Factor Villa C2 Domain Interacts with Factor IXa Gla Domain
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FIGURE 6. Binding of EGR-factor IXa to €2 f and the inhibi

effects on factor Xa generation. A, binding of EGR-factor IXa. Various l:on

centrations of EGR-factor 1Xa were incubated with immobilized C2-42182-
2259) (600 na; open circkes), C2-(2260 -2322) (600 nw; closed circles). and intact
L2 {100 niw; open sguares) for 2 hat 37 *Cin an ELISA-based assay. Absorbance
values were plotted as a function of the concentration of EGR-Tactor IXa
B, inhibition of factor Xa g in the absence of phosphalipid. Vanous
amounts of C2-(2182- 22':9! (open circles) or C2-(2260-2321) (closed circles)
were preincubated with 5 nw factor 1Xa for 2 h at 37 °C, and factor Xa gener-

ation was with the add of thrombin-activated factor Villa (200
) and 1 g factor X The initial rate of factor Xa generated in the sbsence of
competitor (100% level) was 1.46 = 0.19 ns/min. Initial rates of factor Xa
generation were plotted as a function of C2 fragment concentration. Experi-
ments were performed at least three separate times, and average = 5.0, val-
ues are shown

C2-(2260 -2322) was observed. In control experiments, EGR-
GDless factor 1Xa did not bind to either immobilized C2 frag-
ment (data not shown). To assess the functional capacity of the
two C2 fragments in factor Xase assembly, amidolytic assays
were again repeated in the absence of phospholipid. Factor VIII
(200 nwm) was activated by thrombin and incubated with factor
IXa (5 nm)/C2 fragment mixtures and factor X (1 usm). The
C2-(2182-2259) competitively inhibited factor Xa generation
by ~80% at the maximum concentration employed (IC,, = 1.2
i Fig. 68). The effect of C2-(2260-2322) was significantly
lower than that of C2-(2182-2259), however, and inhibited fac-
tor Xa generation by —30%. Collectively, these data suggest that
an interactive site(s) for the Gla domain of factor 1Xa was likely
to be located within residues 2182-2259 of the C2 domain.
Effects of Synthetic C2 Peptides on rC2 and EGR-factor IXa
Interaction and on Factor Xa Generation in the Absence of
Phospholipids—On the basis of the competitive binding assays
and ELISA, we focused on the 2182-2259 region in the C2
domain to further identify the potential factor [Xa-interactive
site. The C2-factor 1Xa interaction is electrostatically depend-
ent (see Fig. 24), suggesting that both interactive sites are sur-
face-exposed. The analysis of solvent-accessible surface area
was utilized, therefore, to examine regions within residues
2182-2259 exhibiting a high probability of being surface-ex-
posed. The solvent accessibilities at the interface were calcu-
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FIGURE 7 Accessible surface area of residues 2182-2259 of the C2
domain. The solvent accessibilities st the interface for the residues 2182-
1259 of the C2 domain were calculated from the atomic coordinates in the
structure of factor VIl (solid lines) and C2 (deshed lines) using Marc Gerstein's
calc-surface program (see “Materials md Methods”) N:cmlhk surface atea
(A%) was used to estl the p yol a dtothe
surface. Sy peptides c S dir 0 to s of high surface proba-
bility are Indk.aud by the horizontal bars and are dentified by residue num:
bers for the segments

lated from atomic coordinates in the structures of factor VIII
and C2 (Protein Data Bank code 2R7E and 1D7P, respectively),
and they were similar. Using this approach, overlapping syn-
thetic peptides encompassing the 2182-2249 region were pre-
pared (Fig. 7). Since the C2-factor 1Xa interaction was not
affected by anti-C2 mAb ESHS8 with epitopes 2248 -2285 (data
not shown), the 2248 -2259 region was excluded. Effects of
peptides to block C2-factor [ Xa interaction and to inhibit factor
Xa generation were examined.

The synthetic peptide corresponding to residues 2228 -2240
(designated peptide 2228 -2240) lnhlbll!d binding of EGR-
factor IXa to rC2 by —75% at the maximum concentrations
employed (at 1 mm) (Fig 8A). T'hr 1C;, value was —400 um. The
other six peptides, corresp g to d 2182-2195,
2192-2204, 2201-2213, 2210-2222, 2219-2231, and 2237~
2249, demonstrated no inhibitory effects. Moreover, a control
peptide (VKMTKQFDVQLWE), comprising the 22282240
residues in a rand e, completely lost the ability to
inhibit this interaction (data not shown). T'he inhibitory effects
of these peptides were further studied in the factor Xa genera-
tion assay. The peptide 2228 -2240, which blocked C2-factor
{Xa interaction, depressed factor Xa generation by —75% at
the maximum concentration employed (1C,, ~ 25 pm) (Fig
8B). The other C2 peptides and the scrambled peptide had little
effect. The ability of peptide 2228 -2240 to inhibit factor Xa
generation appeared to be more significant than that in the
binding assay. It seemed likely, therefore, that peptide 2228 -
2240 not only affected interactions between the Gla domain of
factor 1Xa and the C2 domain but also allosterically modulated
other reactions. Nevertheless, the findings suggest that interac-
tive site for the Gla domain of factor 1Xa was located within
residues 2228 -2240 of the C2 domain.

Effects of peptide 2228 -2240 on Factor Xa Generation in the
Presence of Phospholipid—Intact C2 and isolated C2 fragments
contain phospholipid-binding regions, and to preclude inter-
ference by these reactions, our current factor Xa generation
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FIGURE 8. Inhit of hetic C2 id
to rC2 and on factor Xa g ion in the ab phospholip
A, EGR-factor IXa binding to rC2 Varlous amounts of synthetic C2 peptide
were preincubated with 100 nw EGR-factor 1Xa for 2 b at 37 °C, prior to the
addition to immobilized «C2 (200 nw) in an ELISA-based assay. Absorbance
values for the EGR-factor IXa binding to rC2 in the absence of competitor
represent the 100% level. The percentage of EGR-factor 1Xa binding was plot
ted as a function of peptide concentration. B, factor Xa generation in the
absence of phospholipid. Various of C2 peptide were preincubated
with 5 nu factor iXa for 2 hat 37 *C, and factor Xa generation was initlated with
the addition of thrombin-activated factor Villa (200 nm) and 1 g factor X. The
initial rate of factor Xa generated in the absence of competitor (100% level)
wirs 083 = 0.01 nw/min. Initial rates of factor Xa generation were plotted asa
function of C2 peptide concentration. Open circles, peplide 2182-2195; closed
circles, peptide 2192-2204; open squores, peptide 2201-2213, closed squares,
peptide 2210-2222; open triangles, peptide 2219-2131; closed tnangles, pep
tide 2228-2240; open diamonds, peptide 2237-2249. Experiments were per-
formed at least three separate times, and average = 5 0. values are shown,

100

assays were performed in the absence of phospholipid. Crystal
structure analysis has demonstrated that binding of the C2
domain to phospholipid membranes involves three hydropho-
bic "feet” containing residues Met*'**/Phe®*™, Val™*, and
Leu®*'/Leu™* and four basic residues, Arg™'®, Arg™",
Lys***", and Lys™**" (35, 36). The factor IXa-interactive site that
we have identified within residues 2228 -2240 appears, there-
fore, to be in close proximity to, but not likely to be overlapping,
the phospholipid-binding region. In support of this contention,
we found that binding of factor V1II and factor 1Xa to phos-
phatidylserine was not significantly inhibited by peptide 2228 -
2240 (data not shown). Nevertheless, to further examine the
physiological role of peptide 2228 -2240 binding to the Gla
domain of factor IXa, factor Xa generation was measured in the
presence of factor Villa and phospholipid. Factor VIII (30 nm)
was activated by thrombin and incubated with factor 1Xa (0.5
nm}/peptide 2228 -2240 mixtures together with various con-
centrations of factor X in the presence of phosphalipid (20 pum).
Since rCC2-factor IXa interaction was optimal at relatively low
concentrations of Ca®* (—1 mm), under these circumstances,
the V, ,, was ~20-fold lower than that previously reported (31)
Nevertheless, in the presence of peptide 2228 -2240, the K,
value remained unchanged, whereas the V., was decreased,
dependent on the cancentration of the peptide (Fig. 9). Factor
Xa generation was completely inhibited (>95%) in the presence
of 15 um peptide. These results suggested that peptide 2228 -
2240 inhibited factor Xa generation on phospholipid micelles
by noncompetitive inhibitory mechanisms. Furthermore, pep-
tide 2228-2240 did not affect factor Xa generation using
GDless factor 1Xa in place of factor IXa in these assays (data not
shown), again indicating that peptide 2228 -2240 specifically
bound to the Gla domain of factor IXa but did not moderate
interactions between factor VIlla and factor X.
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FIGURE 9, Effect of peptide 2228 -2240 on factor Xa generation in the
presence of phospholipid. Factor [Xa (0.5 nm) was preincubated with 0 uw
(open circles), 2.5 pm (closed circles), 5 um (open squares), 10 um (clored
squanet), and 15 um (open triangle) of peptide 2228-2240 for 2 h at 37°C

