Table 4
Skeletal examinations in fetuses of rats given DTG on days 6–19 of pregnancy

Dose (mg/kg)	0 (control)	10	20	40
Total no. of fetuses (litters) examined	184(24)	176 (24)	170 (24)	130(20)
Total no. of fetuses (litters) with malformations	1	1	13(6)"	26(12)**
Split cartelige of thoracic centrum	0	0	1	1
Fused cartilage of cervical vertebral arches	0	1	1	1
Fused cartilage of ribs	1	0	0	0
Absence, fusion or malposition of caudal vertebrae	0	0	8 (3)	10(8)**
Absence or fusion of phalanges	0	0	5 (3)	18(9)**
Fusion of metacarpal/metatarsal and phalanx	0	0	0	2(2)
Absence or fusion of metacarpals	0	0	0	4(4)*
Shortening of tibia and fibula	0	0	0	1
Total no. of fetuses (litters) with variations	10(7)	16 (9)	16(11)	12(8)
Bipartite ossification of thoracic centrum	0	2(1)	1	0
Dumbbell ossification of thoracic centrum	0	1	0	0
Unossified thoracic centrum	1	1	0	1
Variation of number of lumbar vertebrae	1	0	0	2(1)
Wavy ribs	0	1	1	0
Short supernumerary rib	9(6)	12(7)	14(10)	4(4)
Short 13th rib	0	0	0	2(2)
Sacralization of lumbar vertebra	0	0	0	2(1)
Bipartite ossification of stemebra	0	0	1	1
Asymmetry of sternebra	0	0	0	1
Degree of ossification ⁶				
No. of sacral and caudal vertebrae	7.3 ± 0.5	7.5 ± 0.5	7.5 ± 0.5	7.0 ± 0.6
No. of sternebrae	4.6 ± 0.4	4.8 ± 0.5	4.6 ± 0.4	4.2 ± 0.4
No. of metatarsals	8.0 ± 0.0	7.9 ± 0.3	7.8 ± 0.4	6.7 ± 1.4

a Values are given as the mean ± S.D.

characterize the effects of DTG on embryonic/fetal development. The findings of the present study confirmed the results of a previous screening study and extended the understanding of the reproductive and developmental toxicity of DTG. The present data showed that the prenatal oral administration of DTG produced maternal toxicity, as evidenced by deaths, neurobehavioral changes, decreased body weight gain and reduced food consumption, and developmental toxicity, as evidenced by a high incidence of postimplantation loss, a decreased number of live fetuses and lower weight of fetuses, and teratogenicity, as evidenced by a higher incidence of fetuses with external and skeletal malformations.

DTG is a specific sigma receptor ligand [3] and sigma receptor ligands can modulate neurotransmissions, including the noradrenergic, glutamatergic and dopaminergic system [10,21,22]. The systemic injection of DTG has been reported to cause neurobehavioral changes in rats [4,6,7,9,22]. The present study shows that the oral administration of DTG also induced neurobehavioral changes at 20 and 40 mg/kg bw/day in pregnant rats. Lowered body weight gain at 20 and 40 mg/kg bw/day and food consumption at 40 mg/kg bw/day were also observed in pregnant rats. These findings indicate that DTG is maternally toxic at 20 mg/kg bw/day and higher.

The sex ratio (males/females) was significantly lowered in all DTG-treated groups. The values for sex ratio were 0.429–0.521 in the background control data for the last 6 years in the labo-

ratory performed present study. Statistically significant changes in the sex ratio observed in the present study were considered to be unrelated to the administration of DTG, because the values for sex ratio in the DTG-treated groups were within the range of the historical control data, no increased embryonic/fetal deaths were detected at 10 and 20 mg/kg bw/day and the control value for the sex ratio was very high in the present study. A decreased number of live fetuses, increased incidence of postimplantation loss, and reduced weights of fetuses and placentae were detected at 40 mg/kg bw/day. A decreased number of live fetuses and increased incidence of postimplantation loss indicate embryonic/fetal lethality, and reduced weights of fetuses and placentae indicate intrauterine growth retardation. These findings indicate that DTG is toxic to embryonic/fetal survival or fetal growth at 40 mg/kg bw/day when administered during the time of implantation to the term of pregnancy.

In our previous reproductive and developmental screening test [15], the total number of fetuses with external malformations, but not individual malformation, was significantly increased at 50 mg/kg. At this dose, oligodactyly and tail anomalies were frequently observed, and the teratogenic effect of DTG was strongly suggested. No malformed fetuses were found at 20 mg/kg bw/day in our previous study. In the present study, morphological examinations in the fetuses of exposed mothers revealed increased incidence of fetuses with external and skeletal malformations at 20 and 40 mg/kg bw/day.

Significantly different from the control (p < 0.05).

^{**} Significantly different from the control (p < 0.01).

Fetuses with external, internal and/or skeletal malformations and/or variations were found in all groups. The malformations and variations observed in the present study are of the types that occur spontaneously among the control rat fetuses [23-26]. At 40 mg/kg bw/day, significantly higher incidences of the total number of fetuses with external and skeletal malformations were detected, and significantly higher incidences of individual types of external and skeletal malformation were also noted. At 20 mg/kg bw/day, the incidence of the total number of fetuses with skeletal malformations was significantly higher than that of control group. Although the incidence of individual types of skeletal malformation was not significantly increased at 20 mg/kg bw/day, types of external and skeletal malformations observed at this dose were the same as those observed at 40 mg/kg bw/day. Consideration of the sum of these findings suggests that a conservative estimate of the LOAEL for the teratogenic dose of DTG is 20 mg/kg bw/day in rats when administered during the time of implantation to the term of pregnancy. DTG caused suppression of body weight gain and neurobehavioral changes in dams and abnormally morphological development and developmental delay in the offspring of rats at 20 and 40 mg/kg bw/day. Therefore, the teratogenic effects of DTG at doses without maternal toxicity, a selective teratogenicity of DTG, was not found in the current study. There are no available reports in which the developmental toxicity of DTG is assessed in any other animal species. Further studies are needed to confirm the reproductive and developmental toxicity of DTG in additional species. Developmental neurotoxicity and multigeneration studies are also required to support the conclusion of the prenatal hazard of DTG.

In conclusion, DTG caused maternal neurobehavioral changes and decreased body weight gain at 20 mg/kg bw/day and higher, embryonic/fetal deaths and lowered fetal weight at 40 mg/kg bw/day, and increased incidence of fetuses with malformations at 20 mg/kg bw/day and higher when administered during the time of implantation to the term of pregnancy in rats.

Acknowledgements

This study was performed in 2005 at the Safety Research Institute for Chemical Compounds Co., Ltd. (Sapporo, Japan) and supported by the Ministry of Health, Labour and Welfare, Japan.

References

- Scorecard. Chemical profile for 1,3-bis(o-tolyl)guanidine (CAS number: 97-39-2) 2005. http://www.scorecard.org/chemical-profiles/summary. tcl?edf.substance.id=+97-39-2.
- [2] TOXNET. N,N'-bis(2-methylphenyl)guanidine 2005. http://toxnet.nlm.nih.gov/cgi-bin/sis/search/f?/temp/.
- [3] Weber E, Sonders M, Quarum M, Mclean S, Pou S, Keana JFW. 1,3-Di(2-(5-3H)tolyl)guanidine: a selective ligand that labels \u03c3-type receptors for psychotomimetic opiates and antipsychotic drugs. Proc Natl Acad Sci 1986:83:8784-8.
- [4] Bastianetto S, Perralt G, Sanger DJ. Pharmacological evidence for the involvement of sigma sites in DTG-induced contralateral circling in rats. Neuropharmacology 1995;34:107–14.

- [5] Kest B, Mogil JS, Sternberg WF, Pechnick RN, Liebeskind JC. Antinociception following 1,3-di-σ-tolylguanidine, a selective σ receptor ligand. Pharmacol Biochem Behav 1995;50;587–92.
- [6] Bejanian M, Pechnick RN, Bova MP, George R. Effects of subcutaneous and intracerebroventricular administration of the sigma receptor ligand 1,3-di-o-tolylguanidine on body temperature in the rat: interactions with BMY 14802 and rimcazole. J Phamacol Exp Ther 1991;258: 88-93.
- [7] Rawls SM, Baron DA, Geller EB, Adler MW. Sigma sites mediate DTGevoked hypothermia in rats. Pharmacol Biochem Behav 2002;73:779— 86.
- [8] Kest B, Mogil JS, Stemberg WF, Pechnick RN, Liebeskind JC. 1,3-Di-o-tolylguanidine (DTG) differentially affects acute and tonic formalin pain: antagonism by rimcazole. Phamacol Biochem Behav 1995;52: 175–8.
- [9] Maj J, Rogóż Z, Skuza G. Some behavioral effects of 1,3-di-otolylguanidine, opipramol and seritraline, the sigma site ligands. Pol J Pharmacol 1996;48:379–95.
- [10] Skuza G, Rogóż Z. Effects of 1,3-di-α-tolylguanidine (DTG), rimcazole and EMD 57445, the σ receptor ligands, in the forced swimming test. Pol J Phamacol 1997;49:329–35.
- [11] Shimizu I, Kawashima K, Ishii D, Oka M. Effects of (+)-pentazocine and 1,3-di-σ-tolylguanidine (DTG), sigma (σ) ligands, on micturition in ansesthetized rats. Br J Pharmacol 2000;131:610–6.
- [12] Skuza G, Rogóż Z. Sigma 1 receptor antagonists attenuate antidepressant-like effect induced by co-administration of 1,3-di-o-tolylguanidine (DTG) and memantine in the forced swimming test in rats. Pol J Pharnacol 2003;55:1149–52.
- [13] Clayson DB, Krewski DR. Objectives of toxicity testing. In: Arnold DL, Grice HC, Krewski DR, editors. Handbook of in vivo toxicity testing. San Diego: Academic Press; 1990. p. 3–18.
- [14] RTECS (The Registry of Toxic Effects of Chemical Substances) Guanidine, 1,3-di-o-tolyl-; 2005. http://www.cdc.gov/niosh/rtecs/ mf155cc0.html.
- [15] Ema E, Kimura E, Matsumoto M, Hirose A, Kamata E. Reproductive and developmental toxicity screening test of basic rubber accelerator, 1,3-di-o-tolylguanidine, in rats. Reprod Toxicol, in press.
- [16] OECD (Organisation for Economic Co-operation and Development). OECD Test Guideline for Testing of Chemicals, No. 414, Prenatal Developmental Toxicity Study. Adopted by the Council on 22nd January 2001. Paris.
- [17] ME, MHLW, MITI (Ministry of Environment, Ministry of Health, Labour and Welfare, and Ministry of International Trade and Industry of Japan). Research of Designated Chemical Substances, November 2003. Tokyo.
- [18] Inouye M. Differential staining of cartilage and bone in fetal mouse skeleton by alcian blue and alizarin red S. Congenit Anom Kyoto 1976;16: 171-3.
- [19] Nishimura K. A microdissection method for detecting thoracic visceral malformations in mouse and rat fetuses. Congenit Anom Kyoto 1974;14:23–40.
- [20] Wilson JG, Methods for administering agents and detecting malformations in experimental animals. In: Wilson JG, Warkany J, editors. Teratology: principles and techniques. Chicago: The University of Chicago Press; 1965. p. 262–77.
- [21] Goldstein SR, Matsumoto RR, Thompson TL, Patrick RL, Bowen WD, Walker JM. Motor effects of two sigma ligands mediated by nigrostriatal dopamine neurons. Synapse 1989;4:254–8.
- [22] Bastianetto S, Rouquier L, Perralt G, Sanger DJ. DTG-induced circling behaviour in rats may involve the interaction between σ sites and nigro-striatal dopaminergic pathways. Neuropharmacology 1995;34: 281–7.
- [23] Kameyama Y, Tanimura T, Yasuda M, editors. Spontaneous malformations in laboratory animals-photographic atlas and reference data. Congenit Anom Kyoto 1980;20:25–106.
- [24] Morita H, Ariyuki F, Inomata N, Nishimura K, Hasegawa Y, Miyamoto M, Watanabe T. Spontaneous malformations in laboratory animals: frequency

