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Abstract: Di(2-ethylhexyl)phthalate (DEHP) has been reported to act as an antiandrogen and to
affect the reproductive organs and accessory genital glands. Thus, to assess the reproductive toxicity
of DEHP it is important to examine both its adverse effects on the development of offspring following
maternal exposure and its effects on sexual function and fertility. In the present study, we examined
whether in utero and lactational exposure to DEHP affects postnatal somatic growth of offspring in
the rat. Pregnant females were orally administered various doses of DEHP (0, 25, 100 or 400 mg/kg
body weight/day) from gestational day (GD) 6 through postnatal day (PND) 20. There were no
significant changes in body weight, body length, tail length, or the weight of individual organs between
the control and DEHP-treated groups. Somatic hormonal parameters were the same for all DEHP
doses. These findings suggest that in utero and lactational exposure to various concentrations of
DEHP has very little effect on postnatal development or endocrine and physical status of male and
female rat offspring under the experimental conditions of the present study.

Key words: Di(2-ethylhexyl)phthalate, Postnatal development, In utero and lactational exposure, Offspring, Rat

Introduction

To date, several compounds have been suspected of

exerting endocrine-disturbing effects even at ultra-low
concentrations. Phthalates have been produced and used in
the manufacture of chemically derived materials and
products. Di(2-ethylhexyl)phthalate (IDEHP) has been most
widely used in polyvinyl chloride to impart structural
flexibility, and it is used as a plasticizer in products such as
food packaging, children’s products (toys and crib bumpers)
and medical devices. Sigmficantly, DEHP has been detected
in plasma samples”. Mono(2-ethylhexyl)phthalate (MEHP),
which is an active and the predominant DEHP metabolite,
is also considered as a testicular toxicant”. It has been
estimated that mean DEHP intake 1s 8.2 ug/'kg body weight
per day for adults”. During recent years, DEHP has been

*To whom correspondence should be addressed.

excluded from many products to avoid consumer exposure,
However, recent heightened public concerns about
environmental exposure to high concentrations of DEHP
have raised new questions about its possible occupational
and medical health hazards.

Developmental toxicity studies of DEHP have been
conducted in laboratory mice*™ and rats*'”, These reports
suggest that in utero exposure to high doses of DEHP induces
embryotoxicity and/or teratogenicity. Animal reproductive
toxicity studies of DEHP have also been reported. In a study
of adult male rats, testicular defects such as atrophy of the
seminiferous tubules, loss of spermatogenesis and
vacuolation of Sertoli cells were observed after 90 days of
dietary exposure to DEHP at 500 and 5,000 ppm (equivalent
to 37.6 and 375.2 mg/kg/day, respectively)'’. Perinatal
exposure to DEHP in rats from gestational day (GD) 14
through postnatal day (PND) 3 reduced anogenital distance,
testis weight or the weight of androgen-dependent tissues'?.
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DEVELOPMENTAL EFFECT OF DEHP IN RATS

Dietary exposure of adult male rats given 0, 320, 1,250,
5,000, and 20,000 ppm DEHP (equivalent to 0, 17.5, 69.2,
284.1 and 1156.4 mg/kg/day, respectively) for 60 days, when
mated with untreated adult females, did not affect the rate
of neonatal death, initial pup weight or growth (up to PND
7), whereas the average litter size decreased in rats fed 20,000
ppm DEHP™. Inhalation exposure of adult male Wistar
rats to 25 mg/m? for 6 h/day for 8 wk increased plasma
testosterone level and seminal vesicle weight in a dose-
dependent manner'®. In a study of adult female rats, DEHP
induced prolonged estrous cycles and suppressed plasma
concentrations of estradiol and subsequent ovulation'®.

Several studies have shown that in utero and lactational
exposure to DEHP leads to abnormalities in the
hypothalamus-pituitary-testicular axis. Sprague-Dawley rats
were orally dosed with DEHP (0-1,500 mg/kg/day) from
GD 3 through PND 21, and dose-related effects in the male
offspring included several parameters involved in sexual
development'®. Oral exposure of pregnant female Long-
Evans rats to 100 mg/’kg/day DEHP from GD 12-21 induced
significantly increased levels of testosterone and luteinizing
hormone in male offspring on PND 21 and PND 35, but by
PND 90 the levels were comparable between treated and
untreated animals'”, indicating that the magnitude of DEHP
toxicity on reproductive function is influenced by the stage
of development.

Thus, DEHP toxicity studies in laboratory animals have
focused on embryotoxicity, teratogenicity and reproductive
toxicological effects in addition to some developmental
effects in the early postnatal period, yet extensive toxicity
information for long-term development after DEHP
exposure is still lacking. The purpose of the present study
was to evaluate postnatal growth and physical development
following in utero and lactational exposure to DEHP in
male and female rat offspring until the post-pubertal period.
We examined the effects of DEHP on pubertal development,
and doses of DEHP were chosen based on the levels that
caused no overt maternal toxicity. Additionally, the
exposure period was extended to examine the effects of
lactational exposure in addition to the effects of in utero
exposure, to complement previous studies*'”. Thus, we
administered several doses of DEHP orally by gavage to
pregnant rats using an experimental schedule identical to
one used previously'®, and we examined the effects on
postnatal somatic and organ growth, as assessed by body
weight, body length, tail length and main organ weights,
including reproductive organs, in male and female offspring.
In addition, to better assess physical status following DEHP
exposure, we evaluated the levels of several plasma
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hormonal landmarks with regard to postnatal somatic
growth.