Factor Xa generation was initiated by the addition of thrombin-activated fac-
tor Villa (30 na) and various concentrations of factor X (0-500 rw) in the
presence of phospholipid vesicles (20 ps). Initial rates of factor Xa generation
were plotted as a function of factor X concentration and fitted to the Michae

lis-Menten equation by nonlinear least squares regression. Experiments were
performed al least three separate limes, and average + 5.0, values are shown.
The V,,,, values in the presence of 0, 2.5, 5, and 10 um peptide were 742 =

085 515 = 0.73. 3,07 = 0.49, and 061 = 0.12 nw/min, respectively. The K
values were 729 = 255 848 ~ 349,750 = 360, and 9.6 = 51.3 nm, respec:

tively, The kinetic parameters in the presence of 15 uw peptide could not be
determined because of very low values

DISCUSSION

The enzyme factor IXa and its cofactor factor Villa are
assembled on phospholipid membranes for the activation of
factor X. In previous reports, factor IXa recognition sites were
identified within the A2 and A3 domains of factor Villa. In the
A2 domain, the extended surface, centered on residues 484 -
509 (16), 558 =565 (17), and 708 -717 (18), appeared to interact
with the factor 1Xa with weak affinity (—300 nm) (15). In con-
trast, in the A3 domamn, the hght chain, including residues
1804~ 1818 (20), interacted with the protease with high affinity
(~15 nm) (19). The structural model of factor Villa-factor IXa
on phospholipid membranes reported by Blostein et al (21)
proposed that the C2 domain of factor V1lla and the Gla
domain of factor 1Xa bound to phospholipid would be in close
proximity, suggesting that both domains might bind to each
other. In the present study, we show for the first time that the
residues 2228 -2240 in the €2 domain and the Gla domain of
factor 1Xa bind to each other

This conclusion is based on several novel findings using the
established models. (1) Direct binding studies d ed
that active site-modified EGR-factor [Xa bound to the C2
domain with mild affinity (—100 nm), whereas GDless EGR-
factor IXa failed to bind. In addition, mAb |Xa-GD, recognizing
the Gla domain of factor 1Xa, blocked C2-factor IXa interac
tion. (ii) A factor Xa generation assay without phospholipid
showed that rC2 and mAb 1Xa-GD inhibited factor IXa-medi-
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ated factor X activation in the presence of factor V1lla. (iii) A
(C2-(2182-2259) fragment, derived from VB protease-cleaved
rC2, directly bound to EGR-factor IXa and inhibited factor Xa
generation, whereas the C2-(2260-2322) did not bind. tl\r}

region does not overlap this site. Last, factor Villa contacts with
residue Phe™ and/or Val* of the Gla domain of factor 1Xa but
not with the memb: binding w loop (residues 1-11) (21).
Furthermore, a naturally occurring mutation (G12R) within the

Competitive assays, using overlapping sy
encompassing residues 21822259, showed that peptid.e 22‘28
2240 ﬂsnlﬁl:andy inhlbltcd both factor 1Xa binding and factor
Xa g dently of phospholipid. These data
identified amino m:id residues 2228 -2240 within the C2
domain as essential for factor 1Xa docking,

In the present study, we utilized EGR-factor 1Xa, a catalyti-
cally inactive derivative of factor 1Xa, in direct binding experi-
ments. Modified factor 1Xa prepared with EGR-ck is well
known to minimize enzyme-catalyzed degradation, but confor-
mational changes and for steric hindrance due to incorporation
of EGR-ck into the active site of factor [Xa may cause difficul-
ties. Nevertheless, Lenting et al (19) reported that thrombin-
cleaved factor VI light chain bound to modified factor 1Xa
with high affinity (— 15 nm), and we also analyzed direct binding
of the C2 domain using untreated factor 1Xa and EGR-factor
IXa. Binding patterns were similar using active factor 1Xa and
EGR-factor IXa (data not shown), suggesting that any potential
effects of conformational changes and/or steric hindrance
induced by EGR-ck were minimal. The results also indicated
that the C2 domain does not participate in docking to the active
site pocket of factor IXa.

We obtained direct evidence for a restricted factor IXa-inter-
active site in the C2 domain using solvent-accessible surface

£ I

area analysis with overlapping peptides enc gr

Gla d is associated with reduced activity of the factor
Xase complex but does not affect phospholipid binding (37).
These results are consistent with the view that interaction
between the Gla domain and the C2 d is not dependent
on phospholipid binding. Taken together, our findings imply
that interactions between both domains facilitate a tight ter-
nary complex with phospholipid
Binding of C2 to the Gla dumnn of factor 1Xa was governed
by electrostatic and/or calcium-dependent interactions. This
mechanism was similar to that observed between the light
chain of factor VIl and factor 1Xa (19). Furthermore, peptide
2228 -2240 significantly inhibited (>95%) factor Xa generation
in the presence of phospholipid through noncompetitive inhib-
itory mechanisms, similar to those observed using peptide
1804 - 1818, previously reported as a factor [Xa-binding site in
A3. These data strongly Indicated that the properties of both
interactions were common and that both peptides inhibited the
enzyme activity of factor 1Xa by binding at a site distinct from
the substrate binding pocket. Of interest, the binding affinity of
C2 for factor IXa (~100 nm) was ~7-fold lower than that of the
light chain (~15 nm). In the absence of phospholipid, the inhib-
itory effect of peptide 2228 -2240 on C2-factor 1Xa interaction
was not significantly different from that of peptide 1804 -1818
on light chain-factor 1Xa interaction. In the presence of phos-
holipid, however, peptide 2228 -2240 appeared to inhibit fac-

2182-2259. The sequence 2228 -2240 appeartd to bc specific
for this interaction, and a scrambled peptide confirmed this
specificity. The peptide 2228 -2240 did not affect factor VIII
binding to phospholipid, however, in keeping with an earlier
study using similar C2 peptides (7). Our observations add sig-
nificantly to understanding the nature of the factor Xase com.
plex involving factor 1Xa and the C2 domain of factor VIIL Our
suggestion that this region is not related to phospholipid bind-
ing by experiments using peptide can be supported by the fol-
lowing reasons.

First, based on the ability of synthetic peptides encompassing
residues 2303-2332 in C2 to inhibit factar VIII-phosphaolipid
binding, a major site was previously located within this region
(7). In addition, earlier elegant examination of the 1.5 A x-ray
structure of the C2 domain revealed the presence of three
hydrophobic “feet™ (Met™*/Phe®™®, Val®® and Leu®s!/
Leu™%2) that penetrate the membrane and four basic residues
(Arg™'®, Arg™, Lys™™, and Lys™*’) that lie underneath the
“feet” and stabilize binding by electrostatic interaction with
phospholipid (35, 36). These findings show that the 2228 --2240
region in C2 is in close proximity to, but is not likely to overlap,
the phespholipid-binding region. Second, The interaction
between factor IXa and thrombin-cleaved factor VIII light
chain, lacking the acidic region of the A3 domain involved in
high affinity VWF binding, was not affected by the presence of
VWF (19). Our present study also showed that the C2-factor
IXa interaction was not affected by VWF (data not shown).
Since the C2 domain is involved in VWTF binding at a site that
overlaps the phospholipid-binding site (8, 9), the 2228 -2240
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tor Xa generation more strongly than peptide 1804-1818
(IC,, =~ 5 and ~600 um, respectively). The binding affinity of
the A3 domain for factor IXa is not known; nevertheless, the
high affinity of the light chain appears to make an essential
contribution to reactions involving not only the A3 domain but
also the C2 domain. Furthermore, the data indicate that peptide
2228 -2240 predominantly participates in factor 1Xa docking
for catalyzing the activity of the factor Xase enzyme.