- of external, internal and skeletal malformations in rats, rabbits and mice. Congenit Anom Kyoto 1987;27:147-206.
- [25] Nakatsuka T, Horimoto M, Ito M, Matsubara Y, Akaike M, Ariyuki F. Japan Pharmaceutical Manufacturers Association (JPMA) survey on background control data of developmental and reproductive toxicity studies in rats, rabbits and mice. Congenit Anom Kyoto 1997;37:47–138.
- [26] Barnett Jr JF, Lewis D, Tappen A, Hoberman AM, Christian MS. Reproductive indices, fetal gross, visceral and skeletal alterations, sexual maturation, passive avoidance and water maze data, a comparison of results in CD(SD)IGS rats and CD(SD) rats. In: Matsuzawa T, Inoue H, editors. Biological reference data on CD(SD)IGS rats-2000, CD(SD)IGS study group. Yokohama: c/o Charles River Japan, Inc.; 2000, p. 159–73.

206 207

Regulatory Toxicology and Pharmacology 47 (2007) 296-307

Regulatory Toxicology and Pharmacology

www.elsevier.com/locate/yrtph

Pediatric susceptibility to 18 industrial chemicals: A comparative analysis of newborn with young animals

R. Hasegawa a,*, M. Hirata-Koizumi a, M. Dourson b, A. Parker b, A. Hirose a, S. Nakai c, E. Kamata a, M. Ema a

* National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan b Toxicology Excellence for Risk Assessment, 2300 Montana Avenue, Suite 409, OH 45211, USA c Yokohama National University, 79-7 Tokiwadai, Hodogaya, Yokohama 240-8501, Japan

Received 3 August 2006 Available online 8 December 2006

Abstract

We comprehensively re-analyzed the toxicity data for 18 industrial chemicals from repeated oral exposures in newborn and young rats, which were previously published. Two new toxicity endpoints specific to this comparative analysis were identified, the first, the presumed no observed adverse effect level (pNOAEL) was estimated based on results of both main and dose-finding studies, and the second, the presumed unequivocally toxic level (pUETL) was defined as a clear toxic dose giving similar severity in both newborn and young rats. Based on the analyses of both pNOAEL and pUETL ratios between the different ages, newborn rats demonstrated greater susceptibility (at most 8-fold) to nearly two thirds of these 18 chemicals (mostly phenolic substances), and less or nearly equal sensitivity to the other chemicals. Exceptionally one chemical only showed toxicity in newborn rats. In addition, Benchmark Dose Lower Bound (BMDL) estimates were calculated as an alternative endpoint. Most BMDLs were comparable to their corresponding pNOAELs and the overall correlation coefficient was 0.904. We discussed how our results can be incorporated into chemical risk assessment approaches to protect pediatric health from direct oral exposure to chemicals.

© 2006 Elsevier Inc. All rights reserved.

Keywords: Pediatric susceptibility; Industrial chemicals; Phenols; Newborn rats; Childhood exposure; Uncertainty factors; ADI; TDI; Benchmark dose

1. Introduction

Exposure of humans to environmental chemicals may occur via several routes such as the mouth, respiratory system, skin and eyes. As a result, regulatory/limit levels in food, water and air have been established to protect human health through risk assessment, which is usually based on toxicity data from animal studies (Hasegawa et al., 2004). However, the early postnatal period, especially the nursing phase, is not directly covered by current risk assessment approaches because of the inherent lack of toxicity information. Rather, two uncertainty factors are used to cover this data gap, one for human variability to toxic insult

Repeated-dose oral rodent studies administer chemicals starting at approximately six weeks of age (OECD, 1995). In two-generation toxicity studies, chemicals are usually fed to rodents during the entire experimental period but newborn animals are only exposed to chemicals indirectly through maternal milk during nursing (up to 3 weeks old), or through small amounts of foods containing chemicals at about day 14 or older (OECD, 2001). Thus, there is generally no definitive toxicity information for chemical exposure in newborn animals.

Human infants may ingest not only baby foods and liquids but also household materials, fluids, and soil. They have unique physiological characteristics with regard to their organ/body balance, and the immature structure

and the other for the lack of specific data to determine the critical effect (Dourson et al., 2002).

Corresponding author. Fax: +81 3 3700 9788.
 E-mail address: hasegawa@nihs.go.jp (R. Hasegawa).

and functions of various organs may lead to elevated susceptibility or sensitivity (Scheuplein et al., 2002; Polin et al., 2004). Even though newborn exposure studies cannot be conducted for all chemicals due to ethical limitations, limited human and economic resources, or handling difficulties, such studies are valuable for the assessment of pediatric health risk given the appropriate comparative attention now being drawn to infant and child health world wide (Landrigan et al., 2004; IFCS, 2005).

Therefore, we have established an 18 day repeated-dose newborn rat toxicity study protocol, and conducted newborn studies for 18 industrial chemicals using this protocol, although the selected chemicals were mostly limited to phenolic compounds due to financial support. In addition, we have compared the newborn results with the results of a 28 day repeated-dose study (young study) and published all of the detailed analysis in peer-reviewed journals (Koizumi et al., 2001, 2002, 2003; Fukuda et al., 2004; Takahashi et al., 2004, 2006; Hasegawa et al., 2005; Hirata-Koizumi et al., 2005a,b).

In this article, we compare the results of these published studies by first describing our comparative study conditions common to all chemicals, then providing a summary of the final re-analyzed data, and finally discussing how our results can be incorporated into chemical risk assessment approaches to protect pediatric health from direct oral exposure to chemicals.

2. Experimental conditions of newborn and young studies for comparison

To appropriately elucidate differences in chemical sensitivity, studies in newborn and young rat were conducted under the same experimental conditions as closely as possible. For example,

 Sprague-Dawley SPF rats [Crj:CD(SD)IGS] purchased from Charles River Japan Inc. (Yokohama, Japan) were used for all studies;

- (2) the same Lot Number for each chemical was used for both newborn and young studies;
- (3) test solutions were prepared by the same methods with the same vehicles for both studies and administered by gastric intubation;
- (4) test solutions were prepared at least once a week and kept cool and in the dark until dosing; stability was confirmed to be at least 7 days under these conditions; and
- (5) all other reagents used in this study were specific purity grade;
- (6) all animal treatments were conducted in 5 Japanese contract laboratories according to their Animal Care Guidelines and Japanese GLP Guidelines inspected by the Government.

The only differences in conditions were the administration period of 18 days for newborn and 28 days for young rats, and the recovery (maintenance) period as described in Fig. 1. Since rearing conditions for newborn rats change abruptly from nursing by foster mothers to individual self-feeding at postnatal Day 21 it was considered to be the best termination time point for the newborn dosing (a dosing period of 18 days) rather than adopting the same dosing period for the young studies (28 days).

2.1. Young studies

All schedules and examinations were performed in compliance with the Test Guideline "28 day repeated-dose toxicity study using mammals" of the Japanese Chemical Control Act (Official Name: Law Concerning the Examination and Regulation of Manufacture, etc. of Chemical Substances). This guideline is equivalent to OECD Test Guideline 407.

A dose-finding study was conducted according to the results of a single oral toxicity study. The study had a shorter dosing period (14 days) when compared to the main

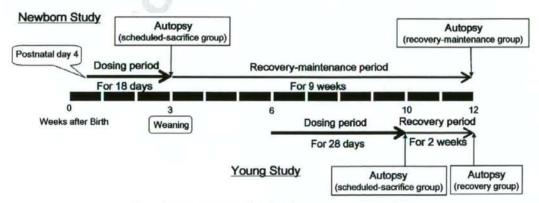


Fig. 1. Dynamic comparison of schedules for newborn and young studies.

study, and included most examination, but did not have examination of histopathology, urinalysis or recovery groups.

In the main study, at least 5 rats of both sexes were assigned to control, low, medium and high dose groups, and at least 5 rats of both sexes were assigned to control and high doses as recovery groups. Animals at 5-6 weeks of age were administered chemicals by gastric intubation daily for 28 days and sacrificed under ether anesthesia following the last treatment after overnight starvation (scheduled-sacrifice group). The recovery groups were maintained for 2 weeks without chemical treatment and sacrificed at 11 or 12 weeks of age. Observation of general behavior and estimation of body weight and food consumption were conducted during dosing and recovery periods. Macroscopic findings, blood chemistry (20 items), hematology (10 items), urinalysis (11 items), organ weights (15 organs) and histopathology (18 organs) were examined for the sacrificed animals.