Materials and Methods

Chemicals and experimental animals

DEHP (punity >99.9%, Cat# 289-10442) and corn oil were
obtained from Wako Pure Chemical Industries, Ltd., Osaka,
Japan. A total of 52 pregnant (GD 3) female rats (Crj: CD
(SD) IGS strain, 9 wk of age) were purchased from Charles
River Japan, Inc. (Tsukuba, Japan). The presence of a
copulatory plug delined GD 0. They were acclimated on
GD 3-6 and housed individually in plastic cages with
sterilized wood chips (Soft chip, Japan Slc Inc., Shizuoka,
Japan) for bedding and were maintained under controlled
temperature (23 = 1°C) and humidity (55 = 5%) and with a
12-h light-dark cycle (08:00-20:00) throughout the study.
A standard laboratory diet (CE-2, Clea Japan, Inc., Tokyo,
Japan) and drinking water were available ad libitum.

Dose range-finding evaluation

Dams were randomly divided into five groups (four
pregnant females per group). The DEHP-exposed groups
were orally administered 500, 1,000, 1,500, or 2,000 mg
DEHP/kg/day in corn oil vehicle (10 ml/kg of body
weight); DEHP was given between 08:30 and 09:30 for
five consecutive days each week (Monday-Friday) from
GD 6 through GD 20, and the control group was given
the same amount of corn oil during the same period.
During the exposure period, we recorded maternal body
weights and noted any clinical signs or abnormal behavior
that may have resulted from toxic effects. These results
were used to determine the range of the DEHP dose for
the main study.

Main study

Dams were randomly divided into four groups (eight
pregnant females per group) and weighed once daily from
GD 3 through PND 20 (except for GD 4 and 5). The DEHP-
exposed groups were orally administered 25, 100 or 400
mg DEHP/kg/day in corn o1l vehicle (10 ml/kg of body
weight); DEHP was given between 08:30 and 09:30 from
GD 6 through PND 20, and the control group was given the
same amount of com oil during the same period. Maternal
data were recorded as described above. For each dam, the
gestational duration was recorded, and weight gain during
gestation and lactation was measured. Dams were checked
for birth until 10:00 on each day; the day on which pups
were first observed was designated PND 0. The number of
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live births and the weight of each live pup on PND 1 were
recorded. The litter size was standardized to 10 (five males
and five females when possible) between 10:00 and 11:00
on PND 7 (1 wk of age). Litters with a total of nine or
fewer pups were not culled regardless of the sex ratio. Culled
pups were used for the analysis at 1 wk of age. On PND 21,
the remaining offspring were weaned, and thereafter males
and females were housed in separate stainless steel cages
by litter. Body weights were recorded with an electric balance
(Shimadzu, Kyoto, Japan). Body length and tail length
(millimeters) were measured with a digital caliper (Mitutoyo,
Kanagawa, Japan). The nose-anus length was considered
the body length. One male and one female offspring from
cach dam were dissected at 3 and 9 wk of age when possible.
While the rat was under ether anesthesia, liver, kidneys and
testes, prostate and seminal vesicles or ovaries and uterus
were carefully removed and weighed.

Hormone determinations

For hormone determinations, blood samples were collected
from the postcaval vein following euthanasia by ether
inhalation at 9 wk of age. Plasma samples were obtained
by centrifugation at 4°C and stored at —20°C untl the analysis.
Concentrations of the plasma thyroid hormones thyroxine
(1) and tri-iodothyronine (T3) were determined by a time-
resolved fluoroimmunoassay (DELFIA T, Reagents and
DELFIA T, Reagents, respectively, PerkinElmer Life and
Analytical Sciences, Inc., MA, USA). Plasma growth
hormone (GH) concentrations were determined by enzyme
immunoassay (EIA) (Rat GH EIA Biotrak system, GE
Healthcare Bio-Sciences Corp., NJ, USA). Plasma msulin-
like growth factor-I (IGF-I) concentrations were also
measured by EIA (ACTIVE mouse/rat IGF-1 EIA kit,
Diagnostic Systems Laboratories, Inc., TX, USA). Time-
resolved fluorescence and absorbance were measured by a
multilabel counter (VICTOR?, PerkinElmer Life and
Analytical Sciences, Inc.). All hormones were assayed
according to the manufacturer’s instructions.

Statistical analysis

The differences from the corresponding control group were
statistically analyzed by an analysis of variance followed
by Dunnett’s test (significance at p<0.05).