Recently, two groups have reported the intermediate resolu-
tion x-ray crystallographic structure of B-domainless factor
VIl (38, 39). Factor IXa-interactive sites within factor VIII
based on crystal structure reveal that residues 558 -565 and
708 -717 in A2 and 1804 - 1818 in A3 are located on one face of
factor V1L, whereas residues 484 -509 in A2 and our identified
2228 ~2240 in C2 are located on another face. Ngo et al. (39)
have constructed a model of the factor Villa-factor 1Xa com-
plex with x-ray crystal structure of human factor VIII and por-
cine factor 1Xa backbone with the following constraints. Resi-
dues 558-565, T08-717, and 1804-1818 of factor Viila
interact with the residues 330 -339, residues 301303, and the
putative binding region, including EGF domains (Tyr®® and
Asn™) and Gla domain (Phe™) of factor 1Xa, respectively.
Although this differed from our data in the binding site of C2
for the Gla domain, a factor [Xa-interactive site comprising
residues 2228 -2240 in C2 is unlikely to contact the Gla domain
simultaneously according to this model. This discrepancy may
be due to conformational change of the C2 domain. Conforma-
tional changes in C2 of factor VIlla upon removal of the NH,
terminus of the light chain (residues 1649 -1689) (40) probably
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leads to enhancement of the factor Vilia affinity for phospho-
lipid membrane (41). This may affect the Gla domain binding.
In addition, the €2 domain is relatively loosely docked to the
remainder of factor V111 molecules (38, 39); consequently,
the position of this domain within active form factor Villaon
the phospholipid surface may change easily. These findings
can be supported by the case of residues 484 -509 in A2, The
model proposed by Ngo showed that this region did not
interact with factor 1Xa despite the factor 1Xa-interactive
site. Bajaj et al (42) also demonstrated that residues 484 ~509 in
A2 were not in close proximity to one face consisting of residues
558 -565, 708 -717, and 1804-1818 and did not contact factor
1Xa. Furthermore, Stoilova-McPhie ef al. (43) found that it was
unable to modify the factor VllI-factor IXa binding model,
including the 484 -509 region. The following possibilities are
raised for this reason: the conformational change in A2 upon bind-
ing of the catalytic domain of factor IXa and different A2 arrange-
ment between unactive form factor VIII and active form factor
Vlila. Therefore, it is not so surprising that the 2228 -2240 region
in factor V1lla interacts with factor 1Xa Gla domain

An earlier report by Nogami et al (11) demonstrated that
residues 2253-2270 within the C2 domain of factor VIII con-
tribute to a unique factor Xa-interactive site within the light
chain that promotes factor Xa docking during cofactor activa-
tion and cleavage of the light chain at Arg'®*®. Binding of factor
Xa to the C2 domain was independent of binding to phospho-
lipid or VWF, indicative of a distinct factor Xa-binding site in
the €2 domain. This binding was remarkably similar to that of
the C2-factor IXa interaction observed in this study. In addi-
tion, interaction between the light chain of factor VIlla and
factor IXa was not inhibited by active site-modified factor Xa
(19). However, the C2-factor 1Xa interaction was not inhibited
by anti-C2 mAb ESHS (data not shown), which recognizes res-
idues 2248 -2285 and inhibits the factor VlI-factor Xa interac
tion (11). These findings suggest that the factor [Xa-interactive
site in the C2 domain does not overlap the factor VIII-Xa inter-
active site,

Comparisons of amino acid sequences among human, por-
cine, murine, and canine factor VIl molecules indicate that
residues 2228 -2240 within the C2 domain are well conserved,
in keeping with the suggestion that this region could be funda-
mental for interaction with the Gla domain of factor IXa (44
46). This region appears to be unique, and the specific sequence
of residues is distinct from those of the factor 1Xa-interactive
sites within the A2 and A3 domains of factor Vllla (1618, 20)
Naturally occurring mutations of residues 2228 2240 (W2229C,
W22295, Q2231H, V2232A/E, and M2238V) have been reported
in the hemophilia A data base (HAMSTeRS), and are seen in mild/
moderate hemophilia A. It is tempting to speculate that the path-
ogenic mechanism for these point mutations might be associated
with dysfunctional blood coagulation by moderating interactions
between the C2 domain of factor Villa and the Gla domain of
factor 1Xa. Furthermore, substitutions at Trp™* to Cys and
Val™* ta Ala are related to the development of inhibitors (47, 48),
consistent with our suggestion that the 2228 -2240 region in Cis
surface-exposed and influences antigenicity

In conclusion, we provide the first evidence for an essential
role of the association between the 2228 ~2240 region of the C2
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domain and the Gla domain of factor 1Xa in the factor Xase
complex. Further studies using site-directed mutagenesis are
warranted to further clarify the functional role of residues
2228-2240 in the C2 domain.

Acknowledgment—We thank Dr. | C. Giddings for helpful
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Therapeutic Effects of Hepatocyte Transplantation on

Hemophilia B

Kohei Tatsumi,' Kazuo Ohashi,**** Midori Shima," Yoshiyuki Nakajima,
Teruo Okano,” and Akira Yoshioka'

Hepatocyte transplantation offers an alternative therapeutic approach in the treatment of liver-related diseases. He-
mophilia B is a bleeding disorder lacking factor IX (FIX) production in the liver, and achieving more than 1% coagu-
lation activity results in significant improvement in the quality of life of the patients. The aim of this study was to
investigate the efficacy of hepatocyte transplantation in the mouse model of hemophilia B. We transplanted isolated
normal mouse hepatocytes into the liver of FIX knock-out mice. In some recipient mice, additional hepatocyte trans-
plantations were performed 15 days after the first transplant. The recipient plasma FIX activities increased at 1% to 2%
and persisted th the experi al period. An additional increase was achieved by the repeated transplantation.
Close correlation between FIX messenger RNA levels of the liver and plasma FIX activity levels was observed.
These results demonstrate that hepatocyte transplantation can provide therapeutic benefits in the treatment of

hemophilia B,

Keywords: Hepatocyte transplantation, Hemophilia B, Coagy

(Transplantarion 2008;86: 167-170)

Hcmophilia B, a recessive X-chromosome linked congen-
ital bleeding disorder, is caused by a failure in the
production of coagulation factor IX (FIX) (). The only treat-
ments that are currently available are the replacement therapy
with FIX concentrates from plasma-derived or recombinant
protein sources (2). This treatment modality is inefficient and
expensive, because of the requirement of life-long and fre-
quent intravenous infusion of FIX concentrates. Although
the gene therapy has been actively studied over the past de-
cade 1o establish a novel therapy that could provide longer
acting and safer production of FIX (3), recent clinical trials
have yet to conclusively shown long-term therapeutic bene-
fits (4, 5). One potential approach that may provide the FIX
producing ability in hemophilia B is a whole liver transplan-
tation, because FIX is predominantly produced in the liver
{6—8). However, the establishment of organ transplantation
asa common therapy is hampered by a worldwide shortage of
donor livers. Provided that some portion of the donated liver
can be used for the isolation of individual hepatocytes, this
donor shortage would no longer be a major issue. This is an
important point, because the cell type responsible for synthe-
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sizing coagulation FIX is the hepatocyte (9). Therefore, a cell-
based therapy using isolated hepatocytes could provide a
therapeutic approach in the treatment of hemophilia B.
Hepatocyte transplantation has been recently performed in
several countries for various inhented disorders of hepatic
metabolism and acute liver failure (10, 11). In bleeding disor-
der, hepatocyte transplantation was applied in the clinics by
Dhawan et al. (12), who described therapeutic benefits in two
patients suffering with congenital factor V11 deficiency. Our
group has recently shown applying a tissue engineering ap-
proach using primary hepatocytes could successfully provide
therapeutic effects in hemophilia A mice (13). However, the
effect of hepatocyte transplantation to treat hemophilia B has
yet to be experimentally documented in animals or in the
clinics to the best of our knowledge. For this reason, this study
was designed to investigate the efficacy of hepatocyte trans-
plantation on hemophilia B,

