 computer, while the cylindrical space-time scan
statistic took only 9.8 minutes.

A limitation of length may also prevent the analysis to
present large clusters of unlikely and very peculiar shapes.
These undesirable properties produced by maximum like-
lihood ratio might suggest the use of different criterion for
model selection, including some penalized likelihood
[20,29]. Also, for larger cluster seizes, the method is not

practically feasible and a more efficient algorithm is
needed.

In this paper, we considered the rght cylinder or rmght
prism of the cluster model, as an expansion of the cylin-
drical space-time scan statistic for a prospective disease
surveillance by Kulldorff [10]. This does not allow the
scanning window to adjust itself as the disease outbreak
grows or shrinks geographically over time. Recently, lyen-
gar has suggested using a square pyramid shape window
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which can model either growth (or shrinkage) and move-
ment of the disease cluster [30]. For the proposed flexible
space-time scan statistic, if we could consider the flexibil-
ity in both space and time, that is, evaluating all con-
nected subsets within a cylinder instead of ‘W in (4), we
can detect more arbitrarily shaped clusters in space-time.
For such an expansion, an efficient computational algo-
rithm will be needed for the scanning process, as well as a
more sophisticated mechanism for the interpretation of
such complicatedly shaped clusters. The implementation
and importance of such methods for disease surveillance

and monitoring, is an issue for future research.
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Kulldorff (1997) developed a circular spatial scan statistic for identifying the most
likely cluster of disease that maximizes the likelihood ratio and his software SaTScan
has been widely used for geographical disease cluster detection and disease surveil-
lance. To detect non-circular clusters which cannot be detected by Kulldorff’s circular
spatial scan statistic, several non-circular spatial scan statistics have been proposed.
However, it does not seem to be well recognized that these spatial scan statistics
tend to detect the most likely cluster much larger than the true cluster by swallowing
neighbouring regions with non-elevated risk. This paper proposes a new spatial scan
statistic free from such an undesirable property by modifying the likelihood ratio
so that it scans only the regions with elevated risk. Monte Carlo Simulation study
shows that the proposed circular spatial scan statistic is shown to have better ability
to identify the true cluster compared with Kulldorff’s one in all the cluster models
considered. The proposed circular spatial scan statisitc is illustrated with mortality

data from cerebrovascular disease in Tokyo Metropolitan area, Japan.

Key words: Cluster detection; hot-spot cluster; likelihood ratio test; Monte Carlo
testing; spatial epidemiology.

1. Introduction

Many different test statistics have been proposed for detecting disease clustering (Lawson
et al., 1999; Waller and Gotway, 2004; Kulldorff, 2006). Especially, the spatial scan statistic
proposed by Kulldorff and Nagarwalla (1995) and Kulldorff (1997) has been applied to a wide
variety of epidemiological studies and also to disease surveillance for the detection of disease
clusters along with SaTScan Software (Kulldorff et al., 2006a). The spatial scan statistic tries
to identify the most likely cluster (MLC) defined as the set of connected regions that attains the
maximum likelihood ratio. However, since it uses a circular window to scan the potential cluster
areas, it has difficulty in correctly detecting actual non-circular clusters. To detect arbitrarily
shaped clusters which cannot be detected by the circular spatial scan statistic, Duczmal and
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76 Tango

Assuncéo (2004), Patil and Taillie (2004), Tango and Takahashi (2005) and Assuncéo et al. (2006)
have proposed different spatial scan statistics. It should be noted that all of these scan statistics
are based on maximizing the likelihood ratio.

Tango (2000) showed an interesting example that Kulldorff’s circular spatial scan statistic
detected an unrealistically large MLC consisting of 70 regions, much larger than expected from
an observed disease map, by absorbing neighbouring regions with non-elevated risk of disease
occurrence in his simulated data. Furthermore, Tango and Takahashi (2005) have shown exam-
ples in which Duczmal and Assungio’s procedure detected quite large and peculiar shaped MLC
that had the largest likelihood ratio among the three different MLCs, identified by three different
spatial scan statistics, Kulldorff’s, Duczmal and Assungéo’s and Tango and Takahashi’s. These
results casted a doubt on the validity of the model selection based on maximizing the likelihood
ratio.

In this paper, we shall propose a new spatial scan statistic free from such an undesirable
property by modifying the likelihood ratio so that it scans only the regions with elevated risk. The
performance of the circular spatial scan statistic with the modified likelihood ratio is compared
with Kulldorff’s original one via Monte Carlo Simulations. The proposed circular spatial scan
statistic is illustrated with mortality data from cerebrovascular disease in the areas of Tokyo

Metropolis and Kanagawa prefecture in Japan.

2. Motivating Example

As a motivating example, we shall introduce here a part of Tango and Takahashi’s (2005)
results of the application of three spatial scan statistics — Kulldorff’s, Duczmal and Assuncao’s,
and Tango and Takahashi’s — to a simulated disease map in the areas of Tokyo Metropolis
and Kanagawa prefecture in Japan wherein there are m = 113 regions that comprise wards,
cities, and villages (Figure 1). The variability of regional populations is: 25 percentile = 56,704,
median = 142,320 and 75 percentile = 200,936. On this map, they simulated a random sample
of n = 235 cases by assuming the hot-spot cluster regions {14,15,26,27} in which each region’s
relative risk was set to constant § = 3.0 and the cases to be Poisson distributed. Under the null
hypothesis of no clustering, the expected number of cases for each region was set proportional
to the population (see equation (2)). For comparison purpose, they set the maximum number
of regions for the MLC to be K = 15 and used 999 replications for the Monte Carlo hypothesis
testing (see section 3 for details). The results are shown in Table 1 and are summarized as

follows.