Results

Dose range-finding evaluation
In the 1,000 mg/kg/day and higher DEHP groups, maternal
toxicity was clearly manifested as greatly suppressed weight

K KOBAYASHI et al.

gain during gestation, which led us to discontinue subsequent
dosing by GD 17 of this preliminary study. In the 500 mg/
kg/day group, mean body weights decreased slightly at later
stages of gestation compared with the control group (data
not shown). Based on these observations, we set the highest
dose at 400 mg'kg/day to exclude the influence of maternal
toxicity and observe the effect of DEHP on the offspring.
The lowest dose and the middle dose were set at 25 mg/'kg/
day and 100 mg/'kg/day, respectively.

Main study
Dams

Table 1 shows the number of dams and their offspring
used for examinations in each group. Weight gain did not
differ between dams from the control group and the DEHP
groups from GD 6 through GD 21. In the 400 mg/kg/day
group, one dam was found dead on GD 23, and thus the
dam was excluded from the analysis. No significant
differences were observed between the control group and
the DEHP groups with regard to gestational duration or the
number of live births per litter on PND 1.

Figure 1 shows maternal body changes during gestation
(left panel) and lactation (right panel). There were no
statistically significant differences among groups with regard
to maternal body weight during the gestation and lactation
periods, although the 25 mg'kg/day group showed a transient
but not significant weight reduction during early lactation.

Offspring

The number of offspring examined is shown in Table 2.
In male and female offspring, there were no statistically
significant differences in body weight, body length or tail
length between the control and DEHP-exposed groups at 1,
3or 9wk of age (Figs. 2,3 and4). There were no statistically
significant effects on liver or kidney weights in males or
females at 1, 3 or 9 wk of age (Table 3, 4). In male ofTspring,
testis weights did not differ among the control group and
DEIHP groups at 3 or 9 wk of age (Table 3). Prostate and
seminal vesicle weights did not differ among the control
group and DEHP groups at 9 wk of age (Table 3). In female
offspring, ovary and uterus weights did not differ among
the groups at 3 or 9 wk of age (Table 4).

Physical status of offspring

In male offspring, no statistically significant differences
in plasma concentrations of Ty, T3, GH or IGF-I were
observed among the control group and the DEHP groups at
9 wk of age (Table 5). In female offspring, no statistically
significant differences in plasma concentrations of Ts, Ts,

Industnal Health 2006, 44, 652-660
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Table 1. Dams and litter data
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0

___ DEHP dose (mg/kg/day)

25 100 400
Females (n) 8 8 8 8
Pregnant females (n) 8 8 8 8
Dam weight gain (GD 6-21) 1307 127'x:5 135=4 153 =5
Gestational period (days) 211 =0.1 214+02 21302 21302
Live births/litter on PND 1 11.8+0.7 13.6 =06 13.5+05 11.7 0.5 (7

*Values are mean = SEM.

*The number in parentheses represents dams per dose group. One dam was found dead on GD

23, and thus the dam was excluded from the analysis.
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Fig. 1. Ellects of exposure to di(2-ethylhexyl)phthalate (DEHP) on maternal body weight during gestation

(left panel) and lactation (right panel).
Each point represents the mean

GH or IGF-I were observed between the control group and
the DEHP groups at 9 wk of age (Table 6).

Discussion

Inrecent years, the 1ssue of endocrine-disrupting chemicals
has been the topic of much discussion. Nagel e al.'” and
vom Saal er al. ™ reported that in utero exposure to low doses
of bisphenol A (2 and/or 20 ug/kg/day) alfects prostate and
preputial gland weight and decreases daily sperm production
efficiency in mouse offspring; moreover, their results
indicated that exposure to low doses ol xenoestrogens during
a critical period can affect the reproductive organ systems
of male offspring. On the other hand, other investigators
have failed to find such effects in mouse offspring when
using an identical experimental design® #?. Thus, the issue
of low-dose exposure to these potential endocrine-disrupting
chemicals remains a matter of debate among investigators.
Hence, as more refined analytical methods become available,
risk assessment for previously characterized chemical

Table 2. Number of subjects examined
Group DEHP dose No. of offspring examined
(mg/kg/day)
Age (wk) 1 3 9
Control 0 Male 8 8 8
Female 6 8 8
DEHP 25 Male 10 7 7
Female I T 7
DEHP 100 Male 13 8 7
Female 9 8 8
DEHP 400 Male 9 7 6
Female 7 7 7

substances should be repeated.

Embryo-fetotoxicity and teratotoxicity of DEHP have been
studied in mice*® and rats*'”. These studies were conducted
to elucidate whether in utero exposure to high doses of DEHP
induces embryotoxicity and/or teratogenicity. The doses

used in these previous studies were far in excess of human
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Fig. 2. Effects of maternal exposure to DEHP on postnatal body weight of offspring.
Body weights of male (left panel) and female (right panel) offspring are shown at 1, 3 and 9 wk of age. Each

column and vertical bar represent the mean and SEM, respectively. There were no significant differences among