Hepatocytes were isolated from C57Bl/6 wild-type
mice using a collagenase perfusion method as previously de-
scribed (13-16). The recipient FIX knock-out (FIX-KO)
mice, syngeneic to donor mice (17), were transplanted with
the isolated hepatocytes (1.5x10° cells in 200 ulL) into the
liver through the inferior pole of the spleen (n=25). As an
experimental control, several FIX-KO mice received sham
operation (n=7). To avoid excessive surgical procedure-
related bleeding, all FIX-KO mice received intraperitoneal
injection of 0.5 mL pooled normal mouse plasma 30 min
before abdominal surgery (18). All procedures were success-
fully carried out without any issues related to bleeding and all
of the mice survived throughout the experimental period. At
days 5, 10, and 15, some of the mice were killed for histologic
and messenger RNA (mRNA) analyses (n=7, 5, and 4, at cach
time point, respectively). All sham-operated mice were killed
at day 15.

Blood samples were periodically obtained from retro-
orbital plexus of the experimental mice. After anticoagulated
with 0.1 volume of 3.8% sodium citrate, blood samples were
centrifuged, and plasma samples were stored at —80°C until
being analyzed. The plasma FIX activity (FIX:C) was quanti-

167




168

Transplantation + Volume 86, Number 1, July 15, 2008

FIGURE 1. Plasma FIX activity A B

(FIX-C) and alanine aminotransfer- —

ase (ALT) levels of FIX-KO mice af- 729 [

ter hepatocyte transplantation. (A) o

FIX:C levels in plasma obtained = 2

from FIX-KO mice after hepato- = 40

cyte transplantation (1.5%10°cells/ =45

mouse) into the liver (M n=25, 18, £ gl L

and 13 at day 5, 10, and 15, respec- S £ = .

tively) or sham operation (&; n=7 al o =

all time points). Pooled normal 5

mouse plasma was used as a stan- EM %10 I I

dard. #P iess than 0.8 between % ; N B

grmt?:%"(:éem ALT levels Ol: = Sham Recipient Sham Reciplent

mlmmplmﬁm (n=28 and 18) or . din L o .
ration (n=T) at 5and tran: ta

o e Days  Day10

fied by 1-stage clotting assay based on the activated partial ¥ 25

thromboplastin time using human FIX-deficient plasma. g 2 *

Normal mouse plasma was used as FIX:C standard. Each e

measurement was reported after subtraction of the preopera- £15

tional baseline FIX:C levels. As a result, FIX:C of recipient g

mice increased to more than 1% and were stably maintained :

throughout the experimental period (Fig. 1A). The FIX:C lev- =05

els were significantly higher in the recipient mice when com- 3

pared with the levels in the sham-operated mice at every time = 0 — ————

point examined. At day 5, recipient mice showed a small, but 15 25 35

insignificant increase in plasma alanine aminotransferase
after the transplantation (n=25) compared with the sham-
operated mice (n=7). The slight increase in the alanine ami-
notransferase levels were found to be declined back roward
baseline levels at day 10 (Fig. 1B). These results indicated that
hepatocyte transplantation into hemophilia B mice could
provide a therapeutic effect by producing FIX from the en-
grafted donor hepatocytes without significant liver injuries.

Histologic detection of transplanted and engrafted hepa-
tocytes was performed by fluorescence in situ hybridization
analysis using mouse Y-chromosome specific probe on sections
of female FIX-KO recipient liver that received male hepatocytes.
The presence of hepatocytes with Y-chromosome signals were
confirmed, indicating the transplanted hepatocytes engrafied
into the liver parenchyma (figure not shown). It is also impor
tant to note that any cell fusion events were not observed.

To enhance the therapeutic production of FIX in the
recipient mice, a repeat transplantation of 1solated hepato-
cytes was performed 15 days after the initial procedure in
some recipients by infusing 1.2 10” hepatocytes into the up
per pole of the spleen (n=4). The other remaining recipients
(n=5) were examined with only a single transplantation proce-
dure. As shown in Figure 2, the FIX:C values of the FIX-KO mice
at day 25 (10 days after the second transplantation) were
0.94% *0.05% and 1.85%*0.09% in the single- and double
transplanted recipient mice, respectively (P=0.038). Similar in-
creases in FIX:C were also observed at day 35 (20 days after the
second transplantation) in the double-transplanted group.
These data clearly demonstrated that increasing therapeutic ef-
fects could be abtained with a repeated transplantation.

We also examined whether the engrafted hepatocytes
were capable of transcribing FIX mRNA in the recipient
mouse livers. Because shunting of the hepatocytes into the

Days after initinal transplantation

FIGURE 2. Effectof repeated hepatocyte transplantation
on plasma FIX:C levels in hemophilia B mice. At day 15,
some recipient FIX-KO mice received the second trans-
plantation procedure using 1.2x 10® hepatocytes (M; n=4),
whereas r ing five recipy muce did not receive the
second procedure (initial transplantation only, A; n=8). #P
less than 0.05 between groups.

lung had been described in the previous experimental studies
(19), we also investigated FIX mRNA levels in the lung. Total
RNA was extracted from liver, lung, and spleen. Total RNA
(1 pg) was reverse transcribed, and the first-strand comple-
mentary DNA samples were subjected to quantitative real
time polymerase chain reaction amplification for mouse FIX
gene and B-acun gene. Senal dilutions of complementary
DNAs of normal mouse liver were used to generate the stan-
dard amplification curves. As shown in Figure 3(A), an abun-
dant level of FIX mRNA was detected in the liver, with even
higher mRNA expression detected in the livers manipulated
with the repeated transplantation. No FIX mRNA signal was
detected in the Iungs n any of the Mouse groups. Incremental
expression of FIX was detected in the spleen of single and
double hepatocyte transplanted mice, but the levels were
markedly lower compared with the livers. We examined the
relationship between the FIX:C levels and the liver FIX
mRNA levels, and found a direct positive correlation between
the two parameters (R*=0.7214) {Fig. 3B).

Furthermore, we assessed the development of neutral-
izing antibodies against FIX (FIX inhibitor) by Bethesda
method using plasma obtained at killing (20). Detectable lev-
els (=0.5 Bethesda U/mL) of FIX inhibitor was not measured
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appropriate for transplantation to produce coagulation fac-
tors in hemophilia B than other possible types of genetically
modified cells expressing FIX.

Previous studies have shown that engrafted hepatocytes
within the livers are able to proliferate in response to the
regeneration signals occurred by surgical hepatectomy or
chronic liver injuries (22, 23), Using primary hepatocytes, our
group has developed several innovative approaches to create
a functional liver system under the kidney capsule or in sub-
cutaneous locations (13, 15, 16, 24, 25), and we have clearly
demonstrated that these ectopically engrafied hepatocytes
also possess the ability for proliferation (13, 16, 26). This
would be a significant benefit in the use of these hepatocytes,
because most of the adult hemophilia B patients presented
with chronic hepatitis B and/or C viral infection as a result of
treatments with blood-borne contaminated plasma-derived
FIX concentrates. Although portion of the transplanted hepa-
tocytes would be infected with hepatitis viruses in the mean
time, it would be reasonable to speculate that engrafted hepa-
tocytes will proliferate and expand, which would further in-
crease the therapeutic effects.