¢ Kulldorff’s circular spatial scan statistic detected 2 regions {14,15} as the MLC with log like-
lihood ratio LLR= 20.1 and Monte Carlo p-value p = 1/(999 + 1) = 0.001, and the estimated
relative risk 4 = 3.47.

¢ Tango and Takahashi’s flexible spatial scan statistic detected 5 regions {14,15,26,27,33} as

Jpn J Biomet Vol. 29, No. 2, 2008
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A Spatial Scan Statistic with a Restricted Likelihood Ratio 7

Fig. 1. An entire study population for simulation studies. The 113 regions that comprise
wards, cities, and villages in the areas of Tokyo Metropolis and Kanagawa prefecture in Japan.
The region number used in the text is shown. The shaded area was detected as the most likely
cluster by Duczmal and Assungao’s spatial scan statistic (see section 2).

the MLC with LLR= 29.7 and p = 0.001, and # = 3.41.

e Duczmal and Assungao’s spatial scan statistic detected 15 connected regions {14, 15, 24, 26,27,
31,32,33,48,54,69,77,78,90,110} as the MLC (shaded area in Figure 1) with LLR= 31.8
and p = 0.001, and 6 = 2.41.

All these spatial scan statistics rejected the null hypothesis of “Hg: there are no clusters,”
but detected different sets of connected regions as their MLC. In this example, Kulldorff’s cir-
cular spatial scan statistic detected a small cluster consisting of only two regions out of four
hot-spot cluster regions. In terms of maximizing the likelihood ratio, Duczmal and Assuncdo’s
spatial scan statistic is the best. However, their spatial scan statistic detected the MLC of
a peculiar shape that was considerably larger than the true cluster, which includes eight re-
gions {31,48,78,32,90,69,24,110} where each region’s relative risk is not statistically signifi-
cantly larger than 1 at 0.05 level. Table 1 shows the individual region’s one-tailed mid p-value

Jpn J Biomet Vol. 29, No. 2, 2008
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Table 1. Regions detected as the most likely cluster by applying three procedures, Kulldorff’s
circular spatial scan, Tango and Takahashi’s flexible spatial scan and Duczmal and Assuncao’s
spatial scan, to a simulated random sample n = 235 from the hot-spot cluster model. In
the simulation, the true cluster is assumed to be {14,15,26,27} with constant relative risk
6 =3.0. The maximum length (=number of regions) of cluster was set to be K = 15 (Tango
and Takahashi, 2005).

No. region observed expected relative risk One-tailed Cumulative statistics

no. mno. cases No. cases (true) p; LLR O/E
1 14 14 3.794 3.69(3)  0.000027 8.3 3.69
15 21 6.283 3.34(3) 0.000002  20.1 3.47
Circular’s MLC = {14,15}, LLR = 20.1, = 3.47
3 26 6 1.650 3.64(3)  0.004 24.1 3.50
4 27 6 1.964 3.05(3) 0.010 27.3 3.43
5 33 4 1.257 3.18(1) 0.024 29.7 3.41
Flexible's MLC = {14,15,26,27,33}, LLR = 29.7, § = 3.41
6 31 3 2.346 1.28(1) 0.313 28.1 3.12
¥ 48 1 0.696 1.44(1) 0.328 27.8 3.06
8 78 2 1.485 1.35(1)  0.312 27.2 2.93
9 32 5 4.142 1.21(1) 0.318 25.2 2.63
10 7 5 2.109 2.37(1)  0.042 27.2 2.60
11 90 5 2.312 2.16(1)  0.057 29.0 2.57
12 69 3 1.419 2.11(1) 0.114 30.0 2.55
13 24 8 5.534 1.45(1) 0.152 30.0 2.37
14 110 1 0.256 3.91(1) 0.127 30.7 2.38
15 54 1 0.045 22.20(1) 0.022 31.8 2.41

Duczmal et al.’s MLC = {14,15,26,27,33,31,...,54}, LLR = 31.8, § = 2.41

defined later in (7). This surprising result casts a doubt on the validity of the model selection

based upon maximizing the likelihood ratio. Such a doubt can also be seen in Tango and Taka-
hashi’s simulation results of Kulldorff’s circular spatial scan statistic that had non-negligible
probabilities of detecting much longer clusters than the true cluster.

3. A New Spatial Scan Statistic

Consider the situation where an entire study area is divided into m regions (for example,
county, enumeration districts, etc.). The number of cases in the region i is denoted by the
random variable N; with observed value n; (i =1,...,m) and n =ny + --- + nm. Under the null
hypothesis Hy of no clustering, the N; are independent Poisson variables such that

Hy: E(N,) = 5;, N; ~ POiS(&i), = 1,....m (l)

where Pois(§) denotes Poisson distribution with mean ¢ and the £; are the expected number of
cases in the region ¢ under the null hypothesis. For the calculation of the expected number of cases
adjusted for the potential confounders such as age, we can use an indirect standardization or a
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Poisson mixed-effects regression model (Kulldorff et al., 2006a). If we can ignore the confounders,
the & can be calculated as
wi

i = Ne=m——, t=1,...,
& nZL’L,war i m (2)

where w; denotes the population size in the region 7. To specify the geographical position of each
region, we will use the coordinates of the administrative population centroid.