groups.
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Fig. 3. Effects of maternal exposure to DEHP on postnatal body length of offspring.
Body lengths (nose to anus) of males (left panel) and females (right panel) are shown at 1, 3 and 9 wk of age. Each column
and vertical bar represent the mean and SEM, respectively. There were no significant differences among groups.
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Fig. 4. Effects of maternal exposure to DEHP on postnatal tail length of offspring.
Tail lengths of males (left panel) and females (right panel) are shown at 1, 3 and 9 wk of age. Each column and
vertical bar represent the mean and SEM, respectively. There were no significant differences among groups.
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Table 3. Organ weights in male offspring
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Organ Group DEHP dose Age (wk)
(mg/kg/day) e T
| 3 9
Liver(g) Control 0 0372 + 0.011* 1.974 + 0.090 15.55 = 0.439
DEHP 25 0.367 + 0.024 1.984 = 0.156 16.73 = 0.560
DEHP 100 0.334 = 0.016 1.936 = 0.138 1478 = 0.735
DEHP 400 0.372 = 0.037 2276 £ 0.122 15.83 = 0.691
Kidneys (g) Control 0 0.191 = 0.004 0618 +0.018 2.951 = 0.093
DEHP Z5 0.188 = 0.008 0.585 = 0.037 3.049=0.124
DEHP 100 0.164 = 0.007 0.582 = 0.042 2.842 = 0.078
DEHP 400 0.163 = 0.015 0.632 = 0.024 3.071 = 0.092
Testes (g) Control 0 b 0.222 = 0.009 3.065 = 0.095
DEHP 25 0.225 = 0.014 2.999 = 0.102
DEHP 100 0.213 = 0.011 2.834 = 0.050
DEHP 400 0.241 = 0.012 3.070 = 0.092
Prostate (g) Control 0 0.443 = 0.026
DEHP 25 0428 = 0.033
DEHP 100 0.372 = 0.032
DEHP 400 0.358 = 0.026
Seminal vesicles (g)  Control 0 1.109 = 0.057
DEHP 25 1.064 = 0.060
DEHP 100 - - 0.979 = 0.034
DEHP 400 - - 1.014 = 0.096

*Values are mean = SEM. ® - not examined.

environmental exposure, and the duration of dosing was
limited to the period of gestation. The present study was
thus designed to investigate whether in utero and lactational
exposure to DEHP affects the development of the next
generation. For the main study, we set the highest dose at
400 mg/kg/day to avoid the influence of maternal toxicity
and observe the effect of DEHP on the offspring. The
exposure period was prolonged to examine the effects of
lactational exposure in addition to the effects of gestational
exposure. The offspring of dams in which no overt toxicity
was observed (0, 25, 100 and 400 mg/kg/day), as determined
by body weight and general behavior during gestation and
lactation, were used in our study.

In recent years, certain studies have focused on the effects
of DEHP and its antiandrogenic action on the hypothalamus-
pituitary-gonadal axis'® " *); very few studies, however, have
reported the effect of DEHP on longer term postnatal
development. Hence, it is important to examine the
developmental toxicity of DEHP from birth until puberty.
In this regard, our study was performed to evaluate the effects
of in utero and lactational exposure to DEHP in rat offspring
with a special focus on postnatal growth and physical status.
We found that somatic and tissue growth and related
endocrine landmarks were not affected by DEHP exposure.

-438-

Liver weights were slightly increased in the 400 mg/
kg/day group for both male and female offspring at 3 wk
of age, but no significant differences were observed among
treatment groups. DEHP and other phthalates, such as di(2-
ethylhexyl) adipate (DEHA) and butylbenzyl phthalate,
are peroxisome proliferators that activate peroxisome
proliferator-activated receptors and cause liver
enlargement™. Induction of peroxisome prolilerator—
activated receptors could result in liver enlargement
following DEHP exposure (Table 3, 4). This phenomenon
could be an adaptive response following consecutive
exposures to DEHP. However, this trend was no longer
apparent at 9 wk of age. Since the DEHP groups were not
exposed to the compound after 3 wk of age, body burden
might be decreased because of metabolic clearance.

In a study ol reproductive and accessory organ
development following DEHP exposure, dose-dependent
reductions in ventral, dorsolateral and/or anterior prostate
weight were reported in rat offspring on PND 21 and PND
63 in response to oral administration of DEHP (0, 375, 750
and 1,500 mg/kg/day, GD3-PND21)'. This study also
showed that DEHP significantly reduced testis weight on
PND 21 and PND 63 in a dose-dependent manner. In the
present study, on the other hand, testis weights were not
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Table 4. Organ weights in female offspring
Organ Group DEHP dose Age (wk)
(mg/ke/day) e —————
1 3 9

Liver (g) Control 0 0.338 = 0.007* 1.899 £ 0.117 9.665 = 0.573
DEHP 25 0.322 = 0.015 1.886 = 0.103 9.279 = 0.511
DEHP 100 0349 = 0.014 1.808 = 0.105 9.760 = 0.505
DEHP 400 0367 = 0.030 2.046 = 0.092 9.643 = 0.441

Kidneys (g) Control 0 0.176 = 0.006 0.605 = 0.026 2.039 = 0.078
DEHP 25 0.177 = 0.006 0.593 =+ 0.025 1.849 = 0.091
DEHP 100 0.179 = 0.007 0.583 = 0.023 1.983 = 0.055
DEHP 400 0.171 =0.007 0.583 = 0.020 1.959 = 0.039

Ovaries (mg) Control 0 o 1895+ 0.76 79.57 + 4.08
DEHP 25 17.80 = 1.98 7428 +8.14
DEHP 100 - 1483 = 1.83 71.00 =4.26
DEHP 400 16.67 = 0.82 73.42+3.29

Uterus (mg) Control 0 26.03 = 1.91 3274+253
DEHP 25 30.72+3.95 300.7 = 14.2
DEHP 100 31.96 =237 3763 +30.9
DEHP 400 27.82:2.15 3405+ 16.1

*Values are mean = SEM. ¥ - not examined.