In conclusion, the present studies described the feasi-
bility and safety of hepatocyte transplantation as a treatment
modality for hemophilia B. Current therapies to treat hemo-
philia have been confounded with problems, and the present
findings represent an important step toward establishing an al-
ternative therapeutic approach for the treatment of not only he-

philia, but other similar genetic disorders affecting the liver.
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keeping gene, f-actin. (B) Relatonship b

FIX:C levels and FIX mRNA expression levels in the h\mr of
recipient mice. The FIX:C levels of plasma obtained on the
day of animal sacnfice were found to correlate with the
relative FIX mRNA levels determined in (A) (R°=0.7214).

in any of recipient mice. This demanstrates that bioengi-
neered FIX produced from the transplanted hepatocytes does
not associate with the development of FIX inhibitors

To investigate the long-term engraftment of hepato-
cytes, we performed an another set of single transplantation
experiment for 12 weeks (n=6), and confirmed long-term
persistency of the increased FIX activities at 0,92% *0.22%,
0.78%*0.22%, 0.78% £ 0.22%, and 0.83%*0,17% at week 2,
4,8, and 12, respectively.

The present study confirmed the proof-concept feasi-
bility of hepatocyte transplantation as an alternative therapy
to treat hemophilia B. The functional engraftment of trans-
planted hepatocytes within the recipient livers was confirmed
by fluorescence in situ hybridization analyses, FIX mRNA
expression, and the secretion of functional FIX into the blood
circulation. To acquire the proper hemostatic activity, syn-
thesized coagulation FIX requires several posttranscriptional
modification steps within the hepatocytes, including cleavage
and removal the prepro leader sequence of 46 amino-acids,
and y-carboxylation of the first 12 glutamic acid residues
(21). For this reason, primary hepatocytes would be more

cript.
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Successful in vivo propagation of factor IX-producing hepatocytes
in mice: Potential for cell-based therapy in haemophilia B
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Summary

Cell-based therapies using isolated hepatocytes have been pro-
posed to be an attractive application in the treatment of hae-
mophilia B due to the normal production of coagulation factor
IX (FIX) in these particular cells, Current cell culture technol-
ogies have largely failed to provide adequate isolated hepato-
cytes. so the present studies were designed to examine a new
approach to efficiently proliferate hepatocytes that can retain
normal biological function, including the ability to synthesize co-
agulation factors like FIX. Canine or human primary hepatocytes
were transplanted into urokinase-type plasminogen activator-
severe combined immunodeficiency (uPA/SCID) transgenic
mice. Both donor hepatocytes from canines and humans were
found to progressively proliferate in the recipient mouse livers

Keywords
Haemophilia A/B.haemophilia therapy,coagulation factors, hepa-
tology

as evidenced by a sharp increase in the circulating blood levels of
species-specific albumin, which was correlated with the produc-
tion and release of canine and human FIX antigen levels into the
plasma, Histological examination confirmed that the trans-
planted canine and human hepatocytes were able to proliferate
and occupy >B80% of the host livers. In addition, the transplanted
hepatocytes demonstrated strong cytoplasmic staining for
human FIX,and the secreted coaguladon factor IX was found to
be haemostatically competent using specific procoagulant as-
says. In all, the results from the present study indicated that de-
velopments based on this technology could prowide sufficient
FIX-producing hepatocytes for cell-based therapy for hae-
mophilia B.

Thromb Haemost 2008; 99: 883-891

Introduction

Haemophilia B 1s a rare X-chromosome-linked recessive bleed-
ing disorder, caused by a failure in the production of functional
coagulation factor LX (FI1X), and this disease affects ~1 in 30,000
males (1, 2). The main clinical manifestation of this disease is
similar to haemophilia A (factor VIII deficiency), and under se-
vere conditions the affected patient can be found to have unpre-
dictable, recurrent, spontaneous bleeding in various areas, n-
cluding soft tissues. major joints and occasionally in internal or-
gans. In these circumstances, the onset and progression of

chronic haemoarthropathy leads to a marked disruption in the
physical and social aspects of the affected patients. Standard
treatment for haemophiha B is cither on-demand or prophylactic
therapy with plasma-denived or recombinant human FIX con-
centrates. This rype of treatment requires frequent intravenous
infusion, which can be a potential bichazard from blood-borne
viral infections to the patient if the infusate is derived from a het-
erogencous population of human blood. In addition, the high cost
of commercial concentrates and the life-long requirement for re-
placement therapy can have a significant impact on economic re-
sources. In an attempt to resolve these difficulties. longer acting
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and safer therapeutic strategies have been investigated. For
example, gene therapy using viral vectors has been extensively
studied in the past decade (3), and although therapeutic and long-
term efficacy has been demonstrated in animal models (4-12),
clinical trials have not conclusively shown long-term therapeutic
benefit (13, 14). It scems likely, therefore, that alternate thera-
peutic options will need to be developed.

Recent clinical success with liver transplantation in hae-
mophilia has encouraged further investigation into cell-based
therapies (15-17). In haemophilia B patients, elevations in bio-
logically active FIX levels from <1.0% to >1.0%, can alter the
phenotype from severe to moderate resulting in a marked im-
provement in the symptomology and quality of life (1), Coagu-
lation FIX is synthesized in hepatocytes (18), and so cell-based
therapies using isolated hepatocytes could provide therapeutic
potential, Hepatocytes also produce other coagulation factors,
such as (actors VII and V111 ( 19-24), and it may be that this type
of treatment could have broader applications to not only hae-
mophlia B, but other coagulation deficiencies. Recently, we have
adopted several approaches to bioengineer functional liver tissue
in vive (25-30), We have demonstrated that isolated hepatocytes
transplanted under the kidney capsule in haemophilia A mice
produced therapeutic plasima FVIII activity and corrected the
phenotypic defect (28), Dhawan et al. (31) also recently de-
seribed the therapeutic benefits of hepatocyte transplantation in
congenital factor VII deficiency, and the relative technical sim-
plicity of cell-based therapy may offer a significant and tech-
nological advantage.

One of the major hurdles in establishing this type of therapy is
the limited availability of biologically functional hepatocytes. At
present. the number of donor livers remains severely restricted
and even if they are available, these livers are frequently of mar-
ginal quality (32). Current procedures for the culture of primary
hepatocytes do not appear to support extensive cell proliferation
(33), so methods to circumvent this problem have recently been
studied, but their role to treat haemophilia were not examined.
Isolated hepatocytes were genetically modified via transfection
with an immortalizing gene, such as simian virus 40 large T
antigen, to promote long-term swevival (34), but FIX gene ex-
pression and production was not investigated. Although the gen-
etic manipulation of hepatocytes can be achieved following 1s0-
lation in vitro, this type of approach to promote hepatocyte prolif-
eration is not a tivial matter in vivo, Towards this end, methods to
provide proliferative stimuli has been studied in vivo, suchas are-
duction in existing liver mass. or aliernatively m a condition
where there is likely to be a selective advantage for transplanted
cells to proliferate (26, 28). Due to these limitations, we investi-
gated a different method to isolate and proliferate hepatocytes
that can retain the hepatic machinery to sustain the synthesis of
coagulation factors, such as FIX. In the present study, we studied
whether transplantation of camne or human primary hepatocytes
info urokinase-type plasminogen activator-severe combined im-
munodeficiency (WPA/SCID) transgenic mice could enhance the
production of coagulation factor [X. The uPA/SCID mouse has
been previously shown to have hepatic parenchymal cell damage,
which results in the continuous release of regenerative stimuli
(35), so we believed that the hepatic environment may be more
conducive to the engraftment of in vitro isolated hepatocytes. The

functionality of the transplanted hepatocytes was assessed i
terms of FIX mRNA and protein production and biological activ-
ity as a means {o treat haemophilia B.

Materials and methods

Animals

Normal beagles were purchased from Oriental BioService. Inc.
(Kyoto, Japan)., CSTBL/6 mice were purchased from Jackson
Laboratory (Bar Harbor, ME, USA). uPA/SCID mice were gen-
erated at Hiroshima Prefectural Institute of Industrial Science
and Technology (Higashihiroshima, Hiroshima, Japan) as de-
scribed previously (35). Genotyping for the presence of the uPA
transgene in the SCID mice was confirmed by polymerase chain
reaction (PCR) assay of isolated genomic DNA as described pre-
viously (35, 36). Experimental protocols were developed in ac-
cordance with the guidelines of the Jocal animal commuttees lo-
cated at both Hiroshima Prefectural Institute of Industrial
Science and Technology and Nara Medical University.