Under this situation, Kulldorff’s circular spatial scan statistic imposes a circular window
Z on each centroid. For any of those centroids, the radius of the circle varies continuously
from zero upwards until 50 percent of the population at risk is covered, which is the standard
option for SaTScan. If the window contains the centroid of a region, then that whole region
is included in the window. In total, a very large number of different but overlapping circular
windows are created, each with a different location and size, and each being a potential cluster.
Let Zix (k=1,...,K;) denote the window composed by the (k — 1)-nearest neighbours to region
i. Then, all the windows to be scanned by the circular spatial scan statistic are included in the
set

Z={Za|1<i1<m, 1<k< K}

Under the alternative hypothesis, there is at least one window Z € Z for which the underlying
risk is higher inside the window when compared with outside. In other words, we are considering

the following hypothesis testing:

Hy: E(N(Z)) =¢(Z), forallZe 2
Hy: E(N(Z)) > &(Z), forsomeZ e Z (3)

where N() and £() denote the random variable for the number of cases and the null expected
number of cases within the specified window, respectively. For each window, it is possible to
compute the likelihood to observe the observed number of cases within and outside the window,
respectively. Under the assumption of Poisson distribution (1), Kulldorff’s likelihood ratio test
statistic is given by

3 n(Z) )“‘z’ (n —n(Z))"‘"(z) (n(Z) n—n(Z)) _
mu@-m(53) (Hm) (5> #
where n() denotes the observed number of cases within the specified window and I() is the

indicator function. The window Z" that attains the maximum likelihood ratio is defined as the

most likely cluster (MLC). However, it seems something wrong to me that the likelihood ratio
defined above does not take individual observed relative risk n;/£; into account even if the MLC
includes some regions with non-elevated risk, such as a region with n;/€; = 1. This property

leads to the following proposition.

Jpn J Biomet Vol. 29, No. 2, 2008
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Proposition:
In the process of scanning the window based on sup Ax(Z), there is a possibility that there
ZeZ
exists two disjoint windows Z; and Z; and several regions {i1},..., {i-} such that
Ak ({Z1,22,{ir},...,{ir}}) > max{Ax(Z1), Ak (Z2)} (5)
where (Z) (Z)
n(Za n(Z2 ni ’
Pool s, >1 and 2 <1(i=1,...,r
§z) " " €2 B ;

For example, we can easily consider the following example:

An example: Suppose that n =200 and two windows Z1 (n(Z:) = 30, £(Z:) = 12, log Ak
(Z1) = 8.88) and Z2 (n(Z2) = 29, §(Z2) = 13, log Ak (Z2) = 7.97) were created in the process
of scanning windows. Let 5-nearest neighbours to Z; be {i1},{42},...,{1}, Z2 where four
regions have non-elevated risk such as (n;; =4, &, =5), (ni; =6, &, =6), (niz; =0, &z =
3), (niy =8, &, =9). In this case, we have

log Arc({Z1,Z2,{ir},...,{ia}}) = 9.58
which satisfies equation (5).

The above proposition and example mean that if we allow any window and/or region to be
a candidate for the MLC it causes the possibility of detecting an unrealistically large MLC by
swallowing up neighboring regions with non-significantly elevated risk due to random fluctuation
or with non-elevated risk as is shown in section 2. Therefore, to avoid such undesirable phe-
nomena, we propose the following restricted likelihood ratio test statistic by taking individual

region’s risk into account:

3 (Z)\"? (n—n(Z)\" P  (n(Z) n—n(2) _
=g (33) (3=55) (@ >n—§(Z)),.611“”’<“” "

where p; is the one-tailed p-value of the test for Ho: E(N;) = &; given by the mid-p value
: 1 :
pi =Pr{N; > n;+1| N; ~ Pois(&)} + 5 Pr{N; = n; | N; ~ Pois(&:)} (7

and a; is the pre-specified significance level for the individual region. The reason why the mid-p
value was used is to adjust for conservatism of the ordinary definition of p-value for small &;. In
this formulation, we devised I(p; < @) as a screening criterion and we do not mean that we are
performing multiple hypothesis tests. Therefore, as in the case of the Kulldorff’s circular spatial
scan statistic, the restricted likelihood ratio test sup Ar(Z) of the nominal ag level of 0.05, say,
can be based on its distribution derived from azfaz;ge number of Monte Carlo replications of
the data set generated under the null hypothsis. Under this framework, the p-value is obtained

Jpn J Biomet Vol. 29, No. 2, 2008
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through Monte Carlo hypothesis testing (Dwass, 1957), by comparing the rank of the maximum
likelihood from the real data set with the maximum likelihoods from the random data sets. If
this rank is R, then p = R/(1 + #(replications)).

Well, how is ) chosen? If a; is chosen too small then clusters might be missed or be too
small, however, if chosen too large then it becomes equivalent to the Kulldorff’s spatial scan
statistic. So, we shall examine how sensitive the proposed method is to the selection of a; and
the optimal range of a, by using five different values, 0.05, 0.10, 0.20, 0.30, 0.40, via Monte Carlo
simulations in section 5, which might depend on both the cluster size and risk size.

It should be noted that the restricted likelihood ratio test statistic (6) is set to scan only
for clusters with high relative risk. It also can be set to scan only for clusters with low relative
risk by replacing the inequality “>” of the indicator function I() which compares the observed

relative risks within and outside the window Z with “<” and using the following mid-p value:
Di = PI{N,' <n;—1 I N; ~ POiS(f{)} + %PT{N.' =N l N; ~ POiS(E.‘)}. (8)

When we would like to scan for either high or low relative risk, we have only to delete the indicator
function regarding the comparison of the observed relative risks and replace a; with a;/2 in
equation (6) using either mid-p value. Needless to say, maximizing the restricted likelihood ratio
Ar(Z) can be applied not only to the circular spatial scan statistic but also to non-circular spatial
scan statistics such as Duczmal and Assungao’s (2004) and Tango and Takahashi’s (2005).