2.2. Newborn studies

We established a newborn rat study protocol due to the lack of any standard test guideline for newborn animals. Fig. 1 shows the dosing and examination schedule for the newborn rat and young rat study. Pregnant rats (gestation day 14) were purchased and allowed to deliver spontaneously.

For a dose-finding study, all experimental conditions including the administration period were the same as the main study described below except that no examination of histopathology or urinalysis occurred, and no recovery-maintenance groups were maintained.

In the main study, dosing began on postnatal Day 4 with the administration of chemicals to 12 males and 12 female pups in each of 4 groups (control, low, medium and high doses). Each littermate consisted of 4 male and 4 female pups given different dose of chemical. Dosing to the pups continued up to weaning on postnatal Day 21 (18 days). On postnatal Day 22, half of the pups in each group were sacrificed under ether anesthesia (scheduled-sacrifice group), and remaining pups in all groups were maintained for 9 weeks without chemical treatment and subsequently sacrificed at 12 weeks of age (recovery-maintenance group). Observation of behavior and estimation of body weight and food consumption were conducted as with the young rat study protocol. The groups were examined for developmental parameters such as surface righting and visual placing reflexes for reflex ontogeny; fur appearance, incisor eruption and eye opening for external development during dosing period; and sexual development such as preputial separation, vaginal opening and estrous cycle during the recovery-maintenance period. The long recovery-maintenance period allowed for examination of sexual development after weaning and latent toxic effects in the early adulthood.

3. Unique approach to analysis of the susceptibility of newborn rats to chemicals

The no observed adverse effect level (NOAEL) is frequently used to determine safety or toxicity for environmental and industrial chemicals, with the NOAEL being the greatest dose at which no adverse effects are observed. However, the NOAEL is not always appropriate for an accurate comparison of toxicity levels between studies because the NOAEL is dependent on the dose setting. For example, in our early analysis of 2,4-dinitrophenol data, NOAELs for both newborn and young rat main studies were both 10 mg/kg/day because clinical signs of toxicity appeared at 20 mg/kg in newborn and 30 mg/kg in young rats. However, newborn rats seemed to be more sensitive to the chemical considering the intensity of lesions at higher doses. Further analysis of the data from the dosefinding young study showed no clinical toxicity signs at 20 mg/kg. Therefore, 20 mg/kg/day from the dose-finding young study was considered to be more appropriate as a NOAEL than the 10 mg/kg/day from the main young study. Including the dose-finding study in the determination of the NOAEL for a main study is not commonly done, thus, we decided to employ a new terminology in this document; the presumed NOAEL (pNOAEL) and defined it as the most likely no adverse effect dose for our specific purpose. The lack of information from dose-finding studies, such as histopathological examination in both newborn and young studies, and the shorter administration period in the young case was carefully considered in adopting the pNOAEL approach.

In addition, a Benchmark Dose (BMD) approach was applied to the same toxicity endpoint data that was used for the estimation of pNOAEL. Although clinical signs and histopathological changes are generally not appropriate for BMD analysis, since the frequency, duration and severity cannot usually be incorporated for the calculation, we attempted to employ incidences such as numbers of affected animals from both main and dose-finding studies where appropriate. Using the US EPA provided Benchmark Dose Software (Version 1.3.2), Benchmark Dose Lower Bound (BMDL) was estimated with 10% extra incidence at the 95% confidence level. In most cases, the incidence data were input to a Dichotomous model. For selection of the model, the lowest AIC (Akaike's Information Criterion) was used and the goodness-of-fit was confirmed visually with graphical displays.

At the first trial to evaluate the susceptibility of newborn rats to chemicals, we judged that the above endpoint comparison of pNOAEL/BMDL was not sufficient with respect of outcome reliability and the full toxicity data set should have been used. Alternatively, comparison of pNOAEL/BMDL might be sufficient for low dose responses but not with results at Lowest Observed Adverse Effect Level (LOAEL). In fact, it is reported that 17-day-old rats show higher susceptibility to chlorpyrifos at the maximum tolerated dose than adult rats (Moser and Padilla, 1998).

whereas no differential sensitivity was evident in NOAELs between the two groups (Pope and Liu, 1997)—a fact repeated with several chemicals in our series. Thus, we also considered the comparison of LOAELs among the newborn and young animal studies. Unfortunately, the traditional comparison of LOAELs has frequently suffered from a disparity in severities among studies, a situation that continues today with comparison of BMDLs.

This lead us again to employ a new terminology; the presumed unequivocally toxic level (pUETL) and defined it as the clear toxic dose giving similar severity for both newborn and young rats (at the same endpoints as far as possible). However, this was not simple to apply because the toxicity profile differed from chemical to chemical and also from newborn to young rats, the number per dose setting usually only being three in each group. Therefore, the most practical analytical strategy had to be a case by case approach. In most cases, the appropriate pUETL for either newborn or young rats was chosen first, thereafter the matching toxic dose or the range of doses was estimated giving similar severity for either group of rats, considering the whole data balance. Again, data from the dose-finding studies were also taken into account, especially considering the kinds of toxicity which appeared and the limits to be used. It should be noted that pUETL is not an absolute value, being different from pNOAEL/BMDL, but useful nevertheless to compare toxic responses between newborn and young rats at sufficient exposure.

This unique approach using two original definitions, with additional data from dose-finding studies concerning limitations, was fully supported by peer-reviewers of toxicology journals. On the other hand, the BMD approach for our whole data, including the dose-finding studies, was first conducted for this article.

4. Comparison of sensitivity of newborn and young rats to chemicals

4.1. Toxicity profiles

Critical toxicity data and the preliminary evaluation for 18 chemical studies have already been published in the literature. Table 1 shows a summary of the major findings for toxicities from the newborn and young studies. Fourteen chemicals commonly induced similar types of toxicities in both ages with the data considered in the pNOAEL or BMD approaches. With 3-ethylphenol and 1,1,2,2-tetrabromoethane, the toxicity profiles of both ages were not similar. In the case of 3-ethylphenol, the toxic similarity or difference between newborn and young rats cannot be predicted because of inadequate high dose setting in the newborn study. For 1,1,2,2-tetrabromoethane, hepatotoxicity in newborn rats can be speculated to appear at higher doses because a remarkable increase of relative liver weight was observed in the dose-finding study, although pathological examination was not conducted. In contrast, 2,4,6-trinitrophenol demonstrated a completely different profile of the major toxicities between the differently aged rats; also, tetrabromobisphenol A demonstrated unique toxicity in newborn rats.

4.1.1. Specific toxicity to reproductive organs in newborn

Although specific developmental parameters such as preputial separation and vaginal opening were carefully examined in newborn studies, no significant changes for any chemicals were observed.

In the case of p-(α , α -dimethylbenzyl) phenol, ovary weights were lowered at the end of the dosing as well as the recovery-maintenance periods and increased numbers

Major types or symptoms of toxicities of 18 industrial chemicals in newborn and young studies

Chemical name	Newborn studies	Young studies	References
4-Nitrophenol	Convulsions	Hypoactivity, convulsions	Koizumi et al. (2001)
2,4-Dinitrophenol	Hypoactivity, convulsions	Hypoactivity, convulsions	Koizumi et al. (2001)
3-Aminophenol	Tremors, thyroid hypertrophy	Tremors, thyroid hypertrophy, anemia	Koizumi et al. (2002)
2-Chlorophenol	Tremors, renal toxicity	Tremors, hypoactivity	Hasegawa et al. (2005)
4-Chlorophenol	Tremors	Tremors, tachypnea	Hasegawa et al. (2005)
2-tert-Butylphenol	Hypoactivity, ataxia	Hypoactivity, ataxia	Hirata-Koizumi et al. (2005b)
2,4-Di-tert-butylphenol	Hepatic and renal toxicity	Hepatic and renal toxicity	Hirata-Koizumi et al. (2005b)
3-Methylphenol	Tremors, hyperactivity	Tremors	Koizumi et al. (2003)
3-Ethylphenol	Low BW	Ataxia, forestomach lesions	Takahashi et al. (2006)
4-Ethylphenol	Hypoactivity, delayed reflexes	Ataxia, forestomach lesions	Takahashi et al. (2006)
p-(a,a-Dimethylbenzyl) phenol	Renal toxicity, ovarian lesions	Renal toxicity, forestomach lesions	Hasegawa et al. (2005)
1,3,5-Trihydroxybenzene	Thyroid hypertrophy	Thyroid hypertrophy	Hasegawa et al. (2005)
2,4,6-Trinitrophenol	Low BW	Anemia, testicular atrophy	Takahashi et al. (2004)
(Hydroxyphenyl)methyl phenol	Low BW	Low BW, forestomach lesions	Hasegawa et al. (2005)
Trityl chloride	Low BW, hepatotoxicity	Low BW, hepatotoxicity	Hasegawa et al. (2005)
1,3-Dibromopropane	Low BW, hepatotoxicity	Low BW, hepatotoxicity, anemia	Hirata-Koizumi et al. (2005a)
1,1,2,2-Tetrabromoethane	Low BW	Hepatotoxicity	Hirata-Koizumi et al. (2005a)
Tetrabromobisphenol A	Renal toxicity	None	Fukuda et al. (2004)

BW: body weight.

of atretic follicles at the end of the dosing period. Most females continued to show various changes after the recovery-maintenance period, such as decreased numbers of corpa lutea in the ovaries, and hypertrophy of endometrial epithelium in the uteri. Therefore, further studies on this chemical should be conducted to elucidate the underlying mechanisms.

With (hydroxyphenyl)methyl phenol, some estrogenic effects were expected because it consists of bisphenol D, E and F isomers, and bisphenol F is reported to have estrogenic potential on the evidence of several in vitro and in vivo experiments (Hashimoto et al., 2001; Yamasaki et al., 2002; Stroheker et al., 2003). Some phenols such as nonylphenol, p-tert-octylphenol, bisphenol A and diethylstilbestrol have already been reported to induce morphological alteration of sex organs on early phase exposure after birth although the administration routes were either intraperitoneal or subcutaneous (Lee, 1998; Katsuda et al., 2000; Khan et al., 1998; Suzuki et al., 2002). The negative result in our study may be related to an insufficient component level of bisphenol F to induce such action.