Hepatocyte isolation

Canine hepatocytes were isolated from livers (~100 g piece) har-
vested from two normal heagles (Dog |: 7-year-old male and
Dog 2: 1-year-old female) by a two-step perfusion method using
0.05% collagenase (Collagenase S|, Nitta Gelatin, Osaka.
Japan) as described previously (25, 27). Cells were then filtered
and hepatocytes were separated from non-parenchymal cells by
sequential low speed centrifugation at 50 x g followed by Percoll
(Percoll™, Amersham Biosciences, Uppsala, Sweden) isoden-
sity centrifugation. The viabilities of the isolated canine hepato-
cytes were 96.5% and 98.0% as determined by the trypan blue
exclusion test. Hepatocytes were kept at 4°C until transplan-
tation. Human hepatocyles, isolated from a one-year-old white
male and & six-year-old Afro-American female, were purchased
from In Vitro Technologies (Baltimore, MD, USA). The eryopre-
served hiepatocytes were thawed and suspended in wansplam
medium (35, 37). The viabilities of thawed human hepatocytes
were determined to be 64.4% and 49.2%, respectively,

Transplantation of hepatocytes for the creation of
canine- or human-chimeric mice

One day prior to transplantation and one week after transplan-
tation. the uPA/SCID mice, 20 to 30 days old, received intraperi-
toneal injections of 0.1 mg of anti-asialo GM 1 rabbit serum
(Wako Pure Chemical Industries Ltd.. Osaka, Japan) to inhibit
recipient natural killer cell activity against the transplanted hepa-
tocytes. Viable canine- (1.0 x 10%) or human- (0.75 x 10%) hepa-
tocytes were transplanted using an infusion technique into the in-
ferior splenic pole in which the transplanted cells flow from the
spleen into the liver via the portal system. After transplantation,
the uPA/SCID mice were treated with nafamostat mesilate to in-
hibit complement factors activated by canine or human hepato-
cytes as previously described (33).

Measurement of plasma levels of albumin, FIX antigen
and FIX activity

Periodically, retroorbital bleeding was performed in recipient
mice, and the blood was collected in a tube containing 0.1 vol
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3.8% sodium citrate. Plasma samples were stored at ~80°C until
analyzed. To assess the proliferating status of transplanted ca-
nine hepatocytes, we determined the plasma levels of canine al-
bumin in the recipient plasma by ELISA using primary goat anti-
dog albumin and secondary HRP-conjugated goat anti-dog albu-
min antibodies (Bethyl Laboratories Inc., Montgomery, TX,
USA), respectively. For the assessment of proliferation in trans-
planted human hepatocytes, we similarly measured the blood
levels of human albumin by ELISA (Human Albumin ELISA
Quantitation kit, Bethyl Laboratories Inc.). The proportion of
proliferating donor hepatocytes in the recipient liver (repopu-
lation rate) was determined based on blood albumin levels (35,
38). Human and canine FIX antigen (FIX:Ag) were measured in
recipient plasma by ELISA (Asserachrom IX:Ag, Diagnostica
Stago. Asniéres, France). Human FIX:Ag levels were measured
according 10 the mstructions provided by the manufacturer, and
canine FIX:Ag levels were quantified by elongating the enzy-
matic color reaction step. No cross-reactivity with pooled mouse

plasma was observed in this ELISA. FIX activity (FIX:C) was
measured by one-stage clotting assay based on the activated par-
tial thromboplastin time using human FIX-deficient plasma
(bioMerieux Inc., Durham, NC, USA). Pooled canine plasma
collected from 75 normal dogs, and normal human plasma (Ver-
ify 1, bioMericux Inc.) were used as reference standards.

Immunochistochemistry for albumin and FIX

Formalin-fixed, paraffin-embedded liver sections from mice
transplanted with canine hepatocytes were sectioned and incu-
bated with a primary goat antibody against canine albumin (Be-
thyl Laboratories Inc.) at a dilution of 1:1,000, The bound anti-
body was detected by the avidin-biotin complex immunoperox-
idase technique using an ABC Elite kit (Vector Laboratories.
Burlingame, CA, USA) followed by developing with DAB (3,
¥-diaminobenzine tetrahydrochlonide). Expression of human
FIX in recipient mice was determined by immunofluorescent
staining of frozen liver sections embedded in O.C.T compound
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Figure |: Proliferation of transplanted canine hepatocytes in
uPA/SCID livers d by recipient plasma analy

A, B) Plazma canine factor IX (FIX) antigen (cFIX-Ag) levels in uPA/SCID
mice after transplantation of hepatocytes isolated from a seven-year-old
dog (A) and 3 ane-year-old dog (B) (n=8, 10 in A and B, respectively) (%
of pooled normal canine plasma). C) Relationship between total plasma

FIX coagulation acuvity (FIX:C; refiecting both murine and canine FiX
activities) (% of normal human plasmaj and plasma cFIX:Ag levels of
uPA/SCID mice transplanced with canine hepatocytes. D) Relationship
berween plasma canine albumin concentrations and plasma cFIX:Ag lev-
els of UPA/SCID mice transplanted with canine hepatocytes.
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Figure 2: Mouse liver chimerism with proliferated canine hepa-
tocytes. A-E) Immunohistochemical staining of canine albumin in liver
sections of uPA/SCID mice transplanted with canine hepatocytes. Repre-
sentative photomicrographs from a recipient mouse with low plasma
cFIX:Ag (2.0% of normal canine plasma) (A) and a mouse with high plas-
ma cFIX:Ag (33.2% of normal canine plasma) (B). C) Higher magnifi-
cation view of the area oudined in (B). Canine albumin staining of posi-
uve control (normal dog liver) (D) and negative control (non-trans-
planted uPA/SCID mouse liver) (E) indicate the antibody used is specific
for canine albumin. F. G) Hematoxylin and Eosin staining on the serial
sections of mouse liver from (B). Ca, transplanted canine hepatocytes;
Mu, recipient murine liver tissue. Original magnifications, *40 (A, B, F),
%100 (D,E), and ¥200 (C, G),

(Sakura Finetek, Torrance, CA, USA). The sections were mcu-
bated overnight at 4°C with the goat anti-human FIX antibody
(AfMinity Biologicals, Hamilton, ON, Canada) followed by
Alexa Fluor 555 rabbit anti-goat IgG (Molecular Probes, Carls-
bad, CaA, USA) for 60 minutes. Stained sections were sub-
sequently imaged using an Olympus BXS1 microscope (Tokyo,
Japan) and photographed using an Olympus DP70 digital came-
ra with DP controller and DP manager computer software.

Quantitative real-time PCR

Total RNA was extracted from the liver of all recipient mice, and
normal human and canine liver samples using the RNeasy Mini
Kit (Qiagen, Hilden, Germany). Normal human hver tissue por-
tions were obtained from surgical specimens at liver surgery for
metastatic liver tumours after acquiring written informed consent
for the experimental use of harvested liver samples. Extracted
RNA (1 pg) was reverse transeribed using oligo d(T),, primers
and Omniscript RT Kit (Qiagen). First-strand ¢DNA samples
were subsequently subjected to PCR amplification using the
PRISM 7700 Sequence Detector (Applied Biosystems Japan
Lid., Tokyo, Japan). Canine glyceraldehydes-3-phosphate dehy-
drogenase (GAPDH) and canine FIX sequences were detected
using the following primers. The PCR primers for canine
GAPDH sequence were forward, S'CCCCACCCCCAATGTAT-
CA3', reverse. 5'GTCUGTCATATTTGGCAGCTTTCTS', and
probe, STGTGGATCTGACCTGCCGCCTGS'.