4. Illustrations

As an illustration, we shall apply the proposed circular spatial scan statistic and Kulldorff’s
circular spatial scan statistic to the mortality data from cerebrovascular disease (female, 1993-
1997) in the areas of Tokyo Metropolis and Kanagawa prefecture in Japan. Total observed
number of deaths from female cerebrovascular disease for five years was 45,700 in this area.
Regarding the restriction of the maximum length for the MLC, we shall select a standard option
of SaTScan that the radius of the circle varies continuously from zero upwards until 50 percent
of the population at risk is covered. P-value of the spatial scan statistics is calculated using
9999 replications for the Monte Carlo hypothesis testing. Significance levels considered are
ap = 0.05 and e = 0.05, 0.10, 0.20, 0.30, 0.40. Results are shown in Table 2 and summarized as
follows: Irrespective of significance levels o chosen, the proposed circular spatial scan statistic
detected the same MLC consisting of six regions {23,22,7,8,6,18} (these region numbers are
shown in Figure 1) with logAr (=logAx) = 126.6, § =1.23, and p= 1/(999 + 1) = 0.001. All
of these six regions within the MLC are shown to have highly significantly elevated risk. In
contrast, Kulldorff’s circular spatial scan statistic added six more regions {5,1,17,21,2,16} to
the MLC detected by the proposed circular spatial scan statistic and finaly detected a larger
MLC consisting of 12 regions with log Ax = 140.6 (log Az = 0), § = 1.17, and p = 0.001. H‘owever,
three regions {5,1,2} do not have significantly elevated risks. Especially, the region {5}, called
Jpn J Biomet Vol. 29, No. 2, 2008
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Table 2. The most likely clusters detected at ag = 0.05 by the proposed circular spatial
scan statistic and Kulldorff’s circular spatial scan statistic in their application to the mortality
data from cerebrovascular disease (female, 1993-1997) in the areas of Tokyo Metropolis and
Kanagawa prefecture in Japan. The MLC detected by the proposed procedure was the same
irrespective of values of a; = 0.05, 0.10, 0.20, 0.30, 0.40.

No. region observed expected relative risk One-tailed

no. nNo. cases no. cases Pi
1 23 1297 1072.3 1.21 1.5x10" !
2 22 1266 1013.2 1.25 1.0x10"14
3 18 738 522.7 141 <10x10"Y7
4 7 737 620.4 119 2.7x10°°
5 8 896 780.6 115 2.7x107%
6 6 678 550.5 123 7.7x1078
The proposed circular scan’s MLC = {23,22,18,7,8,6}
log A = 126.6, § = 1.23, p-value = 0.001
T 548 566.3 0.97 0.778
8 1 164 144.7 1.13  0.057
9 17 1110 999.3 1.11  0.00029
10 21 1530 1335.1 115 9.2x10°8
11 2 267 251.3 1.06 0.161
12 16 798 743.4 1.07  0.024

Kulldorff’s circular scan’s MLC = {23,22,18,7,8,6,5,1,17,21, 2,16}
log A = 140.6, 6 = 1.17, p-value = 0.001

“Bunkyo-ku,” is well known as “healthy district” in this area and has a low relative risk of 0.97
and ps = 0.778 as expected. Therefore, it seems unacceptable to residents in “Bunkyo-ku” that
their region is added to the MLC.

It should be noted that three regions {17,21,16} have highly significant risk and are adjacent
to the MLC detected by the proposed procedure. Therefore, the window {23,22,7,8,6,18,17,21,
16} could be a candidate for the MLC. In fact, its log likelihood ratio is log At = 149.8 which
is larger than that of two MLCs. Needless to say, this non-circular window cannot be detected
by circular spatial scan statistics and thus may be detected by such non-circular spatial scan
statistic as that proposed by Duczmal and Assuncéo (2004) or Tango and Takahashi (2005) by
applying the restricted likelihood ratio test statistic.

5. Power Comparisons
In this section, we shall compare the power of Kulldorff’s circular spatial scan statistic
with that of the proposed circular spatial scan statistic via Monte Carlo simulations at signif-
icance level ap = 0.05 and examine the effect of the choice of a; by using five different values
a1 = 0.05, 0.10, 0.20, 0.30, 0.40. As an entire study population, we will use the area of Tokyo
Metropolis and Kanagawa prefecture in Japan (Figure 1), described in section 2. In our simula-
tion study, we consider two extremes regarding the sample size n: one assume rare disease with
Jpn J Biomet Vol. 29, No. 2, 2008
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total observed number of cases n = 200, a similar sample size used in section 2 and the other
assumes non-rare disease with n = 45, 700, the same n for the cerebrovascular disease illustrated
in section 4.

The same null hypothesis is used throughout, where the relative risk is set to one for each
region and case locations are independent of each other. Although the N; are independent Poisson
random variables, by conditioning on the total number of cases N; = n, the disease locations
are the values of a random sample of size n from a multinomial distribution with parameter
(&1/n,...,&m/n). We generated 10,000 random data sets with n cases and these are used to
estimate the upper 100 percent point for significance. Under each alternative hypothesis, we
generated 1,000 random data sets with n cases.

Alternative hypotheses H; considered here assume a single cluster R = {i1,...,%s» } with
values of relative risk Or = (6;,,...,60:,.), i.e.,
H,: N‘ik NPOiS(B;‘,‘E,'k), k= 1,...,8‘r (9)

where s* denote the size or length of the cluster assumed in the simulation. As cluster models,

we considered here two types of clusters, namely, “clinal” and “hot-spot” clusters, defined by

Wartenberg and Greenberg (1990). Clinal clusters have a monotone decrease in disease risk as dis-

tance from the point source increases. Hot-spot clusters are characterized by a constant elevated

disease risk, i.e., #;; =---=6; . =0. Under Hi, we generated a random sample (n,,...,nm) of

size n from a multinomial distribution with parameter (qi,...,qm) where
Tiw;

Si=cm -
Zk:l TrWk

(10)

where
3;‘ fieR
m =
1, otherwise.

