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Fig. 1 Displacement of binding
of the p-opioid receptor ligand
[BH]DAMGO in membranes of
the mouse brain without the
cerebellum by morphine, trama-
dol, or M1. Experiments were
performed in the presence of
either [3HIDAMGO (1 nM) or
increasing concentrations of ei-
ther morphine, tramadol, or M1.
The data represent the mean
+SEM of three to four samples.
The ICso values were deter-
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mined using the analysis of
variance and linear regression
techniques. To calculate the ICsq
values, at least nine drug doses
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(VTA) was examined by monitoring the binding of *°s]
GTPyS to membranes. M1, but not tramadol, induced a
concentration-dependent increase in the binding of [**s]
GTPyS to membranes of the VTA in mice. Tramadol by
itself could not stimulate the binding of [*>S]GTPYS to
membranes of the mouse VTA (p<0.001 vs. tramadol
group; Fig. 3a). Furthermore, Ml-induced G protein
activation was significantly suppressed by cotreatment with
B-FNA (1078 or 1077 M) (B-FNA-MI1 p<0.001 vs. M1
alone) (Fig. 3b).
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Fig. 2 Conditioned place preference produced by s.c. administration
of tramadol (30-70 mg/kg, a) or M1 (10-30 mg/kg, b) in mice using
the conditioned place preference paradigm. Effect of pretreatment with
B-FNA (40 mgkg, s.c.) on tramadol- or Ml-induced conditioned
place preference in mice. Groups of mice were pretreated with 3-FNA
at 24 h before the injection of tramadol or M1. Ordinate: mean

Effect of tramadol or M1 on the extracellular dopamine
level in the mouse nucleus accumbens

Basal dialysis levels of dopamine were determined at
10 min before tramadol or M1 administration in each
experimental group. The dopamine levels were markedly
increased by the injection of tramadol (70 mg/kg, s.c.) or
MI1 (30 mg/kg, s.c.). The s.c. injection of tramadol or Ml
produced a significant increase in the dopamine levels from
90 to 180 min after administration (F(; 35=5.654, p<0.001
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differences in time spent in the preferred place between postcondition-
ing and preconditioning. Immediately after s.c. injection of tramadol
or M1, mice were placed and conditioned in either compartment for
1 h. Each column represents the mean with SEM of seven to eight
mice. *p<0.05, **p<0.01 vs. saline-saline group; #p<0.05 vs.
saline—tramadol (70 mg/kg) or M1 (30 mg/kg) group
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Fig. 3 Effect of tramadol (107

to 1075 M) or M1 (1077 to a
107 M) on the binding of [*°S] 60 -
GTPyS to membranes of the

mouse lower midbrain (a). The 50 -
M1-induced increase in [3 °S]
GTPYS binding to membranes
in the mouse lower midbrain
was blocked by 3-FNA (b).
Membranes were incubated with
both [**S]GTPYS and GDP and
MI in the presence or absence
of 3-FNA. The data are shown
as the percentage of basal [>°S]
GTPyS binding measured in the 10 4
presence of GDP and absence of
M1. Each column represents the
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tramadol group vs. saline group; £ 35=1.160, p<0.001
M1 group vs. saline group; Fig. 4).

Inhibition of tramadol- or M1-induced place preference
and G protein activation in the lower midbrain of sciatic
nerve-ligated mice

The hyperalgesic response and tactile allodynia after sciatic
nerve injury are shown in Fig. 5. Partial ligation of the sciatic
nerve caused a marked decrease in the latency of paw
withdrawal against a thermal stimulus on the ipsilateral side
in nerve-ligated mice, and this reduction in paw withdrawal
latency lasted for at least 14 days (p<0.001 vs. sham-
operated group; Fig. 5a). In contrast, paw withdrawal latency
in the ipsilateral side of sham-operated mice was not
changed (Fig. 5a). Mice with sciatic nerve ligation also
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Fig. 4 Effect of tramadol (70 mg/kg, s.c.) or M1 (30 mg/kg, s.c.) on
the extracellular dopamine level in the mouse NAcc. Data are
presented as the percentage of the mean basal level<0.001, saline
group vs. tramadol group or saline group vs. M1 group
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showed a marked increase in paw withdrawal in response to
a tactile stimulus on the ipsilateral side in nerve-ligated mice
(p<0.001 vs. sham-operated group; Fig. Sb or c¢). Under
these conditions, we investigated whether tramadol or M1
could produce rewarding effects in sciatic nerve-ligated mice
using the CPP method. As shown in Fig. 6a s.c. adminis-
tration of tramadol (30-70 mg/kg, s.c.) or M1 (10-30 mg/kg,
s.c.) produced a dose-dependent preference for the each
drug-associated place in sham-operated mice (p<0.05, p<
0.01 vs. sham-saline group; Fig. 6a or b). In contrast,
tramadol and M1 each failed to produce a place preference
under the neuropathic pain-like state (p<0.05, p<0.01 vs.
sham-tramadol or sham-M1 group; Fig. 6a or b).