The primers for canine FIX sequence were forward, S'GTTGTT-
GGTGGAAAAGATGCCS!, reverse, 5'TGCATCAACTTI-
CCCATTCAAAR,  probe. "CCAGGTCAATTCCCTTGG-
CAGGTCC3'. TagMan probes and primers for human sequences
were Hs99999%05_m1 (GAPDH) and Hs00609168_m! (FIX)

(TaqMan Gene Expression Assay, Applied Biosystems). The
relative RNA copy numbers of canine FIX and human FIX in
each transplanted mouse were calculated in terms of canine FIX
/ canine GAPDH or human F1X / human GAPDH expression
ratio, respectively. RNA expression of murine FIX and murine
GAPDH, combined with ¢DNA synthesis and real-time PCR
using TagMan probes, Mm99999915_g! (murine GAPDH) and
Mm01308427_m! (murine FIX) (Applied Biosystems), were
similarly assessed in hepatectomy experiments (see below),

Hepatectomy experiment

For the purpose of investigating the FIX mRNA expression dur-
ing liver regeneration, liver proliferation stimuli was induced by
performing a 70% partial hepatectomy on C57BL6 wild-type
mice (n=6) as described previously (39), The resected liver lobes
were used as our control for a liver sample under quiescence
while the remnant liver lobes removed twa days afier hepatec-
tomy were used as our proliferating samples. Mouse FIX mRNA
and mouse GAPDH mRNA expression was assessed on both
quiescent and proliferating liver samples as described above

Statistical analysis

Significant differences were tested by the Wilcoxon t-test be-
tween paired groups and by the Mann-Whitney U-test between
unpaired groups. Differences between three or more groups were
tested by the Kruskal Wallis H-test. If the probability (p) value
was less than 0.05, the Mann-Whitney U-test with Bonferroni
correction was used to compare each individual group with the
appropriate control. All statisbcal analyses were performed
using Excel (Microsoft) with ystat2006 software (Igakutosyo-
syuppan, Tokyo, Japan). P<0.05 was considered significant.

Results

Proliferation of FIX-producing canine hepatocytes in
uPA/SCID mouse livers
Canine hepatocytes isolated from a seven-year-old and a one-
year-old beagle were transplanted into uPA/SCID mice (n=8 and
10, respectively). Canine FIX:Ag was detected in the plasma of
five out of eight mice three weeks affer transplantation with the
1solated hepatocytes from the seven-year-old beagle. In four out
of the five mice, the FIX: Ag levels reached between 20--40% of
normal canine plasma levels for FIX:Ag (Fig. 1A), One trans-
planted mouse was detected o have nearly 100% of normal ca-
nine plasma FIX:Ag levels. In general, the uPA/SCID mice that
received hepatocytes from the one-year-old beagle demonstrated
a greatef rise in the circulating canine FIX:Ag, and 70% of the
mice (7 out of 10) showed levels greater than 50% of normal lev-
els three weeks afier ransplantation (median: 81.8%; Fig. 1B).
Plasma FIX:C was measured using a one-stage clotling
assay. The FIX:C of normal canine pooled plasma and untreated
uPA/SCID mouse plasma (n=4) was approximately 200% and
50% of normal human plasma, respectively. The FIX:C in the re-
cipient uPA/SCID mice with high canine FIX:Ag levels was
greater than in untreated mice or recipient uPA/SCID mice with
low FIX:Ag levels (R?=0.8143) (Fig. 1C). These observations
confirmed that the secreted FIX protein had functional coagu-
lation activity,
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Figure 3: Donor species-specific FIX mRNA expressions in
uPAJISCID livers transplanted with either canine or
human hepatocytes. A) Canine factor X (FIX) RNA copy numbers
relative to canine GAPDH (reflecting RNA copy numbers per canine he-
patocyte), based on plasma cFIX:Ag levels. (Low, <40%; Medium,
41-80%: High. >B1% of normal canine plasma. n=4, 4, and §, respect-
Ively). N.C.; negative controk: non-transplanted uPA/SCID mouse livers
(n=4), PC_ positive control: normal beagle dog livers (n=3). B) Human

We also measured canine albumin levels in the plasma of sev-
eral uPA/SCID mice that received hepatocytes from the seven-
year-old beagle, and demonstrated n highly significant cor-
relation between the canine albumin and canine FIX:Ag levels
(R*=0.9963 ) (Fig. | D). Assuming that the plasma concentrations
of albumin and FIX:Ag in normal dogs are 5 g/dl and 5,000 ng
ml, respectively, the weight ratio of albumin to FIX:Ag in normal
canine plasma was calculated to be 10,000:1. These data sug-
gested that the synthesis of canine FIX and albumin in the trans-
planted animals was similar to thal of normal canine liver (i.c
15% FIX:Ag of normal canine plasma corresponds to 750 ng/ml,
and the ratio of 0.6 g/dl to 750 ng/m approximates to 10,000:1)
Iminunohistochemical staining for canine albumin in sections
obtained at day 55 after transplantation demonstrated a large area
of the liver was positive in the recipients with high plasma canine
FIX:Ag (33.2%) (Fig. 2B-C), whereas only a small area of liver
was positive in mice with low plasma FIX:Ag levels (2.0%) (Fig.
2A). Histological examination of serial liver sections revealed
that the canine albumin-positive area was composed of morpho-
logically normal hepatocytes (Fig. 2D-E) mdicating that the nor-
mal canine hepatocytes had progressively propagated in the uPA/
SCID livers.

The uPA/SCID mice that received canine hepatocytes were di-
vided into three groups according to their plasma canine FIX:Ag
levels (low <40%, medium 41-80%, and high >81%). mRNA lev-
els of canine FIX were normalized using canine GAPDH mRNA
measurements (FIX / GAPDH). As shown in Figure 3A, canine
FIX / canine GAPDH expression was similar in the three groups
with no statistically significant difference. This suggests that ca-
nine hepatocytes proliferated within the uPA/SCID livers without
reducing the steady-state levels of canine F1X gene expression and/
or degradation. We confirmed that RNA samples from untreated
uPA/SCID livers were not amplified by the primer set used for ca-
nine FIX and GAPDH detection (Fig. 3JA)

FIX RNA copy numbers refative to human GAPDH (reflecting RNA
copy numbers per human hepatocyte), based on the repopulation rate
(R.R.) estimated from human albumin concentrations as described In
Materiols and methods. (Low, <40%; Medium, 41-65%; High, >66%. n=4,
4, and 4 respectively). NL.C., negative control: non-transplanted uPA/
SCID mouse livers (n=4): RC., positive control: normal human liver ts-
sues (n=3)

Proliferation of FIX-producing human hepatocytes in
uPA/SCID mouse livers

Human hepatocytes were transplanted into the liver of uPA/
SCID mice (n=12). The proliferation and propagation status of
the transplanted hepatocytes were assessed by periodic measure-
ment of human albumin levels in the recipient blood, and the re-
population rate of human hepatocytes in the uPA/SCID livers
was asseased as described previously (35, 38). Human FIX:Ag
was detected in the plasma of 75% of the mice (9 out of 12) be-
tween 67 and 84 days after transplantation, and the circulating
plasma levels ranged between 6-58% found in normal humans.
The results from our study demonstrated that the FIX:Ag levels
were highly correlated with the human albumin levels
(R*=0,8714) (Fig. 4A). To examine the biological function of the
seereted human FIX, we compared the repopulation rate with
FIX:C assays (Fig. 4B). Although both murime and human FTX:C
could be measured using the clotting assay, we were able to esti-
mate the approximate levels of the de novo expressed human
FIX:C present in our samples, Plasma levels of FIX:C in un-
treated uPA/SCID mice were less than 50% of the levels norm-
ally found in human plasma, and we expected to increase the
FIX:C levels up to 100% following the humanization of the mu-
rine livers. Similar to the canine transplants, the results showed
that mice with a high repopulation rate had higher FIX:C than
those with low repopulation rates (R*=0.7245). These data sug-
gested that secreted human FIX protein was biologically active
To clarify the proliferation status of transplanted human hepato-
cytes in uPA/SCID mouse liver, we also transplanted human he-
patocytes isolated from another human subject (a 2-year-old
Caucasian male) into a new set of uPA/SCID mice (n=9). Using
these mice, we measured plasma human FIX:Ag levels, total
plasma FIX:C levels, and human plasma albumin concentrations
from samples obtamed periodically from the recipient mice dur-
ing an eight-week period afier transplantation. As shown in Fig-