In order to compare the performance of the spatial scan statistic based on Monte Carlo
simulation, we shall use the bivariate power distribution P({, s) proposed by Tango and Takahashi
(2005), which is classified according to the length ! of the significant MLC and the number s of
the assumed hot-spot regions included therein. It is estimated by

#{significant MLC has length | and includes s true regions}

P(l,s) = #{trials for each simulation} ' -

where 1 <! and 0 < s < min{l,s"}. Especially, we are interested in the power around the point
(I=s", s=3s") and P(s",s"), the probability of exact detection. Then, the usual power is defined
as the sum of P(l,s):

Imax min{l,s*}

P(+,4)=)_ > P(,s)=1-P(0,0) (12)

=1 s=0
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where Imax denotes the maximum length | observed in the simulation and P(0,0) denotes the
probability that the spatial scan statistic cannot detect any clusters. However, when the support
of the bivariate power distribution is widely scattered over the plane (l,s), we do not think that
we can use the usual power as the primary criterion to evaluate the performance because the
performance of the spatial scan statistic is not only to reject the null hypothesis but also to
identify the cluster accurately.

5.1 Case of Rare Disease

We examined several sets of cluster models with different relative risk 8z and cluster length
s" and we shall report here the results of the following two hot-spot clusters and two clinal
clusters since these models provided us with typical results.

1. Hot-spot cluster A = {14,15,20} with relative risk 84 = (3.0,3.0,3.0), (s* = 3).
2. Clinal cluster B = {14,15,26,27} with relative risk 85 = (2.5,3.0,3.0,2.5), (s* = 4)
3. Hot-spot cluster C = {1,4,5,12,13,14,15,16, 19,20} with relative risk
8c = (2.0,2.0,2.0,2.0,2.0,2.0,2.0,2.0,2.0,2.0), (s* = 10)
4. Clinal cluster D = {12,14,15,20,26,27,31,33,40,42} with relative risk

O =(1.8,1.8,1.8,2.2,2.4,2.4,2.2,2.2,2.0,1.8), (s* = 10)

Two clusters A and B are examples of a very sharp increase in risk in a very small area in which
the increase in each region within the cluster has more than 65% chance of being significant at
a1 = 0.05 level. The clusters C and D are, on the other hand, examples of smaller increase in
risk in a larger area consisting of s = 10 regions, in which the increase in each region within the
cluster has less than 50% chance of being significant at a; = 0.05 level. Regarding the shape of
cluster, the clusters A and C are circular clusters that can be in the set of the circular windows
and is expected to be identified exactly by the circular spatial scan statistic. The clusters B and
D are non-circular clusters that are not in the set of the circular windows and thus cannot be
identified exactly by the circular spatial scan statistic. The estimated bivariate power distribution
P(l,s) x 1000 is shown in Tables 3-6 for each of the three cluster models, respectively, in the form
of cross table classified by I (“length” in tables) and s (“include” in tables).

Table 3 shows a good characteristic of the proposed circular spatial scan statistic. Namely,
it could detect the hot-spot circular cluster A with length s* = 3 considerably accurately with
powers P(3,3) = 0.834, 0.864, 0.767, 0.755, 0.748 for a1 = 0.05, 0.10, 0.20, 0.30, 0.40, respectively.
When we also evaluate the power of detecting the true cluster plus additional one region, its power
was also high without reference to the value of a, i.e., P(3,3) + P(4,3) = 0.882, 0.976, 0.957,
0.918, 0.906 for oy = 0.05, 0.10, 0.20, 0.30, 0.40, respectively. The maximum length of the MLCs
among all the results was only [ = 8. On the other hand, Kulldorff’s circular spatial scan statistic
also had relatively high powers such as P(3,3) =0.672 and P(3,3) + P(4,3) = 0.819. However,
the estimated bivariate power distribution had a long tail to the right on the line s = 3 and the

maximum length was 47. Usual power of the proposed circular spatial scan statistic was larger
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Table 3. Estimated bivariate power distributions P(l, s) x 1000 of Kulldorff’s circular spatial
scan statistic and the proposed circular spatial scan statistic for the hot-spot circular cluster
A = {14,15,20} with relative risk 8 4 = (3.0,3.0,3.0) and n = 200. ap = 0.05 and 1000 trials
were carried out.

Kulldorff’s circular scan Proposed circular scan
Length Include s o1 Length Include s usual power
1 hot-spot regions l hot-spot regions
o 1 2 3 g 1 2 3
111 0 0.05 1|1 0O 0.885
210 0 0 211 0 0
3{0 0 0 @672 30 0 0 83
410 0 0 147 410 0 0 48
5|10 0 0 38 5(0 0 0 1
6|10 0 O 26 0.10 111 0 0.984
710 4 0 8 2|10 0 0
8|10 0 O 3 3|11 0 0 864
9]0 0 O 1 410 0 0 112
W0 o '9 3 510 0 0 5
1119 0 0 3 6|10 0 O 1
1220 0 0 13 0.20 111 0 0.978
13.{0 0 D 15 210 0 0
1410 0 0 4 311 0 0 7867
15(0 0 © 2 410 0 0 190
1620 |0 0 O 13 510 0 o0 16
21-25 (0 0 O 6 6|0 0 O 3
26-30 (0 0 O 1 0.30 111 0 0.978
31-35 ([0 0 O 2 210 0 o0
36-40 (O 0 O 3 311 0 0 755
41-45 |0 0 O 1 410 0 0 163
4647 [0 0 O 1 5|0 0 0 42
6|0 0 0 16
0.40 1] 0 0.978
2|10 0 0
310 0 0 748
410 0 0 158
5|10 0 0 45
6|10 0 0 22
780 0 0 4
Total [ 1 0 0 962

usual power = 0.963

than that of Kulldorfl’s circular spatial scan statistic except for the case of a3 = 0.05.