4.1.2. Other specific toxicity in newborn rats

There was one exceptional case of toxicity limited to newborn rats. Tetrabromobisphenol A induced polycystic kidneys at 200 and 600 mg/kg in newborn rats but not in doses up to 1000 mg/kg in the main young study and 6000 mg/kg for 18 days exposure in an additional young study. Such specific renal toxicity in newborn rats has also been described for other chemicals such as chlorambucil (Kavlock et al., 1987), tetrachloro-1,4-dibenzodioxine (Couture-Haws et al., 1991) and difluoromethylornithine (Gray and Kavlock, 1991). Kidney nephrons of rats are formed in the period of the advanced stage of pregnancy until 2 weeks after birth (Chevalier, 1998), only 10% of nephrons are present at birth (Merlet-Benichou et al., 1994). It is possible that developing renal tubules in newborn rats may be sensitive to induction of hyperplasia of the tubular epithelium in response to cellular damage, leading to polycystic lesions. Although this toxicity is unusual-at least in newborn rats-it seems reasonable to consider similar unusual potential effects in newborn humans for some chemicals.

4.1.3. Specific toxicity in young rats

2,4,6-Trinitrophenol induced anemia and atrophy of seminiferous tubules of testes in young rats but only slight lowering of body weights in the main newborn study. Higher doses in the dose-finding newborn study induced severe suppression of body weight gain and death but not anemia or testicular toxicity. Sertoli cells in rats proliferate rapidly from day 19 of gestation to postnatal Day 15, then slow down and cease multiplying by approximately postnatal Day 20 (Orth, 1982, 1984; Toppari et al., 1996); 2,4,6-trinitrophenol seems unlikely to affect this stage rather affecting the maturation of spermatids. For anemia, the same

pattern, of anemia only in young rats, was found for 3-aminophenol and 1,3-dibromopropane. Although methemoglobin levels were not determined in this study, it was reported that methemoglobin reductase levels in newborn rats are distinctly higher than in young animals (Gruener, 1976; Lo and Agar, 1986), which could be a reason for higher susceptibility in the latter. Another possible explanation is that major metabolites such as picramic acid may damage seminiferous tubules as well as induce hemolytic anemia but the metabolic rate may be very slow in newborn rats because of low P450 content (Rich and Boobis, 1997).

Hyperplasia of squamous cells in forestomach was observed for 3-ethylphenol, 4-ethylphenol, p-(α , α -dimethylbenzyl) phenol and (hydroxyphenyl)methyl phenol only at high toxic doses in young rats. Generally, phenols have similar toxicological effects due to their actions as extremely corrosive protoplasmic poisons (Manahan, 2003; Bloom and Brandt, 2001). The fact that the epithelium of the gastrointestinal tract of newborn rats may be more quickly renewed than that of young rats because of more active body metabolism in developing newborn rats, as well as a low capacity for gastric acid secretion, could explain any lower sensitivity in this regard.

4.2. Comparison of pNOAELs and pUETLs

pNOAELs for newborn and young rats with all chemicals were re-evaluated as shown in Table 2. Single pNOA-ELs for newborn and young rats were estimated for most chemicals on the basis of careful analyses of the results from the dose-finding and main studies. In two cases we judged that specification of a single value was not appropriate and therefore ranges were adopted. In case of 3-methylphenol for newborn rats, tremors only with contact stimuli were noted in three males on single days at the medium dose of 100 mg/kg in the main study. Thus the overt NOAEL became the low dose of 30 mg/kg, but the realistic NOAEL was considered to be slightly lower than 100 mg/kg, supported by overt NOAEL at 100 mg/ kg in the dose-finding study. Therefore, the pNOAEL was established in the range of 60-80 mg/kg/day for more accurate comparison with data from the young study. The second case concerned the value for 2,4,6-trinitrophenol for newborn rats because they showed only a slight lowering of the body weight at 61.5 mg/kg and the low dose of 16.1 mg/kg was not considered appropriate as the pNOAEL; we adopted the range of 40-50 mg/kg/day instead. It should be noted that the pNOAEL of 1000 mg/kg/day of young rats for tetrabromobisphenol A is also not realistically appropriate because it was the highest limit dose indicated in the Test Guideline. As for estimation of pUETL, 8 values were given as ranges based on the definition of matching toxic dose ranges to induce clear toxicity at similar severity as described earlier. There were two chemicals without matches: 3-ethylphenol and tetrabromobisphenol A. For the former case, a dose in

Table 2 Summary of pNOAELs and pUETLs for 18 industrial chemicals in newborn and young rats

Chemical name	Newborn studi	Newborn studies Young str			Young/Newborn	
	pNOAEL	pUETL	pNOAEL	pUETL	pNOAEL	pUETL
	(mg/kg	/day)	(mg/k	g/day)		
4-Nitrophenol	110	230	400	600-800	3.6	2.6-3.5
2,4-Dinitrophenol	10	30	20	80	2.0	2.7
3-Aminophenol	80	240	240	720	3.0	3.0
2-Chlorophenol	40	200-250	200	1000	5.0	4.0-5.0
4-Chlorophenol	100	300	100	500	1.0	1.7
2-tert-Butylphenol	20	100-150	100	500	5.0	3.3-5.0
2,4-Di-tert-butylphenol	5	100	20	500	4.0	5.0
3-Methylphenol	60-80	300	300	1000	4.0-5.0	3.3
3-Ethylphenol	100	-	300	-	3.0	-
4-Ethylphenol	30	200-250	100	1000	3.3	4.0-5.0
p-(a,a-Dimethylbenzyl) phenol	30	300	100	700-800	3.3	2.3-2.7
1,3,5-Trihydroxybenzene	100	500	300	1000	3.0	2.0
2,4,6-Trinitrophenol	40-50	65	20	100	0.4-0.5	1.5
(Hydroxyphenyl)methyl phenol	100	140-160	40	1000	0.4	6.3-7.1
Trityl chloride	60	400-500	12	300	0.2	0.6-0.8
1,3-Dibromopropane	50	150	10	250	0.2	1.7
1,1,2,2-Tetrabromoethane	50	200	6	300-400ª	0.1	1.5-2.0
Tetrabromobisphenol A	40	_	1000 ^b	-	25 ^b	

—: Appropriate values were not able to be given.

b No accurate values for pNOAEL and pNOAEL ratio could be generated because 1000 mg/kg/day is the highest dose indicated in the Test Guideline.

newborn rats matching the toxic dose in young rats could not be predicted because the high dose in newborn rats did not induce any clear toxicity. The latter is that the high dose in young rats did not induce any toxicity.

The last column in Table 2 shows ratios for the young/newborn pNOAELs, and young/newborn pUETLs. Among the pNOAEL ratios for all 18 chemicals, newborn rats were less or nearly equal in sensitivity (less than 2-fold) to 6 chemicals (33%), clearly more sensitive (2-5-fold) to 11 chemicals (61%) and more than 25-fold for one exceptional case (6%). The mean ratio was 3.9 for all 18 chemicals or 2.5 for all but the exceptional case. Among the available pUETL ratios for 16 chemicals, 5 were less or nearly equal in newborn rats (less than 2-fold change) (31%) and 11 chemicals were clearly more toxic (2-8-fold) (69%). The mean ratio was 3.1 for the 16 chemicals.

Based on reliable calculated ratios for our two endpoints, approximately 94% of values (32 out of 34 ratios) demonstrated differences of 5-fold or less, one chemical had a 6-8-fold variation, and in the case of a 25-fold ratio of tetrabromobisphenol A, the nephrotoxicity in newborn rats is a specific toxicity rather than a higher susceptibility to the same toxic endpoint in young rats. These same ratios can be used to state that a higher susceptibility (more than 2-fold) in newborn rats was found for 62% of all tested chemicals in terms of pNOAELs and pUETLs, via oral repeated administration.

To appraise correlations between pUETL and pNOAEL ratios (young/newborn rats), available values were plotted on a logarithmic scale in a correlation diagram. As shown in Fig. 2, two separate groups became

apparent, group 1 has the same or lower pNOAELs for newborn than young rats, and group 2 has higher pNOA-ELs for newborn than young rats. The mechanistic speculation for the differences is discussed next.

4.3. Speculation on differences in responses between low and high doses in newborn and young rats

Immature functions of organs (especially the liver and kidneys), in newborn rats may contribute to the difference of response. There were at least two types of dose response curve shifts between newborn and young rats, as illustrated in Fig. 3. The first was a parallel shift from right (young) to left (newborn) for 12 phenolic chemicals (group 1). The other 5 chemicals demonstrated a steeper shaped curve in newborn than young rats but young rats were clearly more sensitive around the pNOAEL doses (group 2).

Group I chemicals may primarily have direct actions on their target organs such as the central nervous system, kidneys or thyroid. They may be detoxified by the formation of conjugates, for example, glucuronidation of 4-nitrophenol (Robinson et al., 1951) and 3-methylphenol (Bray et al., 1950). UDP-glucuronyltransferase activity at birth in the rat liver is known to be comparable to that in adults but nearly 50% lower during nursing (Watkins and Klaassen, 1985; Rachmel and Hazelton, 1986). Therefore, a low capacity for glucuronidation may be one of the major causes of higher susceptibility of newborn rats to these phenols. This may also occur in human infants since immature hepatic glucuronidation and low activity of bilirubin glucuronidation at birth have been shown in human infants

^{*} These range values were estimated on the basis of all relevant toxicity data, including single dose toxicity data in young rats (the lowest mortality dose was 722 mg/kg for males and 852 for females) (MHLW, 2003).

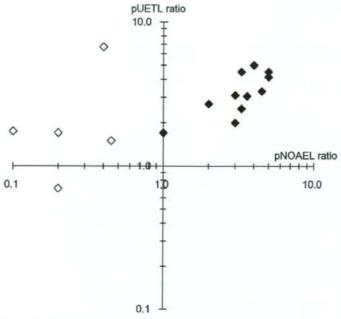


Fig. 2. Correlations of pUETL and pNOAEL ratios (young/newborn). Each point is plotted on a logarithmic scale from the ratios for young/newborn pUETLs and pNOAELs. Closed and open diamonds indicate group 1 and 2 chemicals, respectively.