Table 5. Hormone determinations in male offspring at 9 wk of age

Parameter DEHP dose (mg/kg/day)

0 25 100 400
Ta (ng/ml) 831269 T4.1 £3.7 732247 81.2+75
Ts (ng/ml) 1.74 £ 0.05 1.70 = 0.06 1.63 = 0.07 1.81 £ 0.09
GH (ng/ml) 1400 353 137.3 £30.2 130.5+ 163 96.5+ 19.5
IGF-1 (ng/ml) 669.6 + 49.0 641.7 + 57.8 758.6 = 49.6 7435+ 238

*Values are mean = SEM.

Table 6. Hormone determinations in female offspring at 9 wk of age

Parameter _ DEHP dose (mg/kg/day) -
0 25 100 400

Ta (ng/ml) 700 = 7.4* 70.7 54 67.7 4.8 69.1 =64

Ts (ng/ml) 1.88=0.11 1.91 = 0.06 1.76 = 0.06 1.79 = 0.10

GH (ng/ml) 98.4=96 99.5+19.6 121.3 =224 1094 =194

IGF-1 (ng/ml) 499.0 = 34.4 574.0 £34.6 528.6 =42.5 632.6 = 66.0

*Values are mean = SEM.

significantly different between the control and DEHP groups.
No significant differences in prostate weights were observed
among the groups, although they were reduced 1n a dose-
dependent manner (Table 3). The outcomes of the present
study at the highest dose (400 mg/kg/day) were in accordance
with those of Moore er al., who conducted a study that used
375 mg/kg/day as the lowest dose'®. The magnitude of DEHP

effects in the present study was much smaller than that found
in the study by Moore et al.'®; this discrepancy could be
explained by the large difference in dosage range.
Thyroid hormones play pivotal roles in normal growth,
neuronal development and metabolism in animals. Endocrine
disturbance following chemical exposure is suspected to
occur at the embryonic and/or neonatal stage rather than at

Industrial Health 2006, 44, 652-660
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the adult stage. An epidemiological study has suggested
that toxicants such as polychlorinated biphenyls and dioxins,
which are persistent and cumulative compounds in the
environment, may affect growth and development through
thyroid impairment**. Animal studies have reported that
23,7 8-tetracholorodibenzo-p-dioxin disrupts thyroid
homeostasis™ and causes developmental defects® and bone
growth deficits”™. Thyroid hormones are hormonal regulators
of bone growth. The principal hormonal regulators during
postnatal development are GH and IGF-1, and these
hormones, which are regulated by thyroid hormones, are
considered biomarkers for longitudinal somatic growth™.
In the present study, hormonal parameters regarding
developmental somatic growth were determined in the
offspring to better assess the physical status following DEHP
exposure. There were no significant differences in any
parameters in male and female rat offspring (Table 5, 6).
The fact that normal hormonal parameters were observed
in rat offspring following exposure of dams to DEHP (even
at high doses) leads us to conclude that postnatal development
remains intact in the offspring.

The level of DEHP exposure used 1n the present study
was much greater (~1,000-fold higher) than the estimated
intake due to either medical exposure or consumer exposure
in adult humans®. It was recently suggested that the
magnitude of testicular toxicity after DEHP exposure 1s
associated with the duration and/or the route of exposure'*
*_ Inhalation of DEHP caused an elevation of plasma
testosterone without affecting gonadotropin and several
steroid enzymes that are involved in testosterone synthesis
in male prepubertal rats'. These findings suggest that levels
of DEHP that cause hormonal disturbance when inhaled may
not have the same effect if consumed orally.

In conclusion, our results suggest that prenatal and
postnatal exposure to DEHP does not allect postnatal somatic
growth or endocrine and physical status of either males or
females under the experimental conditions we used. The
effects of DEHP exposure, however, remain uncertain and
must be clanfied using a wider dosage range, an extended
exposure period, a side-by-side comparison of different
exposure routes and a larger number of animals.
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Atelocollagen-mediated local and systemic
applications of myostatin-targeting siRNA increase

skeletal muscle mass
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ANA interference (RNAI) offers a novel therapeutic strategy
based on the highly specific and efficient silencing of a target
gene. Since it relies on small interfering RNAs (siRNAs), a
major issue is the delivery of therapeutically active siRNAs
into the target tissue/target cells in vivo. For safety reasons,
strategies based on vector delivery may be of only limited
clinical use. The more desirable approach is to directly apply
active siRNAs in vivo. Here, we report the effectiveness of
in vivo siRNA delivery into skeletal muscles of normal or
diseased mice through nanoparticle formation of chemically

unmodified siRNAs with atelocollagen (ATCOL). ATCOL-
mediated local application of siRNA targeting myostatin, a
negative regulator of skeletal muscle growth, in mouse
skeletal muscles or intravenously, caused a marked increase
in the muscle mass within a few weeks after application.
These results imply that ATCOL-mediated application of
siRNAs is a powerful tool for future therapeutic use for
diseases including muscular atrophy.