Tramadol- or M1-induced stimulation of [**S]JGTPYS in
the lower midbrain including the VTA obtained from sham-
operated and sciatic nerve-ligated mice was determined by
monitoring the binding of [**SJGTPYS to membranes.
According to the atlas reported by Paxinos and Franklin
(2001), a coronal brain block of the lower midbrain area
(box) was obtained from 2.5 to 4.5 mm posterior to the
bregma (Fig. 7a). M1 (107% to 107> M) produced a
concentration-dependent increase in the binding of *%s]
GTPyS to lower midbrain membranes in sham-operated
mice. Conversely, the levels of M1-stimulated [**S]GTPyS
binding to this area in nerve-ligated mice were significantly
lower than those observed in sham-operated mice (p<0.01
vs. sham group; Fig. 7b).

Discussion

In the [**S]GTPYS binding and MOR binding assays, M1,
but not tramadol, was found to have its functional activity for
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Fig. 5 Effect of sciatic nerve
ligation on withdrawal
responses to thermal stimulation
(a) and tactile allodynia (b or ¢).
There was no difference in the
basal response between sham-
operated and sciatic nerve-ligat-
ed mice before surgery (day 0).
Thermal hyperalgesia and tactile
allodynia were observed in the
ipsilateral side on sciatic nerve-
ligated mice. The data are pre-
sented as the mean<0.001 vs.
sham-operated group
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MOR in the mouse brain. It has been reported that two major
urinary metabolites, M1 and M2, are by-products of
CYP2D6 and CYP3A4 metabolism (Lintz et al. 1981).
Approximately 70% of tramadol is metabolized to M1,
which shows high affinity for MORs (Raffa 1996). Several
studies have reported that tramadol-induced analgesia results
from a monoaminergic effect of tramadol itself and an
opioidergic effect of its active metabolite M1 (Desmeules et
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al. 1996; Raffa 1996; Mattia and Coluzzi 2005). Considering
these results, our present data constitute evidence that the
pharmacological effect of tramadol is mediated mainly
through its active metabolite M1 via MORs.

The key approach in the present study was to investigate
the rewarding effects of tramadol and its active metabolite
M1. It has been reported that the approach for the
conditioned place preference in rodents is appropriate for
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Fig. 6 Conditioned place preference produced by s.c. administration
of tramadol (30-70 mg/kg, a) or M1 (10-30 mg/kg, b) in sham-
operated and sciatic nerve-ligated mice using the conditioned place
preference paradigm. Ordinate: mean differences in time spent in the

preferred place between postconditioning and preconditioning. Imme-
diately after s.c. injection of tramadol or M1, mice were placed and
conditioned in either compartment for 1 h. Each column represents the
mean=SEM of seven to eight mice
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% Stimulation

Fig. 7 According to the atlas reported by Paxinos and Franklin
(2001), a coronal brain block of the lower midbrain area (box) was
obtained from 2.5 to 4.5 mm posterior to the bregma (a). Effects of
MI! on the binding of [*S]GTPYS to membranes of the lower

the investigation on abuse potential of tramadol (Sprague et
al. 2002; Tzschentke et al. 2002). We found that both
tramadol and M1 produced a significant place preference in
mice, and these effects were significantly suppressed by
pretreatment with the MOR antagonist 3-FNA. It was
reported that tramadol may possess relatively low abuse
potential in preclinical or clinical data (Budd 1994; Raffa
2008). Contradictorily, it was noted that a clinically
prescribed dose of oral tramadol has abuse liability-related
effects (Zacny 2005), which was included in the 2006
WHO report (WHO Expert Committee on Drug Depen-
dence 2006). Although it seems likely to be still required to
further investigate the abuse liability of tramadol in
humans, our data support the idea that tramadol may show
its abuse liability through M1-activated MOR.

Several studies have suggested that the mesolimbic
dopaminergic system, which projects from the VTA of the
midbrain to the NAcc, is the critical substrate of the rewarding
effect of the MOR agonist morphine (Koob 1992; Nestler
1996; Narita et al. 2001b). MOR agonists have been shown
to increase dopaminergic signals in the NAcc via the
activation of dopamine cells in the VTA, an area that
possesses high densities of MOR (Garzon and Pickel 2001).
In the present study, we found that the dopamine levels in the
NAcc were markedly increased by s.c. administration of
either tramadol or M1. Furthermore, M1 induced a concen-
tration-dependent increase in the binding of P’SIGTPYS to
membranes of the VTA in mice, whereas tramadol had no
such effect. These results suggest that the activation of MOR
in the VTA by M1 after the s.c. administration of tramadol
may facilitate the mesolimbic dopaminergic system and
increase the extracellular dopamine levels in the NAcc,
resulting in the initiation of the rewarding effect.