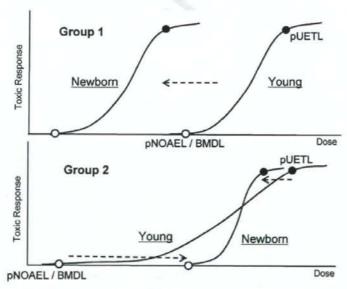


Fig. 3. Illustration of two patterns of shift of dose response curves from young to newborn rats.

(Gow et al., 2001; Kawade and Onishi, 1981). In addition, there is a possibility that high susceptibility may be due to a low capacity for hepatic cytochrome P450 (Rich and Boobis, 1997) and renal excretion (Horster, 1977), and

increased permeability of the blood-brain barrier (Cremer et al., 1979).

Group 2 chemicals did not demonstrate as many effects at the low dose but nearly the same or higher

number of effects at the high dose in newborn compared to young rats. These chemicals may need metabolic activation to exert toxic effects. Newborn rats have been shown to have a low content of hepatic cytochrome P450 (Rich and Boobis, 1997) and a drop of glutathione-S-transferase activity in the early days after birth (Tee et al., 1992). Therefore, production of active metabolites may be significantly lower in newborn rats. In fact, it has been suggested that 1,1,2,2-tetrabromoethane requires an oxidative biotransformation to produce active intermediates (Kennedy et al., 1993) and 1,3-dibromopropane is conjugated with glutathione before or after oxidative biotransformation (James et al., 1981) as is common for dihaloalkanes or dihaloalkenes (Zoetemelk et al., 1986; Trevisan et al., 1989). However, pUETLs for newborn rats for 4-5 chemicals were in approximately the same ranges as in young rats. Although major reasons for variation in susceptibility are unclear, one possible explanation might be a low capacity for protection against deleterious oxidative stress in the newborn when the toxic chemical burden crosses a threshold in the liver, which has a low activity of catalase and glutathione peroxidase during the nursing period (Yoshida et al., 1982).

4.4. Application trial of the BMD approach

We attempted to derive BMDLs as sensitive and appropriate endpoints in each study in addition to pNOAELs whenever possible. These calculated values are shown in

Table 3 Summary of BMDL values and ratios for 18 industrial chemicals in newborn and young rats

Chemical name	Newborn studies (mg/kg/ day)	Young studies (mg/kg/ day)	Young/ newborn
4-Nitrophenol	141	392	2.8
2,4-Dinitrophenol	11	14	1.3
3-Aminophenol	54	254	4.7
2-Chlorophenol	31	126	4.1
4-Chlorophenol	79	63	0.8
2-tert-Butylphenol	43	130	3.0
2,4-Di-tert-butylphenol	7.5	48	5.1
3-Methylphenol	50	397	7.9
3-Ethylphenol	276	376	1.4
4-Ethylphenol	53	173	3.3
p-(\alpha,\alpha-Dimethylbenzyl) phenol	28	42	1.5
1,3,5-Trihydroxybenzene	63	206	3.3
2,4,6-Trinitrophenol	41	15	0.4
(Hydroxyphenyl)methyl phenol	108	42	0.4
Trityl chloride	34	6.8	0.2
1,3-Dibromopropane	32	6.1	0.2
1,1,2,2-Tetrabromoethane	82	3.1	0.04
Tetrabromobisphenol A	45		-

Appropriate values could not be generated because no toxicity was apparent in the young study.

Table 3. Most BMDLs seem to be relatively close to the corresponding pNOAELs but there are some cases in which BMDLs were lower than the probable values from toxicity profiles. One major reason may be the nature of the toxicity data used for the BMDL calculations. For example, no changes were observed with histopathological data in the young study for trityl chloride at 12 mg/kg, only slight changes in 3 of 6 animals at 60 mg/kg, and 4 mild and 2 moderate levels of change in 6 animals at 300 mg/ kg. For the BMDL estimation from these data we input an incidence of 3 animals in 6 at 60 mg/kg and 6 animals in 6 animals at 300 mg/kg, even though the severities of these changes were different. So an actual dose response curve was obviously steeper than the input data curve, leading to a lower BMDL of 6.8 mg/kg/day, compared to the pNOAEL of 12 mg/kg/day. Nonetheless, Fig. 4 shows a good relationship between pNOAEL and BMDL since the correlation efficient was 0.904 (calculated without logarithmic conversion). The BMDL ratios in Table 3 are slightly lower than pNOAEL ratios in Table 2, with 9 chemicals (53%) demonstrating less or nearly equal sensitivity in newborn rats (less than 2-fold) and 8 chemicals (47%) demonstrating more sensitivity (2-8-fold) in newborn rats. However, a correlation diagram of the pUETL ratios versus the BMDL ratios also showed the same profile as Fig. 2 (not shown here). Therefore, the BMD approach can be considered very useful for the present purposes and somewhat easier than our pNOAEL estimation because extensive experience in toxicology is necessary for the latter estimations.

5. Discussion of pediatric susceptibility

Major uncertainty exists in the derivation of human safety doses from animal experimental data. This uncertainty consists primarily of toxicokinetic and toxicodynamic differences between experimental animals and humans and among humans, and is addressed through the use of two factors, inter-species differences and human variability (intra-species differences). For either factor, a value of 10-fold has generally been applied for most assessments.

The aim of risk assessment is to derive the estimated no adverse toxic response level in sensitive humans. Thus, NOAELs or BMDLs are used as the starting point values, and not higher doses exhibiting toxicity, although descriptions of such toxicity provide critical information on risk assessment. Human variability implies appreciable differences of NOAELs or BMDLs between average populations and sensitive subpopulations as indicated by Dourson et al. (2002). Since the general human population or a more uniform experimental animal population is typically the focus group for toxicity evaluation, risk assessment needs to include sensitive subpopulations, such as infants, children, the elderly, and specific subgroups with minor diseases or relevant genetic polymorphisms. However, some hypersusceptible individuals might be excluded, for example, patients with severe hepatic or renal dysfunction should

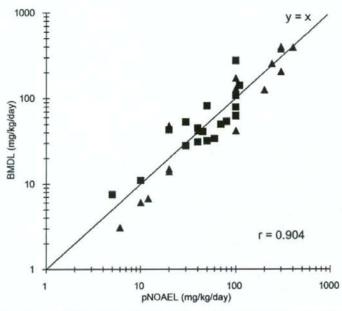


Fig. 4. Correlation between pNOAELs and BMDLs from both newborn (closed squares) and young (triangles) studies.

be excluded because they may be extremely sensitive to chemicals due to their impaired capacity for detoxification or excretion. Pregnant women and fetuses are also sensitive subpopulations, but the toxicity to these groups is routinely tested by reproductive and developmental toxicity studies.

Recently, Dourson et al. (2002) summarized considerations on adequacy of uncertainty factors of human variability for children. With human data, Glaubiger et al. (1981) reported that overall differences in sensitivity between children and adults are quite small on the basis of comparing maximum tolerated doses for 17 anticancer drugs. Using animal data analyses, Charnley and Putzrath (2001) demonstrated that younger animals appear to be less susceptible to 47% and more susceptible to 40% of the tested chemicals in carcinogenesis studies. Sheehan and Gaylor (1990) showed newborn mammals to be more sensitive than adults (86% within 10-fold) by comparing LD₅₀ ratios for 238 chemicals. Calabrese (2001) also reported that younger animals have a greater sensitivity than older animals in 54% of cases (more than 10-fold in 14%) with LD₅₀ ratio analyses for 313 chemicals. All these reports suggest the degree of variation in sensitivity of infants/younger animals as compared to adults for most chemicals may be within 10-fold, so that a 10-fold uncertainty factor may be sufficient to cover the variation (Dourson et al., 2002). However, only Sheehan and Gaylor (1990) targeted newborn rather than young animals and the report was a meeting abstract.

Concerning the methodology for risk assessment with repeated exposure, NOAELs or BMDLs from repeated-dose toxicity studies are starting values to derive risk values such as acceptable daily intake (ADI) or tolerable daily intake (TDI). These studies might be as short as 28 days or as long as 2 years, but invariably dosing generally starts around 6 weeks of age for rodents. These animals are referred to as "young" in this article rather than adult because their growth is still vigorous. Therefore, toxicity responses of young animals, equivalent to late childhood in humans, may already be covered by the general repeated-dose toxicity studies (see also Table 2 of Dourson et al., 2002 which summarized work by Scheuplein et al., 2002, on this point).

However, only limited data exist for animals from birth to 5 or 6 weeks of age. During these initial few weeks after birth, susceptibility to toxic insult might be expected to be greater than at later periods because organ growth rates are higher. Moreover, metabolism and elimination pathways are not yet mature (see for example the discussion of kinetic comparisons of newborn, infants and children as compared with adults by Rane, 1992 and Renwick, 1998 in Dourson et al., 2002). Although for some chemicals this lack of maturation in metabolism and elimination might serve to protect the newborn, it is clearly very important to clarify newborn sensitivity versus young animal sensitivity. Thus we have designed our newborn rat study protocol (18 day newborn study) to follow the conditions of the 28 day repeated-dose toxicity study (onset of administration at 5-6 weeks old) as closely as possible using 18, mostly phenolic, compounds. In addition to the unique design of the 18 day newborn study, new clarifying terminology has been developed, pNOAELs and pUETLs, in order to more appropriately determine ratios between newborn and young studies.

Our analyses of 18 such pNOAEL ratios or 17 BMDL ratios revealed less or nearly equal sensitivity in newborn animals (less than 2-fold) in 33-53%, clearly greater sensitivity (2-8-fold) in 47-61% and one exceptional case of more than 25-fold sensitivity in the newborn. In the case of 16 pUETL ratios, 31% of chemicals showed less or nearly equal toxicity in newborns (less than 2-fold) and 69% more toxicity (2-8-fold) in newborns. This distribution and the extent of newborn susceptibility in toxicity are in line with the conclusions of several investigators summarized previously by Dourson et al. (2002), but evidence presented here is more direct because of careful design of the comparative studies and comprehensive toxicological analyses and judgments. In addition, two kinetic analyses showing newborns to be more sensitive than adults, with a 3.5 arithmetic average difference in elimination half life (Rane, 1992) or a 4-fold longer average half life (Ginsberg et al., 2002), support relatively similar degrees of average susceptibility as we have found.