Gene Therapy advance online publication, 6 March 2008;
doi:10.1038/gt.2008.24 :
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RNA interference (RNAI) is the process of sequence-
specific, posttranscriptional gene silencing in plants and
animals from flatworms to human,! which is mediated
by ~22-nucleotide small interfering RNAs (siRNAs)
generated from longer double-stranded RNA. Since it
was demonstrated that siRNAs can intervene gene
silencing in mammalian cells without induction of
interferon synthesis or nonspecific gene suppression,
an increasing number of remedies utilizing highly

specific siRNAs targeted against disease-causing or .

disease-promoting genes have been developed.® Effec-
tive delivery of active siRN As to target organs or tissues
is therefore the key to the development of RNAI as a
broad therapeutic platform. For this purpose, different
strategies have been used to deliver and achieve RNAi-
mediated gene silencing in vivo;® for example, polymers
represent a class of materials that meet the needs of a
particular siRNA delivery system, condensing siRNAs
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into nano-sized particles taken up by cells.* However,
some of the synthetic polymers, which have been used
for delivery of nucleic acids, may trigger cell death in a
variety of cell lines and thus suffer from limitations for
its application in siRNA delivery in vivo.* On the other
hand, atelocollagen (ATCOL), a pepsin-treated type 1
collagen lacking in telopeptides in N and C terminals
that confer its antigenicity, has: been shown to elicit au
efficient delivery of chemically unmodified siRNAs to
metastatic tumors in vivo.>7 In this study, we sought to
examine the effectiveness of siRNA-ATCOL therapy for
a nontumorous systemic disease, targeted against mvo-
statin (growth/differentiation factor 8 GDF8), a negative
regulator of skeletal muscle growth.®

Skeletal muscles are the crucial morphofunctional
organs, and their atrophy causes severe conditions for
life such as muscular dystrophies. Duchenne muscular
dystrophy (DMD), for instance, is a severe muscle
wasting disorder affecting 1 out of 3500 male birth.®
There is currently no effective treatment, but gene
therapy approaches are offering viable avenues
for treatment development.”™ As one of therapeutic
approaches, inhibition of myostatin by using anti-myo-
statin-blocking antibodies has been employed to increase
muscle mass." However, generating antibodies against
recombinant target proteins is time consuming and
requires a lot of efforts. Recently, we demonstrated that
inhibition of myostatin by overexpression of the myo-
statin prodomain’? prevented muscular atrophy and
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Figure1 Local administration of the Mst-siRNA/atelocollagen (ATCOL) complex increases skeletal muscle mass and fiber size in wild-type
mice through inhibition of myostatin expression. For the experiments depicted in (a-e) Mst-siRNAs (final concentration, 10 M) were mixed
with ATCOL (final concentration for local administration, 0.5%.%) (AteloGene, Kohken, Tokyo, Japan) according to the manufacturer’s
instructions. After anesthesia of mice (20-week-old male C57BL/6) by Nembutal (25 mg/kg, i.p.), the Mst-siRNA/ATCOL complex was
injected into the masseter and biceps femoris muscles on the left side. As a control, scrambled siRNA /ATCOL complex was injected into the
contralateral (right) muscles. After 2 weeks, the muscles on both sides were harvested and processed for analysis. (a) Photographs of muscles.
Increased muscle mass were observed in the Mst-siRNA / ATCOL-treated (L) masseter (upper panels) and biceps femoris (lower panels), but
not in the contralateral muscles (R). (b) Muscle weight. Mst-siRNA /ATCOL-treated muscles had an increased weight significantly compared
to those with control siRNA/ATCOL (masseter, 0.185+ 0.041 versus 0.115  0.019 g; biceps, 0.307 + 0.040 versus 0.232 + 0.039 g; n =4; P <0.05).
Student's {-test was used for determining statistical significance. Graphical representation of data uses the following convention: mean +s.d.;
treated muscles or mice in red; control muscles or mice in blue. (c) Western blot analysis of myostatin (52 kDa) in the control and Mst-siRNA /
ATCOL-treated masseter muscles, assessed at 2 weeks after single injection. Total 80 pg of masseter muscle ho tes were resolved by
sodium dodecyl sulfate-polyacrylamide gel elec oresis and then transferred onto polyvinylidene difluoride membranes for
immunoblotting. After a blocking reaction (5% nonfat milk/1% bovine serum albumin in phosphate-buffered saline (PBS) and 0.05%
Triton X-100), the blots were incubated for 1 h at room temperature with mouse monoclonal anti-myostatin antibody (1:500; R&D Systems,
Minneapolis, MN, USA) or anti-B-actin, After incubation with a secondary antibody (1:10000; horseradish peroxidase-conjugated anti-rat
antibody; Biosource International, Camarillo, CA, USA), the blots were developed using the ECL Plus kit (Amersham, Buckinghamshire,
UK). We used a purified myostatin protein and proteins extracted from cells transformed with a myostatin cDNA to confirm that the bands
are due to 52 kDa myostatin. (d) Hematoxylin and eosin staining of the control and Mst-siRNA / ATCOL-treated masseter muscle. Muscles
were fixed in 4% paraformaldehyde/PBS at 4 °C overnight, dehydrated and paraffin-embedded. Serial sections (5 pm thickness) were cut at
mid-belly of muscle and stained. Scale bar, 50 pm. (e) Distribution of myofibril sizes of the control (blue bars) and Mst-siRNA/ATCOL-
treated (red bars) muscles. The right panel shows the average myofibril size (33.6 £ 1.5 versus 24.4 £ 1.1 pm; n=200; P<0.0001). NIH Image
(NIH, USA) software was used for morphometric measurements.