Table 4, on the other hand, shows that both Kulldorff’s and the proposed circular spatial
scan statistics had zero probability P(4,4) = 0/1000 for the exact detection since the clinal cluster
B is non-circular. In this case, the support of the estimated bivariate power distribution of Kull-
dorff’s circular spatial scan statistic was scattered over the plane {(I,s): 1 > s, 1 =1,2,...,64, s =

0,2,3,4} with the highest P(2,2) =0.311. This type of simulation results are quite typical of
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Table 4. Estimated bivariate power distributions P(l,s) x 1000 of Kulldorff’s circular spatial
scan statistic and the proposed circular spatial scan statistic for the clinal non-circular cluster
B = {14,15,26,27} with relative risk 8 g = (2.5,3.0,3.0,2.5) and n = 200. ag = 0.05 and 1000
trials were carried out.

Kulldorff’s circular scan Proposed circular scan
Length Include s a1 Length Include s usual power
! clinal regions l clinal regions
0 1 2 3 4 0 1 2 3 4
1{5 0 0.05 1({9 0 0.748
2(0 0 311 214 0 709
310 0 6 0 3|0 1 25 0
4|10 0 5 0 0 0.10 118 0 0.754
5|0 0O 2 0 0 213 0 689
610 O 1 0 0 3|12 2 41 0
TT0 0 1 15 0 411 0 8 0 o0
8|0 0 5 7 18 5|1 0 0 0 0
910 0 1 1 9 0.20 I | T8 0.685
10| 0 O 2 15 5 213 0 602
11|10 0 1 1 3 312 1 36 0
12|10 0 0 3 32 4 11 1 26 0o 0
1310 0 1 2 35 5(1 0 3 0 0
14 (0 0 0 4 16 60 O 0 2 0
1510 0O 0 1 2 0.30 116" 0 0.689
16-20 | 0 0O 2 2 53 213 0 6588
21-25 | 0 O 0 0 43 |2 I 32 0
2630 | 0 O 0 0 16 4: 11 1 30 0 0
31-35 | 0 O 0 0 15 511 o0 4 0 0
36-40 | O O 0 0 5 6 (0 0 5 1 0
41-45 | 0 O 0 0 5 710 0 0 0 o0
46-50 | 0 O 0 0 g 810 1 1 1 2
51-55 | 0 O 0 1 1 0.40 115 0 0.693
5660 (0 O 0 0 0 212 0 583
61-64 | 0O O 0 1 1L 311 &L 30 0
4|1 X 29 0 0
5|1 © 7 0 0
6|10 0 4 0 0
710 0O 1 3 0
8|10 0 2 4 2
910 0 0 2 2
10-12 (0 O 0 2 10
Total { 5 0 338 53 266

usual power = 0.662

Kulldorff’s circular spatial scan statistic when applied to non-circular clusters in our experi-
ence. In contrast, the proposed circular spatial scan statistic was shown to have higher powers
for detecting a half of the true cluster, i.e., P(2,2)+ P(3,2) = 0.733, 0.730, 0.638, 0.620, 0.613,
for a; = 0.05, 0.10, 0.20, 0.30, 0.40, respectively. Incidentally, the results that both spatial scan
statistics had the highest detection probability at ({,s) = (2,2) seem to be due to the geograph-
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Table 5. Estimated bivariate power distributions P(l,s) x 1000 of Kulldorff’s circular spatial
scan statistic for the hot-spot circular cluster C = {1,4,5,12,13,14,15,16,19,20} with relative
risk 8¢ = (2.0,2.0,2.0,2.0,2.0,2.0,2.0,2.0,2.0,2.0) and n = 200. ap = 0.05 and 1000 trials were
carried out.

Kulldorff’s circular scan

Length Include s
l hot-spot regions
0 1 2 3 4 5 6 7T 3 9 10
115 0
2|8 0o
10 0 O @
410 0 0 O O
510 0 0 9 0 O
6|0 0 0 0 1 0 0
7|0 0 0O O O O O O
8|0 0 0 0 O O O O 0
9|10 0 0 0O O O 0 O 0 0
wjo o 0 0 0 O 0 O 0 0 323
1({0 0o 0 0 0 O 0 O 9 0 56
12|10 0o 0 0 O 0 0 0O 12 0 23
3|0 0 0 0 O O O O 5 4 97
4(0 0 0 0 0 O 0 O 5 1 16
5|0 0 0 0 0 0 O O 0 3 32
10 0 0 6 90 0 0 0 0 5 19
7|0 0 0 0 O O O O 0 1 28
8|0 0 0 0 O O O O 0 0 28
90 0 0 0 0 0O O O 0 0 12
2|0 0 0 0 0 0 0 0 0 0 9
2.2 |0 0O O O O O O O 0 0 38
26-30 |0 0 0 0 0O O O O 13 0 21
31:33 |0 0 O O O O O O 4 0 11
3640 (0 0 O O O O 0 O 1 6 8
4145 (0 0 0 0 O O O O 0 0 5
4650 {0 0 O O O O O O 1 0 4
560 0 0 0 O 0O O O 0 0 1
Total [ 65 0 0 O 1 O 0 O 50 20 731
usual power = 0.807

ical configulation of the non-circular cluster B. In this case, the proposed circular spatial scan
statistic had larger usual powers than Kulldorff’s circular spatial scan statistic without reference
to the value of ;. Judging from the results shown in Tables 3-4, the result with a; = 0.10
could be the best, however, the results with a; = 0.20 ~ 0.40 were also shown to be better than
Kulldorft’s results.