Collectively, all of this work suggests that studying the early life stage sensitivity to toxic insult is important. When such studies determine the critical effect, then ADIs or TDIs should be based on their findings. When such studies do not determine the critical effect, then the ADI or TDI is appropriately based on a critical effect found in a different study and the newborn is protected. It is when such studies have not been conducted that uncertainty factors must be invoked to protect the newborn, and other potential sensitive subpopulations, and several investigators have looked at the adequacy of such factors (e.g., Burin and Saunders, 1999; Dourson et al., 2002). Based on our results and those of other investigators, we suggest that an uncertainty factor of 10-fold for human variability and an uncertainty factor of between 3- and 10-fold for database completeness can be considered appropriate for risk assessment unless knowledge of particular toxicity in newborn or infants is present, or if not present is discountable due to other credible information on the chemical.

In conclusion, newborn rats are clearly more susceptible than young animals (at most 8-fold) to two thirds of the present series of 18 chemicals, mostly phenolic substances, and less or nearly equal sensitive to the others for oral repeated exposure. However, it should be noted that there was one exceptional case in which the toxicity appeared only in newborn rats. These repeated oral exposure newborn studies are unique for this limited group of chemicals, and perhaps for other chemicals as well

Acknowledgments

The authors gratefully acknowledge the financial support of the Office of Chemical Safety, Pharmaceutical and Medical Safety Bureau, Ministry of Health, Labour and Welfare, Japan and also wish to express their deep appreciation to the five Japanese contract laboratories (Gotemba Laboratory, Bozo Research Center Inc., Panapharm Laboratories Co., Ltd., Research Institute for Animal Science in Biochemistry and Toxicology (Foundation), Mitsubishi Chemical Safety Institute Ltd. and Safety Research Institute for Chemical Compounds Co., Ltd.) for their efforts in performing the actual animal toxicity studies.

References

- Bloom, J.C., Brandt, J.T., 2001. Toxic responses of the blood. In: Klaassen, C.D. (Ed.), Casarett and Doull's Toxicology, sixth ed., The Basic Science of Poisons McGraw-Hill, New York, pp. 389-417.
- Bray, H.G., Thorpe, W.V., White, K., 1950. Metabolism of derivatives of toluene. Biochem. J. 46, 275-278.
- Burin, G.J., Saunders, D.R., 1999. Addressing human variability in risk assessment—The robustness of the intraspecies uncertainty factor. Regul. Toxicol. Pharmacol. 30, 209-216.
- Calabrese, E.J., 2001. Assessing the default assumption that children are always at risk. Hum. Ecol. Risk Assess. 7, 37-59.
- Charnley, G., Putzrath, R.M., 2001. Children's health, susceptibility, and regulatory approaches to reducing risks from chemical carcinogens. Environ. Health Perspect. 109, 187-192.
- Chevalier, R.L., 1998. Pathophysiology of obstructive nephropathy in the newborn. Semin. Nephrol. 18, 585-593.
- Couture-Haws, L., Harris, M.W., McDonald, M.M., Lockhart, A.C., Birnbaum, L.S., 1991. Hydronephrosis in mice exposed to TCDDcontaminated breast milk: identification of the peak period of sensitivity and assessment of potential recovery. Toxicol. Appl. Pharmacol. 107, 413-428.
- Cremer, J.E., Cunningham, V.J., Pardridge, W.M., Braun, L.D., Oldendorf, W.H., 1979. Kinetics of blood-brain barrier transport of pyruvate, lactate and glucose in suckling, weanling and adult rats. J. Neurochem. 33, 439-445.
- Dourson, M., Charnley, G., Scheuplein, R., 2002. Differential sensitivity of children and adults to chemical toxicity. II. Risk and regulation. Regul. Toxicol. Pharmacol. 35, 448-467.
- Fukuda, N., Ito, Y., Yamaguchi, M., Mitumori, K., Koizumi, M., Hasegawa, R., et al., 2004. Unexpected nephrotoxicity induced by tetrabromobisphenol A in newborn rats. Toxicol. Lett. 150, 145-155.
- Ginsberg, G., Hattis, D., Sonawane, B., Russ, A., Banati, P., Kozlak, M., et al., 2002. Evaluation of child/adult pharmacokinetic differences from a database derived from the therapeutic drug literature. Toxicol. Sci. 66, 185-200.
- Glaubiger, D.L., von-Hoff, D.D., Holcenberg, J.S., Kamen, B., Pratt, C., Ungerleider, R.S., 1981. The relative tolerance of children and adults to anticancer drugs. Front. Radiat. Ther. Oncol. 16, 42–49.
- Gow, P.J., Ghabrial, H., Smallwood, R.A., Morgan, D.J., Ching, M.S., 2001. Neonatal hepatic drug elimination. Pharmacol. Toxicol. 88, 3– 15.
- Gray, J.A., Kavlock, R.J., 1991. Physiological consequences of early neonatal growth retardation: effect of α-diffuoromethylornithine on renal growth and function in the rat. Teratology 43, 19-26.
- Gruener, N., 1976. Ontogenetic development of NADH-dependent methemoglobin reductase in erythrocytes of man and rat. J. Toxicol. Environ. Health 1, 787-791.
- Hasegawa, R., Koizumi, M., Hirose, A., 2004. Principles of risk assessment for determining the safety of chemicals: Recent assessment of residual solvents in drugs and di(2-ethylhexyl) phthalate. Congenit. Anom. (Kyoto) 44, 51-59.
- Hasegawa, R., Hirata-Koizumi, M., Takahashi, M., Kamata, E., Ema, M., 2005. Comparative susceptibility of newborn and young rats to six industrial chemicals. Congenit. Anom. (Kyoto) 45, 137-145.

- Hashimoto, Y., Moriguchi, Y., Oshima, H., Kawaguchi, M., Miyazaki, K., Nakamura, M., 2001. Measurement of estrogenic activity of chemicals for the development of new dental polymers. Toxicol. In Vitro 15, 421–425.
- Hirata-Koizumi, M., Hamamura, M., Furukawa, H., Fukuda, N., Ito, Y., Wako, Y., et al., 2005a. Elevated susceptibility of newborn as compared with young rats to 2-tert-butylphenol and 2,4-di-tert-butylphenol. Congenit. Anom. (Kyoto) 45, 146– 153.
- Hirata-Koizumi, M., Kusuoka, O., Nishimura, N., Wada, H., Ogata, H., Fukuda, N., et al., 2005b. Susceptibility of newborn rats to hepatotoxicity of 1,3-dibromopropane and 1,1,2,2-tetrabromomethane, compared with young rats. J. Toxicol. Sci. 30, 29-42.
- Horster, M., 1977. Nephron function and perinatal homeostasis. Ann. Rech. Vet. 8, 468-482.
- IFCS, 2005. Chemical safety and children's health. Protecting the world's children from harmful chemical exposure. A global guide to resources. Prepared by the Intergovernmental Forum on Chemical Safety (IFCS) Children and Chemical Safety Working Group. World Health Organization, Geneva.
- James, S.P., Pue, M.A., Richards, D.H., 1981. Metabolism of 1,3dibromopropane. Toxicol. Lett. 8, 7-15.
- Katsuda, S., Yoshida, M., Watanabe, G., Taya, K., Maekawa, A., 2000. Irreversible effects of neonatal exposure to p-tert-octylphenol on the reproductive tract in female rats. Toxicol. Appl. Pharmacol. 165, 217– 226.
- Kavlock, R.J., Rehnberg, B.F., Rogers, E.H., 1987. Critical prenatal period for chlorambucil-induced functional alterations of the rat kidney. Toxicology 43, 51-64.
- Kawade, N., Onishi, S., 1981. The prenatal and postnatal development of UDP-glucuronyltransferase activity towards bilirubin and the effect of premature birth on this activity in the human liver. Biochem. J. 196, 257–260.
- Kennedy, C.H., Cohen, K.B., Bechtold, W.E., Chang, I.Y., Eidson, A.F., Dahl, A.R., et al., 1993. Effect of dose on the metabolism of 1,1,2,2tetrabromoethane in F344/N rats after gavage administration. Toxicol. Appl. Pharmacol. 119, 23-33.
- Khan, S.A., Ball, R.B., Hendry 3rd, W.J., 1998. Effects of neonatal administration of diethylstilbestrol in male hamsters: disruption of reproductive function in adults after apparently normal pubertal development. Biol. Reprod. 58, 137-142.
- Koizumi, M., Yamamoto, Y., Ito, Y., Takano, M., Enami, T., Kamata, E., et al., 2001. Comparative study of the toxicity of 4-nitrophenol and 2,4-dinitrophenol in newborn and young rats. J. Toxicol. Sci. 26, 299–311.
- Koizumi, M., Nishimura, N., Enami, T., Kamata, E., Hasegawa, R., 2002. Comparative toxicity study of 3-aminophenol in newborn and young rats. J. Toxicol. Sci. 27, 411-421.
- Koizumi, M., Noda, A., Ito, Y., Furukawa, M., Fujii, M., Kamata, E., et al., 2003. Higher susceptibility of newborn than young rats to 3methylphenol. J. Toxicol. Sci. 28, 59-70.
- Landrigan, P.J., Kimmel, C.A., Correa, A., Eskenazi, B., 2004. Children's health and the environment: public health issues and challenges for risk assessment. Environ. Health Perspect. 112, 257-265.
- Lee, P.C., 1998. Disruption of male reproductive tract development by administration of the xenoestrogen, nonylphenol, to male newborn rats. Endocrine 9, 105-111.
- Lo, S.C., Agar, N.S., 1986. NADH-methemoglobin reductase activity in the erythrocytes of newborn and adult mammals. Experientia 42, 1264–1265.
- Manahan, S.E., 2003. Toxicological Chemistry and Biochemistry, third ed. Lewis publishers, Florida.
- Merlet-Benichou, C., Gilbert, T., Muffat-Joly, M., Leliever-Pegorier, M., Leroy, B., 1994. Intrauterine growth retardation leads to a permanent nephron deficit in the rat. Pediatr. Nephrol. 8, 175–180.
- MHLW, 2003. Single dose oral toxicity test of tetrabromoethane. Ministry of Health, Labour and Welfare (MHLW), Toxicity Testing Reports of Environmental Chemicals 10, pp. 45–46.