normalized intracellular myostatin signaling in the We utilized the siRNA sequences reported pre-
5

-AAGATGACGATTAT

model mice for limb-girdle muscular dystrophy 1C.**
On the other hand, Magee et al.'* demonstrated that
downregulation of myostatin expression by transduction
of a plasmid expressing a short-hairpin interfering RNA
(shRNA) against myostatin using electroporation can
increase local skeletal muscle mass. For safety reasons,
however, strategies based on vector delivery may be of
only limited clinical use. The more desirable approach is
to directly apply active siRNAs in vivo. As one of the
practical platforms for siRNA delivery, we sought to
employ an ATCOL-mediated oligonucleotide delivery
system to apply myostatin-targeting siRNA into muscles.
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viously™ (GDF8 siRNA26,
CACGCTA-3, position 426-446). It has been noted that
this sequence can target myostatin mRINA not only of
mouse but also human, rat, rabbit, cow, macaque and
baboon, based on Blast search (National Center for
Biotechnology Information).’ To confirm the silencing
effect of this siRNA, we constructed a plasmid of
pSilencer 2.1-U6 neo containing the target sequence
and transfected the plasmid into a mouse myoblast cell
line, C2C12 cells, which had been made forced to stably
express myostatin. We confirmed that the RNAi con-
struct could effectively downregulate the expression
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Figure 2 Mst-siRNA/atelocollagen (ATCOL) treatment improves myofibril size in mdx mice. (a) Photographs of muscles. The leftward
masseter (left and middle panels) and tibial (right panel) muscles injected with the Mst-siRNA /ATCOL complex intramuscularly show a
marked increased muscle mass in 20-week-old mdx male mice. (b) Western blot analysis of the control and Mst-siRNA/ATCOL-treated
masseter muscles, assessed at 2 weeks after single injection. Myostatin protein levels in the muscles injected with the Mst-siRNA/ATCOL
complex are markedly decreased, but not in the contralateral muscles injected with the control-siRNA/ATCOL. (¢) Immunohistochemical
analysis of the cross-sectional myofiber area of the masseter muscle, with the anti-laminin a2 antibody (4H8-2, Sigma, St Louis, MO, USA),
showing increased fiber size in the Mst-siRNA/ATCOL-treated (right panel) muscle, compared to that of control (left panel). Alexafluor 594~
conjugated anti-rat immunoglobulin G antibodies (A-11007, Invitrogen, Carlsbad, CA, USA) were used for immunohistochemistry. Scale bar,
100 pm.
of myostatin in the C2C12 cells” (Supplementary  showed that the myofibril sizes of the masseter muscles
Figure S1). treated with the Mst-siRNA/ATCOL complex were
We prepared the nanoparticle complex containing the  larger than those of the control (Figure 1d). Examining
GDF8 siRNA26 (10 uM) and ATCOL. Then, we injected  the sizes of 200 myofibers per group, the population
the GDF8 siRNA26-ATCOL (Mst-siRNA/ATCOL) com-  of myofibril sizes indicated a shift from smaller to
plex into the masseter and biceps femoris muscles of larger fibers in the Mst-siRNA/ATCOL-treated muscle
20-week-old C57BL/6 mice. As a control, we injected  (Figure le). The average myofibril size of the muscle
control-scrambled siRNAs/ATCOL complex in the  treated with Mst-siRNA/ATCOL gained approximately
contralateral muscles. We observed gross morphology 1.3 times more than that of control (Figure le). No
of the muscles and dissected the muscle tissues 2 weeks ~ obvious morphological change was observed in other
after injection. After injection of the Mst-siRNA/ATCOL tissues than the treated masseter muscles. In the mean-
complex, both muscles (on the left side) were enlarged,  while, we did not observe any general sign of ill health
while no significant change was observed on the and deaths during the period of experiment. These
contralateral side (Figure 1a). We also measured the results indicate that the increase of the Mst-siRNA/
muscle weight, finding that the Mst-siRNA/ATCOL-  ATCOL-treated muscle mass is caused by their hyper-
treated ‘muscles weighed significantly more than those  trophy and that the siRNA complex gives no obvious
on the control side (Figure 1b). The Mst-siRNA/ATCOL-  adverse effects.
treated muscles were further examined by a western blot We next questioned whether this effect of hypertrophy
analysis for myostatin (52 kDa), showing the decreased after local injection of the Mst-siRNA/ATCOL complex
expression of myostatin on the treated side (Figure 1c).  observed in normal mice was relevant to dystrophin-