Tables 5-6 show the results for the hot-spot circular cluster C where the affected area of
regions is larger and the relative risk is smaller. In this instance, Kulldorff’s circular spatial
scan statistic was expected to detect changes in larger area that may not be obvious from each

region individually and had surely high usual power 0.807 with the exact detection probability
Jpn J Biomet Vol. 29, No. 2, 2008
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Table 6. Estimated bivariate power distributions P(l,s) x 1000 of the proposed circular spa-
tial scan statistic for the hot-spot circular cluster C = {1,4,5,12,13,14,15,16,19,20} with rela-
tive risk 8¢ = (2.0,2.0,2.0,2.0,2.0,2.0,2.0,2.0,2.0,2.0) and n = 200. ag = 0.05 and 1000 trials
were carried out.

Proposed circular scan

a1 Length Include s usual power
l hot-spot regions
2 3 4 5 6 7 8 9 10
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P(10,10) = 0.323. However, the support of the estimated bivariate power distribution was again
scattered over the broad area on the plane {(I,s): I > s, =1,2,...,51, s =0,4,8,9,10} by swal-
lowing up many additional regions. In contrast, Table 6 shows that the support of the proposed
circular spatial scan statistic was distributed in a relatively confined area on the plane (I,s).
However, the results with «; = 0.05 and 0.10 were miserable, i.e., their usual power was quite
low 0.039 and 0.161, respectively. As the value of o, increases, the usual power increased to
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0.548, 0.741 and 0.744 for oy = 0.20, 0.30 and 0.40, respectively. Although the probability of
detecting the cluster exactly was zero without reference to the value of a1 chosen, the proposed
circular spatial scan statistic was shown to have high probability of pinpointing eight or nine re-
gions out of s* = 10 regions, i.e., P(8,8) + P(9,9) = 0.713, 0.703 for a; = 0.30, 0.40, respectively.

Tables 7-8 shows the results for the clinal non-circular cluster D where the affected area
of regions is larger and the relative risk is smaller. Due to the non-circular shape, 1) both

Kulldorff’s and the proposed circular spatial scan statistic had zero probability of detecting the

Table 7. Estimated bivariate power distributions P(l,s) x 1000 of Kulldorff’s circular spatial
scan statistic for the clinal non-circular cluster D = {12,14,15,20,26,27,31,33,40,42} with
relative risk 8p = (1.8,1.8,1.8,2.2,2.4,2.4,2.2,2.2,2.0,1.8) and n =200. ap =0.05 and 1000
trials were carried out.

Kulldorff's circular scan

Length Include s
l clinal regions
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usual power = 0.656
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Table 8. Estimated bivariate power distributions P(l,s) x 1000 of the proposed circular spa-
tial scan statistic for the clinal non-circular cluster D = {12,14,15,20,26,27,31,33,40,42} with
relative risk 8p = (1.8,1.8,1.8,2.2,2.4,2.4,2.2,2.2,2.0,1.8) and n =200. o9 =0.05 and 1000
trials were carried out.

Proposed circular scan

@1 Length Include s usual power
l clinal regions
0 1 2 3 4 5 6 7 8 9 10
0.05 1112 0 0.039
2 6 3 0
3 0 0 0 O
4 0o 0o 0 0 18
0.10 1 6 0 0.285
2 4 1 0
3 2 0 0 0
4 0 0 0 0 266
5 0O 0 0 O 6 0
0.20 1-3 9 1 0 0 0.496
4 0 1 0 1 410
b 0 0 o0 3 68 0
6 0o 0 0 o 0 1 0
7 0 0 0 0 0 0 0 o
8 0 0 0 O 0 0 2 0 0
0.30 1-3 7 0 0 © 0.513
4 0 1 0 1 356
5 0o 0 0 3 0 0
6 0 0 0 O 0 101 0
7 0 0 0 © 0 17 0 0
8 o 0 0 0 1 0 23 0 O
9 0O 0 0 0 0 0 3 0 0 0
0.40 1-3 5 0 0 0 0.512
4 0 1 0 0 353
5 0o 0 0 2 0 0
6 0 0 0 0 0 97 0
7 0o 0o 0 0 1 0 0 0
8 0 0 0 0 4 0 41 0 0O
9 0 0 0 0 1 0 4 0 0 O
10 0o 0 0 O 0 0 0o 0 0 0 0
11 0o 0 0 0 0 0 2 0 0 0 0
12 0 0 0 0 0 0 0 0o 0o 0 0
13 0 0 0 0 0 0 0 0 0 1 0

cluster D exactly and 2) the support of the Kulldorff’s estimated bivariate power distribution
was scattered over the broader area than that for the cluster C on the plane {(l,s): [ > s, | =
1,2,...,62, s =0,4,5,...,10} by swallowing up many additional regions. Similar to the results
for the cluster C, the support of the proposed circular spatial scan statistic was distributed in a
relatively confined area on the plane (I,s) but the result with a; = 0.05 was also miserable, i.e.,

the usual power was quite low 0.039. As the value of @) increases, the usual power increased
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to 0.285, 0.490, 0.513, and 0.512 for & = 0.10, 0.20, 0.30 and 0.40, respectively. The results that
the highest probability was observed at (I,s) = (4,4) irrespective of c also seems to be due to
the geographical configulation of the cluster D.