- Moser, V.C., Padilla, S., 1998. Age- and gender-related differences in the time course of behavioral and biochemical effects produced by oral chlorpyrifos in rats. Toxicol. Appl. Pharmacol. 149. 107-119.
- OECD Test Guideline 407, Repeated-dose 28-day Oral Toxicity Study in Rodents. Adopted by the Council on 27th July 1995.
- OECD Test Guideline 416, Two-Generation Reproduction Toxicity Study. Updated Guideline 22nd January 2001.
- Orth, J.M., 1982. Proliferation of Sertoli cells in fetal and postnatal rats: A quantitative autoradiographic study. Anat. Rec. 203, 485-492.
- Orth, J.M., 1984. The role of follicle-stimulating hormone in controlling Sertoli cell proliferation in testes of fetal rats. Endocrinology 115, 1248-1255.
- Polin, R.A., Fox, W.W., Abman, S.H. (Eds.), 2004. Fetal and Neonatal Physiology, third ed. Saunders, Philadelphia.
- Pope, C.N., Liu, J., 1997. Age-related differences in sensitivity to organophosphorus pesticides. Environ. Toxicol. Pharmacol. 4, 309– 314.
- Rachmel, A., Hazelton, G.A., 1986. The inducibility and ontogeny of rat liver UDP-glucuronyltransferase toward furosemide. Biochem. Pharmacol. 35, 3777-3782.
- Rane, A., 1992. Drug disposition and action in infants and children. In: Yaffe, S.J., Aranda, J.V. (Eds.), Pediatric Pharmacology, Therapeutic Principles in Practice. Saunders, Philadelphia, pp. 10-21.
- Renwick, A.G., 1998. Toxicokinetics in infants and children in relation to the ADI and TDI. Food Addit. Contam. 15 (Supplement), 17-35.
- Rich, K.J., Boobis, A.R., 1997. Expression and inducibility of P450 enzymes during liver ontogeny. Microsc. Res. Technol. 39, 424– 435.
- Robinson, D., Smith, J.N., Williams, R.T., 1951. Studies in detoxication 39. Nitro compounds. (a) The metabolism of o-, m- and pnitrophenols in the rabbit. (b) The glucuronides of the mononitrophenols and observations on the anomalous optical rotations of triacetyl β-o-nitrophenylglucuronide and its methyl ester. Biochem. J. 50, 221–227.
- Scheuplein, R., Charnley, G., Dourson, M., 2002. Differential sensitivity of children and adults to chemical toxicity: I. Biological basis. Regul. Toxicol. Pharmacol. 35, 429-447.
- Sheehan, D.M., Gaylor, D.W., 1990. Analysis of the adequacy of safety factors. Teratology 41, 590-591.
- Stroheker, T., Chagnon, M.C., Pinnert, M.F., Berges, R., Canivenc-Lavier, M.C., 2003. Estrogenic effects of food wrap packaging xenoestrogens and flavonoids in female Wistar rats: a comparative study. Reprod. Toxicol. 17, 421-432.
- Suzuki, A., Sugihara, A., Uchida, K., Sato, T., Ohta, Y., Katsu, Y., et al., 2002. Developmental effects of perinatal exposure to bisphenol-A and diethylstilbestrol on reproductive organs in female mice. Reprod. Toxicol. 16, 107-116.
- Takahashi, M., Ogata, H., Izumi, H., Ymashita, K., Takechi, M., Hirata-Koizumi, M., et al., 2004. Comparative study of toxicity of 2,4,6trinitrophenol (picric acid) in newborn and young rats. Congenit. Anom. (Kyoto) 44, 204–214.
- Takahashi, M., Hirata-Koizumi, M., Nishimura, N., Ito, Y., Sunaga, M., Fujii, S., et al., 2006. Susceptibility of newborn rats to 3-ethylphenol and 4-ethylphenol compared with that of young rats. Congenit. Anom. (Kyoto) 46, 26-33.
- Tee, L.B., Gilmore, K.S., Meyer, D.J., Ketterer, B., Vandenberghe, Y., Yeoh, G.C., 1992. Expression of glutathione S-transferase during rat liver development. Biochem. J. 282, 209-218.
- Toppari, J., Larsen, J.C., Christiansen, P., Giwercman, A., Grandjean, P., Guillette Jr., L.J., et al., 1996. Male reproductive health and environmental xenoestrogens. Environ. Health Perspect. 104 (Suppl. 4), 741– 803.
- Trevisan, A., Rizzi, E., Scapinello, A., Gioffre, F., Chiesura, P., 1989.
 Liver toxicity due to 1,2-dichloropropane in the rat. Arch. Toxicol. 63, 445–449.

Watkins, J.B., Klaassen, C.D., 1985. Development of UDP-glucuronosyltransferase activity toward digitoxigenin-monodigitoxoside in neonatal rats. Drug Metab. Dispos. 13, 186–191.

Yamasaki, K., Takeyoshi, M., Yakabe, Y., Sawaki, M., Imatanaka, N., Takatsuki, M., 2002. Comparison of reporter gene assay and immature rat uterotrophic assay of twenty-three chemicals. Toxicology 170, 21-30. Yoshida, T., Takehara, Y., Shimatani, M., Abe, K., Utsumi, K., 1982.
Lipid peroxidation and antioxidants in rat liver during development.
Tohoku J. Exp. Med. 137, 391–400.

Zoetemelk, C.E., Oei, I.H., van Meeteren Walchli, B., Onkenhout, W., van der Gen, A., Breimer, D.D., 1986. Biotransformation of 1,2dibromopropane in rats into four mercapturic acid derivatives. Drug Metab. Dispos. 14, 601-607. 【特集】

OECD 化学物質対策の動向 (第 10 報)

一第 18 回 OECD 高生産量化学物質初期評価会議 (2004 年パリ)

Progress on OECD Chemicals Programme (10) - SIAM 18 in Paris, 2004

高橋美加1・松本真理子1・川原和三2・菅野誠一郎3・菅谷芳雄4

広瀬明彦1・鎌田栄一1・江馬 眞1

1: 国立医薬品食品衛生研究所安全性生物試験研究センター総合評価研究室

2:(財) 化学物質評価研究機構安全性評価技術研究所

3:(独)產業医学総合研究所作業環境計測研究部

4:(独)国立環境研究所環境リスク研究センター

Mika Takahashi¹, Mariko Matsumoto¹, Kazumi Kawahara², Seiichirou Kanno³,

Yoshio Sugaya⁴, Akihiko Hirose¹, Eiichi Kamata¹, and Makoto Ema¹

1. Division of Risk Assessment, Biological Safety Research Center,

National Institute of Health Sciences

- 2. Chemicals Assessment Center, Chemicals Evaluation and Research Institute
- 3. Department of Work Environment Evaluation, National Institute of Industrial Health
- 4. Research Center for Environmental Risk, National Institute for Environmental Studies

要旨:第18回 OECD 高生産量化学物質初期評価会議(SIAM18)が2004年4月にフランス・パリで開催された。日本が提出した4物質及び2物質カテゴリーの初期評価文書については全ての評価結果の合意が得られた。本稿では本会議で合意の得られたこれらの化学物質及び物質カテゴリーの初期評価文書について紹介する。

キーワード: OECD、HPV プログラム、SIDS 初期評価会議

Abstract: The 18th Screening Information Data Set (SIDS) Initial Assessment Meeting (SIAM 18) was held at the Organisation for Economic Co-operation and Development (OECD) headquarters in Paris, France. The initial assessment documents of four substances (CAS numbers: 793-24-8, 4979-32-2, 7778-54-3, 56539-66-3) and two categories (Short Chain Alkyl Methacrylate Esters and Gluconates) at SIAM 18 were submitted by the Japanese Government with or without the International Council of Chemical Associations (ICCA) and all of them were agreed at the meeting. In this report, the documents of these substances are introduced.

Keywords: OECD, HPV Programme, SIDS Initial Assessment Meeting

受付日: 2006年3月27日 受理日: 2006年11月1日

1 はじめに

経済協力開発機構 (Organisation for Economic Co-operation and Development: OECD) 加盟各国における高生産量化学物質 (High Production Volume Chemicals: HPV Chemicals) について、1992 年に始まった OECD 高生産量化学物質点検プログラム (HPV Chemicals Programme) により安全性の評価が行われている (長谷川ら 1999a、江馬 2006)。日本政府は初回より評価文書を提出しており、第 17 回までの初期評価会議 (Screening Information Data Set (SIDS) Initial Assessment Meeting: SIAM) において結論及び勧告が合意された化学物質のうち、日本政府が担当した評価文書における曝露情報、環境影響及び健康影響については既に紹介してきた (長谷川ら 1999b、2000、2001; 高橋ら 2004、2005a、2005b、2006a、2006b)。また、SIAM19 及び SIAM20 の会議内容、SIAM1 から SIAM18 までの会議の結果の概要についても紹介してきた (松本ら 2005a、2005b、2006a、2006b)。

国際化学工業協会協議会 (International Council of Chemical Associations: ICCA) による評価文書の原案作成に伴い日本においても 2001 年から、日本政府に加え日本化学工業協会加盟企業も評価文書の原案を作成している。

評価文書は、物性、曝露情報、健康影響及び環境影響に関する記述から構成されている。本稿では第 18 回 SIAM (SIAM18) で合意に至った化学物質名及び日本担当物質の評価文書の概要を紹介する。

2 SIAM 18 で合意された化学物質の名称と日本担当物質の初期評価内容

2004年4月にパリ(フランス)で開催された SIAM18において、23 物質及び 10 物質カテゴリー(それぞれ 8、13、12、5、3、2、4、6、2 及び 5 物質を含む)60 物質、計 83 物質の初期評価文書が審議され、表 1 に示す化学物質の初期評価結果および勧告が合意された。SIAMにおける合意は FW(The chemical is a candidate for further work.)または LP(The chemical is currently of low priority for further work.)として示されている。 FWは「今後も追加の調査研究作業が必要である」、LPは「現状の使用状況においては追加作業の必要はない」ことを示す。日本政府が担当した化学物質の初期評価文書の概要を以下に示す。

(1) N-(1,3-Dimethylbutyl)-N´-phenyl-1,4-phenylendiamine (793-24-8) (原案作成:日本政府 及びICCA ドイツ企業)