887




T et al. Propagation of FiX-producing hepatocytes
100
10 *
= a0
E 8
T 6+ LJ £ % .
o Ri=0.7245
E ' Re=0.8TI4 g 0
8 60
E 2 / 50 /
-
0 a0 H —s S VS —
1] 20 40 60 o 20 40 60 BO 100
Human FEX:Ag (%) Repopulation rate (%)
;_so i 100 | T2
=5 o
. | 80 g" ‘
=91 F R,
o | £ w0 £
wd 2 | 36
520 | X 4 P
210 | e E 2 !'
(1] — ok i i g [} |
3 4 5 ] 7 B 3 4 5 ] 7 8 3 4 5 6 T 8
Weeks after transplantation Weeks after transplantation Weeks after transplantation

Figure 4: Proliferation of transp ytes in

uPAISCID mouse livers assessed by recipient b!oud analyses.
A) Relatonship between blood human albumin and plasma human factor
IX (FIX) antigen (hFIX:Ag) concentrations of uPA/SCID mice trans-
planted with human hepatocyres (n=12). B) Relationship berween total
plasma FIX coagulation activity (FIX:C; reflecang both murine and
human FIX acuvities) (% of normal human plasma) in uPA/SCID mice
transplanted with human hepatocytes based on the repopulation rate

ure 4C-E, each of our measured parameters were found to be in-
creased after transplantation in most of the mice, which was in-
dicative of o robust proliferative status of the transplanted human
hepatocyies.

Liver sections obtained from mice with high plasma human
FIX:Ag levels were found to have strong positive staining in the
hepatocytes for human FIX as determined by immunohisto-
chemistry (Fig. 5B). In marked contrast, only a small portion of
the liver stained positive in sections of recipient mice that were
detected 1o have low (i.e. <1%) circulating levels of plasma
FIX:Ag level (Fig. SA). These results were consistent with the
findings that the de nove production of hacmostatically active
human FIX in the circulation was dependent on the viability and
persistence of the transplanted hepatoeytes in the recipient uPA/
SCID hivers,

The uPA/SCID mice that received human hepatocytes were
divided into three g Lroups according to the repopulation rate (low
<40%, medium 4]-65%, and high >66%). Human FIX mRNA
levels were normalized using glyceraldehyde-3-phosphate dehy-

d from human albumin concentrations as described in Matenals
ond methods. The reciplent blood samples used for these assays were ob
tained 67-84 days after transplantation. C-E) Time course of plasma
hFIX:Ag levels (C). total plasma FIX:C levels (D), and blood human albu-
min levels (E) of the recipient mice after human hepatocyte transplan-
waton (n=9) (differant set of experimantl data from that shoawn in A
and B)

drogenase (GAPDH) mRNA measurements (FIX:GAPDH). As
shown in Figure 3B, the ratio of human FIX:GAPDH mRNA ex-
pression in the recipient livers was not significantly different
among the three groups. We further confirmed that extracted
total RNA from untreated uPA/SCID livers were not amplified
by the primer set used for human FIX and human GAPDH detec-
tion (Fig. 3B), demonstrating the specificity of the primers to
human and not murine FIX expression. Similar findings were
determined in the canine hepatocyte transplantation experiments
in which we confirmed that human hepatocytes proliferated in
uPA/SCID mouse livers and retained their ability for transcribing
the human FIX gene

It has been reported that differentiated liver function (e.g
mRNA expression of albumin) may be suppressed when hepato-
cytes are subjected to various proliferative stimuli (40, 41). It is
not known, however, if hepatocyte proliferation could directly
influence FIX mRNA expression. To address this question, we
compared FIX mRNA expression in quiescent and proliferating
mouse livers. Liver proliferation was induced by performing a
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lation by transplanted hepatocytes progressed. The data from our
experiments indicated that post-transcriptional modification of
FIX, including cleavage and removal of the pre-pro leader se-
quence of 46 amino-acids, y-carboxylation of the first 12 glu-
tamic acid residues, and partial -hydroxylation of Asp 64 (46),
muslt bave occurred within the transplanted hepatocytes o main-
tain biologically active haemostatic function.

Hepatocytes from a one-year-old dog demonstrated high pro-
liferation activity compared with cells from an older (7-year-old)
dog as evidenced by the more rapid increase and its higher sus-
tained levels of plasma canine FIX:Ag. These results are consist-
ent with carlier findings by our group in which we reported that
human hepatocytes from a younger donor occupied a larger pro-
portion in the recipient uPA/SCID mouse liver compared with
transplanted hepatocytes from an older donor (47). One possible
reason for the enhanced growth potential of hepatocytes in these
circumnstances may be due to an elevated expression of cell cycle
proteins in hepatocytes from younger compared to older donors
(48). With the present study as well as previous work in the litera-
ture, we believe that the age of the donor makes a difference on
the proliferation and repopulation of the transplanted hepato-
cytes in uPA/SCID mouse livers.

Human hepatocytes propagated in uPA/SCID mice could be
isolated and purified using cell-sorting technology (38). Re-
cently, our group has developed a procedure to isolate human he-
patocytes that were propagated in uPA/SCID mouse livers, and
these isolated hepatocytes were confirmed to be biologically
functional compared to original primary hepatocytes, demon-
strating the expression of cytochrome P450(CYP) (38), We have
also been experimentally successful in engineering functional
liver tissue using isolated hepatocytes transplanted under the
Kidney capsule or in the subcutaneous space by demonstrating
coagulation factor VIl expression (25-30). More recently,
Azuma el al. (49) reported an alternate method 1o propagate
human hepatocytes in living mice that furthers the utility of he-
patocyte transplantation. Based on these developments, propa-
eated human hepatocytes with FIX expressions should become a
valuable cell source in establishing novel cell-based therapies for
direct transplamation or development of lissue engineering strat-
egies mn the treatment of haemophilia B.

For the eventual translation of cell-based therapies using the
propagated human hepatocytes for haemophilia B to be success-
ful in the clinics, several potential obstacles will need to be con-
sidered and overcome. First, contamination of murine cells dur-
ing the isolation of the trunsplanted human hepatocytes must be
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minimized. Second, increasing the engraftment rate of the trans-
planted hepatocytes into the recipient liver. Lastly, the survival
and viability of the transplanted allergenic hepatocytes must be
prolonged. With regards to the first issue, the contaminating mu-
rine hepatocytes during the isolation of human cells from the
mouse liver could be overcome by utilizing recipicnt transgenic
mice that have been incorporated with a inducible suicide gene.
In the presence of the inducing agent, the murine cells would be
preferentially eliminated and increase the purity of the human
hepatocyte mixture leading to enhanced clinical safety. To over-
come the low engraftment rate found in the current and previous
studies, the recipient livers will require some type of precon-
ditioning regimen to maximize the efficiency and engraftment.
Slehria et al. (50) reported an effective and non-invasive pre-
treatment protocol in which the administration of phentolamine.
an adrenergic receptor blocker, resulted in the dilation of the he-
patic sinusoidal vasculature leading to enhanced hepatocyte
engraftment rate. For the last issue regarding the limited graft
survivability of the donor cells due to the activation of the host
immune system, it will be important to design an immunosup-
pressive regimen specific for hepatocyte transplantation and
monitoring systems for the early rejection need be established.
These issues will need to be studied and overcome to substanti-
ate the utility of this approach for the treatment of haemophilia
and other congenital liver disorders,

Inall, the present study has demonstrated the utility of hepa-
tocyte transplantaton for the therapeutic production of coagu-
lation factor IX. As we continue to overcome the obstacles as-
sociated with this approach, this transplantation methodology
will evelve into a novel approach to treat not only liver diseases
associated with haemophilia but other forms of congeniral liver
diseases.
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