The results shown in Tables 5-8 suggest that, for larger clusters with smaller relative risk, 1)
the usual power of Kulldorff’s circular spatial scan statitic was higher than that of the proposed
circular spatial scan statistic, 2) but the Kulldorffi’'s MLCs tended to be much larger than the
true cluster to try to include the true cluster within the MLC, and 3) the proposed circular
spatial scan statistic had higher powers of detecting a part of the true cluster when a; = 0.30 or
0.40.

5.2 Case of Non-rare Disease

As an example of cluster models of non-rare diseases, we adopted the most likely cluster E =
{6,7,8,18,22,23} with s = 6 to be detected by the proposed scan statistic in section 5. The total
observed number of cases in the study area is assumed to be n = 45,700 and then the expected
number of cases per region is roughly on the average 400. As the relative performance of the
proposed scan statistic compared with Kulldorff’s scan statistic has been quite similar regardless
of the cluster type in our experience, we considered here a hot-spot cluster and changed the
value of constant relative risk to examine the effect of the size of relative risk on the performance
of both scan statistics. As the value of constant relative risk # for the cluster E, we have
chosen five values 6 = 1.04, 1.06, 1.08, 1.10, 1.12 so that the probability of being significant at
0.05 level under individual region’s test within the cluster has a range from 24 ~ 37%(6 = 1.04)
to 85 ~ 99%(6 = 1.12). In Table 9, we omitted the estimated bivariate power distributions for ease
of comparison and, instead, showed three measures, 1) the exact detection probability P(6,6), 3)
usual power and 4) max [ extracted from the estimated bivariate power distributions. As to the
proposed scan statistic, we selected three results with a; =0.1,0.2,0.3. Table 9 shows that the
proposed scan statistic performed better than Kulldorff’s scan statistic for oy = 0.20 and 0.30.
5.3 Choice of oy

Tables 3-9 indicate that the probability of detecting irrelevant regions outside the true cluster
tends to get larger as the value of a1 becomes larger in all the results. Tables 3-4 show that the
case of oy = 0.10 could be the best but the case of a; = 0.20 ~ 0.40 were also good. Tables 6,
8 show that the case of a1 = 0.30 or 0.40 could be the best. Table 9 shows that the case of
a1 = 0.20 could be the best for § = 1.04 ~ 1.08 and the case of &; =0.10 could be the best for
@ = 1.10 ~ 1.12. However, the results with o = 0.20 or 0.30 were also shown to have good results
for all the values of 8 considered.

These results suggest that, for ap = 0.05, we might have the following guidance:

1. @1 =0.10 ~ 0.20 to detect small clusters with a sharp increase in risk.
2. a; = 0.20 ~ 0.30 to detect small to middle-sized clusters with a moderate increase in risk.
3. a; =0.30 ~ 0.40 to detect larger clusters with a slight increase in risk.
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Table 9. Three sorts of powers extracted from the estimated bivariate power distributions
P(l,s) x 1000 of Kulldorff’s circular spatial scan statistic and the proposed circular spatiai scan
statistic for the hot spot circular cluster E = {6,7,8,18,22,23} with the common relative risk
6, where 6 = 1.04, 1.06, 1.08, 1.10, 1.12 and n = 45,700. ap = 0.05 and 1000 trials were carried
out. Bold numbers indicate the optimal values.

] Prob.*  Kulldorff’s circular scan Proposed circular scan
(%) P(6,6) Usual max a; P(6,6) Usual max
power l power l
1.04 24 ~37 0.047 0.167 30 0.10 0.061 0.111 7T

0.20 0.106 0.208 9
0.30  0.090 0.205 10

1.06 39~62  0.245 0.556 29 0.10 0.337 0.448 8
0.20 0.421 0.634 10
0.30  0.351 0.630 10

1.08 &§7~83  0.492 0.897 27 0.10 0.729  0.857 8
020 0678 0.932 10
0.30 0.573 0.931 10

.10 73~95 0.641 0.992 18 0.10 0.8756  0.985 8
0.20 0.757 0.996 10
030 0.672 0.996 10

1.12 85~99  0.722 1.000 18 0.10 0.901 0.999 8
020 0.791 1.000 9
030 0.737 1.000 10

*: The range of probability of being significant at 0.05 level under
individual region’s test within the cluster.

Other simulation studies considering other cluster models resulted in a similar finding (data not
shown). Although the risk size and cluster size assumed in a geographical cluster detection study
or disease surveillance might depend on their purposes, it seems to me that we can set a; = 0.20
as a default based on our simulation results.

6. Discussion

Our work is motivated by a surprising result observed in a simulation study done by Tango
and Takahashi (2005) where Duczmal and Assungéao’s spatial scan statistic (2004) detected quite
large and unlikely peculiar shaped clusters that had the largest likelihood ratio among the three
spatial scan statistics. To avoid such an undesirable property of the likelihood ratio test statistic
proposed by Kulldorff (1997), Tango and Takahashi discussed a possibility of using penalized
likelihood approach where a penalty is considered for the complezity of the cluster shape. Kull-
dorff et al. (2006b) explored an elliptic version of the spatial scan statistic by introducing the
eccentricity penalty that discourages eccentric clusters. Regarding the penalized likelihood ap-
proach, Assuncdo et al. (2006) made an important comment that this approach is a possible
solution but certainly plagued with a large dose of subjectivity in the penalty parameters and
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