We quantified each result as a ratio to the internal deficient mdx mouse, an animal model for DMD.'® We
control and statistically analyzed a difference between  intramuscularly injected the same Mst-siRNA/ATCOL
control (average ratio 0.90 +0.07) and treated (average complex into the masseter and tibial muscles on the left
ratio 044 +0.22) muscles. This difference is significant  side of 20-week-old mdx male mice. Within 2 weeks after
(P<0.01, Student’s t-test, n=4). Histological analysis  the single injection, a dramatically increased muscle
Gene Therapy
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Figure 3 Systemic administration of the Mst-siRNA /atelocollagen (ATCOL) complex induces muscle enlargement in the mouse through
inhibition of myostatin expression. For systemic administration, the siRNA (final concentration, 40 uM)/ATCOL (final concentration, 0.05%*
complex, 200 pl) was introduced intravenously via orbital veins at 4, 7 and 14 days after the first application (n=5). As a control, control-
scrambled siRNAs were injected into wild-type male mice (20 weeks, n=>5). After 3 weeks, the quadriceps muscles on both sides were
harvested and processed for analysis. (a) Photographs of lower limbs from control (upper panel) and Mst-siRNA/ATCOL-treated (lower
panel) mice. (b) Western blot analysis of the control and Mst-siRNA/ATCOL-treated muscles (quadriceps femoris), assessed at 3 weeks after
triple injection. (¢) Hematoxylin and eosin staining of the control (upper panel) and Mst-siRNA /ATCOL-treated quadriceps muscle (lower
panel). Scale bar, 50 pm. (d) Comparison of muscle weight/body weight index between the Mst-siRNA / ATCOL and control-siRNA /ATCOL-
treated mice (0.048 £ 0.002 versus 0.043 £ 0.001 n=5; P<0.01). (e) Distribution of myofibril sizes of the control and Mst-siRNA/ATCOL-
treated quadriceps muscles. The right panel shows the average myofibril size (33.92 +2.91 versus 22.95 +1.54 ym, n=156; P<0.01).
mass was observed in the Mst-siRNA/ATCOL-treated  3a), masseters and other muscles. Since change in the
muscle (Figure 2a). Western blot analysis showed that muscles of lower limbs is much larger than others, we
the protein levels of myostatin in the muscles treated  used them for further analyses. We confirmed reduction
with the Mst-siRNA/ATCOL complex were significantly  of myostatin proteins in the muscles. treated with the
decreased (average ratio 0.55+0.03), but not in the Mst-siRNA/ATCOL complex (average ratio 0.67 +0.11)
contralateral muscles treated with control siRNAs/  (Figure 3b; P<0.01, n=5; average ratio ¥or control
ATCOL complex (average ratio 0.83£0.01) (Figure 2b;  0.87+0.03). We observed that the treated lower limbs
P <0.05, n=5). Furthermore, immunohistochemical ana-  are much larger than the controls, although the average
lysis on the masseter using an anti-laminin a2 antibody  body weights were 26.7 + 0.7 and 25.8 + 0.4 g for controls
showed increase in the mean myofiber size of the Mst-  and treated mice, respectively. No increase in the body
siRNA/ATCOL-treated muscle (Figure 2c), as is the case ~ weight of the treated mouse was observed, probably
for the wild-type (not shown). On the basis of these because increase in the muscle weight compensated for
results, it seems that myostatin maintains satellite cells or ~ reduction of fat accumulation.’” To show increase in
muscle stem cells in a quiescent state. Reduced myostatin ~ muscle weights, we used the muscle weight/body
activity would lead to activation of these cells and fusion =~ weight ratio (Figure.3d), in case the body weight
into existing fibers (Supplementary Figure Sle and f), exhibited variation. Sighnificant increase in muscle fiber
resulting in fiber hypertrephy as proposed previously.  size (Figures 3c and e) was.also observed after 3 weeks.
We further examined whether systemic administration =~ These results indicate that siRNAs targeting against
of the Mst-siRNA /ATCOL complex would have an effect ~ myostatin, intravenously administered with ATCOL, can
on silencing the myostatin expression and lead to muscle  specifically repress the expression of myostatin, inducing
enlargement. The Mst- or control siRNA/ATCOL com- muscle hypertrophy in normal mice.
plex was applied intravenously into normal mice four We present evidence that local and systemic applica-
times in 3 weeks. Strikingly, we observed an obvious tions of siRNA against myostatin coupled with ATCOL
enlargement of skeletal muscles of lower limbs (Figure  markedly stimulate muscle growth in vivo within a few
Gene Therapy