1) 曝露状況

化学生物総合管理 第2巻第2号 (2006.12) 286-301頁

連絡先:〒158-8501 東京都世田谷区上用賀 1-18-1 E-mail: ema@nihs.go.jp

本化学物質はゴム用劣化防止剤として使用されている。職業曝露の主要経路は吸入及び経皮と 考えられる。また、本化学物質を含む製品(タイヤやゴム長靴)の摩耗や製品への接触から、吸 入及び経皮経路による消費者曝露の可能性がある。

2) 環境影響

本化学物質が環境に放出された場合、約95%が土壌にとどまり、約2%が水圏に、約2%が底質層に分布するが、速やかに分解し、4·hydroxydiphenylamine となる。大気及び水圏における分解産物の安定性も低い。本化学物質は容易に生物分解しないが、加水分解性が早いため、水生生物における生物濃縮性は低いと考えられる。水生生物に対する急性毒性では、藻類の50%影響濃度 (ECso) は0.6 mg/L (96 時間)、ミジンコの ECso は0.23 mg/L (48 時間、OECD TG 202)、魚類の半数数死濃度 (LCso) は0.028 mg/L (96 時間、OECD TG 203) であった。

3)健康影響

ラットの単回経口投与毒性試験 (OECD TG 401) における半数致死量 (LDso) は雄で 1,005 mg/kg、雌で 893 mg/kg であり、毒性症状として自発運動の低下、下痢、緩徐呼吸、低体温、腹 队位姿勢が認められた。ウサギの単回経皮投与毒性試験 (OECD TG 402) における LDso は 3,000 mg/kg 以上であり、毒性症状として摂餌量の減少、自発運動の低下、嗜眠が認められた。

ウサギの皮膚及び眼に対して弱い刺激性が認められている。モルモットにおいて皮膚感作性が みられ、ヒトのパッチテストでも陽性結果が報告されている。

ラットに、0、4、20 及び 100 mg/kg/day を強制経口投与した 28 日間反復経口投与毒性試験では、20 mg/kg/day の雌に門脈周囲性の肝細胞の脂肪化と血清総蛋白濃度の増加がみられたが、肝重量の増加がみられなかったことから、これらの影響は軽いと判断された。100 mg/kg/day での雌雄における肝臓影響(肝重量増加、門脈周囲性の肝細胞の脂肪化)及び血液細胞への影響(貧血、血小板増加)から無毒性量(NOAEL)は 20 mg/kg/day と判定された。

ラットに、交配前 2 週間、その後さらに、雄では交配期間を含む 48 日間、雌では交配期間、妊娠期間及び分娩後哺育 3 日まで、0、6、25 及び 100 mg/kg/day を強制経口投与した経口投与簡易生殖毒性試験(OECD TG 421)では、雄では 25 mg/kg/day 以上で流涎、肝重量の増加及び空胞変性が認められ、雌では 25 mg/kg/day 以上で肝重量の増加が認められた。これらの結果から、反復投与毒性における NOAEL は 6 mg/kg/day と判定された。生殖発生毒性に関する影響は認められず、無影響量(NOEL)は 100 mg/kg/day と判定された。

ラットに 0、250、1,000 及び 2,500 ppm (雄で 0、15.7、62.3 及び 153.8 mg/kg/day、雌で 0、 18.5、75.0 及び 172.1 mg/kg/day) を混餌投与した 13 週間反復経口投与毒性試験では、1,000 ppm 以上で雌雄に貧血が認められ、NOAEL は 250 ppm (雄で 15.7 mg/kg/day、雌で 18.5 mg/kg/day)

化学生物総合管理 第2巻第2号 (2006.12) 286-301 頁

連絡先: 〒158-8501 東京都世田谷区上用賀 1-18-1 E-mail: ema@nihs.go.jp

と判定された。また、ラットに 0、100、300 及び 1,000 ppm (0、8、23 及び 75 mg/kg/day) を 混餌投与した 2 年間反復経口投与毒性試験では、1,000 ppm で体重増加抑制(雌雄)や腎臓・脾 臓重量の増加(雌)がみられたが、これらの影響は病理組織学的変化を伴わないことから毒性影響とはみなされず、NOAEL は最高用量の 1,000 ppm (75 mg/kg/day) と判定された。

生殖発生毒性については、上記の経口投与簡易生殖毒性試験(OECD TG 421)で影響は認められなかった。また、ラットの妊娠 $6\cdot15$ 日に 0、50、100 及び 250 mg/kg/day を強制経口投与した実験及びウサギの妊娠 $6\cdot18$ 日に 0、10 及び 30 mg/kg/day を強制経口投与した試験においても生殖発生毒性に対する影響は認められず、NOAEL はラットで 250 及びウサギで 30 mg/kg/day と判定された。

In vitro での細菌やほ乳類細胞を用いる遺伝子突然変異試験やラットの肝細胞を用いる不定期 DNA 合成試験では陰性であったが、チャイニーズ・ハムスター培養細胞を用いる染色体異常試験では陽性であった。 In vivo での小核試験では投与可能な最高用量においても陰性であったことから、本化学物質は in vivo において遺伝毒性を示さないと判断された。

4) 結論と勧告

本化学物質はFWと勧告され、分解生成物を考慮したヒト曝露評価及び環境曝露評価を行うことが推奨された。また、分解生成物の物性についても調査が必要とされた。

(2) N,N-Dicyclohexyl-2-benzothiazolesulfenamide (4979-32-2) (日本政府作成)

1) 曝雾状况

本化学物質はゴムの加硫促進剤として使用されている。本化学物質は加硫過程において完全に 反応するため本化学物質の消費者曝露は起こりにくいと考えられる。職業曝露の主要経路は吸入 と考えられる。

2) 環境影響

本化学物質が水圏や土壌に放出された場合にはそのまま停留する。大気に放出された場合は大気に 42.8%、土壌に 52.9%分布する。本化学物質は容易に生物分解しないが、光分解しやすい。水生生物における生物濃縮性は高いと推測される ($\log \text{Kow}: >4.8$)。水生生物に対する急性毒性では、水溶解度までの濃度 (25° Cでは約 $0.02 \, \text{mg/L}$) では毒性が認められず、試験から得られた毒性値は藻類の EC_{50} は> $0.0118 \, \text{mg/L}$ ($72 \, \text{時間}$ 、 $OECD \, \text{TG} \, 201$)、ミジンコの EC_{50} は> $0.0314 \, \text{mg/L}$ ($48 \, \text{時間}$ 、 $OECD \, \text{TG} \, 202$)、魚類の LC_{50} は> $0.0344 \, \text{mg/L}$ ($96 \, \text{時間}$ 、 $OECD \, \text{TG} \, 203$) であった。慢性毒性では、藻類の最大無影響濃度 (NOEC) は $0.0118 \, \text{mg/L}$ ($72 \, \text{時間}$ 、 $OECD \, \text{TG} \, 201$)、ミジンコの NOEC は $0.0331 \, \text{mg/L}$ ($21 \, \text{日間}$ 、 $0ECD \, \text{TG} \, 211$) であった。

化学生物総合管理 第2巻第2号 (2006.12) 286-301頁

連絡先: 〒158-8501 東京都世田谷区上用賀 1-18-1 E-mail: ema@nihs.go.jp

3)健康影響

ラットの単回経口投与毒性試験 (OECD TG 401) での LD_{∞} は 1,000 mg/kg 以上、ウサギの単回経皮投与毒性試験での LD_{∞} は 2,000 mg/kg 以上と報告されている。

ウサギの皮膚に対して中程度の刺激性、眼に対しては弱い刺激性が認められた。モルモットに おいて皮膚感作性は認められていない。

ラットに交配前2週間及び交配期間を含み、雄では計44日間、雌では分娩後哺育3日まで、0。 6、25、100 及び 400 mg/kg/day を強制経口投与した反復投与毒性・生殖発生毒性併合試験(OECD TG 422) において、雄親では 100 mg/kg/day 以上で腎臓の近位尿細管上皮に硝子滴が認められ、 400 mg/kg/day で投与開始後短期間における摂餌量の減少、投与期間を通じての体重増加抑制、 尿中ケトン体及び血清無機リンの増加、血清 GPT 及び塩素の減少、胸腺の萎縮ならびに盲腸の 拡張が認められた。雌親では 100 mg/kg/day 以上で腎臓に対する影響が発現したが、雄親とは異 なり近位尿細管上皮に脂肪変性が認められた。また、自発運動低下、下腹部被毛の尿による汚染、 紅涙などの一般状態の変化ならびに副腎皮質細胞の空胞化及び脾臓の萎縮が認められた。さらに 400 mg/kg/day では、交配前及び妊娠期間中の摂餌量減少、妊娠末期での体重増加抑制ならびに 胸腺の萎縮が認められ、3 匹が分娩予定日あるいはその翌日に死亡した。これらの結果から、反 復投与毒性における NOAEL は 25 mg/kg/day と判定された。雄親の生殖に対する影響は認めら れなかった。雌親の生殖及び児動物の発生については、400 mg/kg/day で影響が認められ、黄体 数の減少ならびにそれに伴う着床数や総出産児数の減少が認められた。また、400 mg/kg/day に おいて分娩中死亡の1例、分娩遅延の1例が観察され、さらに、出産した各世親の全児あるいは 児の約半数は分娩確認時に死亡しており、雌親はその後の哺育行動がみられず、哺育2日までに 全例の児が死亡し、出産率、出生率、新生児数及び新生児の哺育4日生存率の減少が認められた。 交尾や受胎能ならびに新生児の形態に対する影響は認められなかった。これらの結果から、生殖 発生審性の NOAEL は 100 mg/kg/day と判定された。

細菌やほ乳類細胞を用いる復帰突然変異試験では陰性であったが、in vitro での小核試験では 陽性であった。In vivo でのラットの染色体異常試験では投与可能な最高用量においても陰性で あったことから、本化学物質は in vivo では遺伝毒性を発現しないと判断された。

4) 結論と勧告

本化学物質はFWと勧告され、分解生成物を考慮したヒト曝露評価及び環境曝露評価を行うことが推奨された。

化学生物総合管理 第2巻第2号 (2006.12) 286-301頁

連絡先: 〒158-8501 東京都世田谷区上用賀 1-18-1 E-mail: ema@nihs.go.jp