We previously reported that sciatic nerve-ligated mice
show symptoms of neuropathic pain with hyperalgesia and
allodynia in appropriate pain tests (Narita et al. 2005b).
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midbrain obtained from sham-operated and sciatic nerve-ligated mice
(b). Membranes were prepared 7 days after nerve ligation. Each value
represents the mean<0.05, ##p<0.01 vs. sham-saline group; *p<0.05,
**p<0.01 vs. sham-M1 group

Such persistent painful states caused by sciatic nerve
ligation can last for months (Narita et al. 2005b). In the
present study, mice with partial sciatic nerve ligation
exhibited marked neuropathic pain-like behaviors only on
the ipsilateral side at 7 days after the nerve ligation. Under
these conditions, the place preference induced by the s.c.
administration of tramadol or M1 was significantly sup-
pressed in mice. Furthermore, the increase in the binding of
[**S]GTPYS induced by M1 in lower midbrain membranes
including the VTA was significantly attenuated in mem-
branes obtained from sciatic nerve-ligated mice. We
previously reported that sciatic nerve ligation results in
the reduction of MOR functions to activate G protein in the
VTA (Ozaki et al. 2003). On the other hand, no significant
changes in dopamine receptor functions to activate G
protein in the NAcc were observed in sciatic nerve ligation
(Ozaki et al. 2003). We also demonstrated that the
attenuation of the morphine-induced place preference under
a neuropathic pain was associated with a decrease in
morphine-induced dopamine release in the NAcc with a
reduction in the MOR-mediated G protein activation in the
VTA (Ozaki et al. 2002). Furthermore, we reported that
sciatic nerve ligation caused a dramatic reduction in the
activities of extracellular signal-regulated kinase (ERK) in
tyrosine hydroxylase-positive dopaminergic neurons of
the VTA (Ozaki et al. 2004). These findings suggest that
the reduction in MOR-mediated G protein activation in the
lower midbrain area caused by sciatic nerve ligation may be
responsible for inhibiting the rewarding effects induced by
the s.c. administration of both tramadol and M1 under a
neuropathic pain-like state.

In conclusion, we report in this study that tramadol has a
unique receptor profile and greater potency, based upon its
active metabolite M1, which can bind to MORs. Further-
more, treatment with tramadol produces less of a rewarding
effect under a neuropathic pain-like state.
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Figurs 1. Blockads of the development of sensitization to methamphetamine
(METH)-induced hyperiocomotion by co-treatment with gabapentin (GBP).
Groups of micewere given fifth times with METH (2 mg/kg, 5.¢.} every 96 hr. Groups of
micewere pretreated with vehicle or GBP {30 nmolimouss, i.cv.) 30 min before METH
injection. Total activity was countedfor 180 min after each treatment. The data
representthe mean with SEM. of 10 mice. ™*p<0.001 vs. the 1st drug administration,
#p<0 05, ¥¥p<0.001 vs. vehicie-METH group, each session.
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Flgure 2. Effect of gabapentin (GBP) on the methamphetamine (METH}dnduced
place preference in mice. Chronic s.c. administration of METH (1 mgikg, s¢)
produced asignificantplace preference in mice. Each column representsthemean
S E M of 10 mice. Mice were pretreated with vehicle or GBP (3, 10 or 30 nmol/mouse,

i.cv.) before s.c. administration of saline or METH. **p<0.01, ***p<0.001 ve vehicie-

saline group, ###p<0.001 vs. vehicle-METH group.
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Direct Evidence for the Up-regulation
of Vps34 Regulated by PKCy During
Short-Term Treatment With Morphine
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In this study, we investigated whether PKCvy could be associated with

functional changes of vacuolar protein sorting 34 (Vps34) during morphine treatment
using primary cultures of cerebral cortical neurons from mice. The immunoprecipitation
analysis showed that p-PKCy and Vps34 are present together in molecular complexes.
The treatment with morphine increases PKCy and Vps34 levels. Phosphorylation of
PKCy increased Vps34 level. The inhibition of morphine-induced increase in PKC~ phos-
phorylation reduced Vps34 level. These results indicates that opioid receptor activation
increases PKCy phosphorylation in the neurons and, in turn, upregulates Vps34 during

short-term treatment with neurons. Synapse 63:365-368, 2009.

INTRODUCTION

Vacuolar protein sorting 34 (Vps34) is the sole
Class III enzyme in phosphoinositide (PI) 3-kinase
family phosphorylating 3’ hydroxy position of the
phosphatidylinositol ring, and selectively catalyzes
phosphatidylinositol to produce only PI(3)P (Herman
et al, 1992; Volinia et al., 1995). PIs play several
roles including regulation of membrane trafficking in
cells (De Matteis and Godi, 2004). Early endosome
trafficking requires PI 3-kinase activity, and domi-
nant kinase in this organelle appears to be human
homologue of Vps34 (hVps34) (De Matteis and Godi,
2004; Futter et al., 2001). However, little is known
about functions of Vps34 in opioid receptor activation
by morphine.

Repeated administration of morphine produces sev-
eral long-lasting changes in brain function such as
protein kinase C (PKC) upregulation in the nucleus
accumbens (Aoki et al., 2004; Narita et al., 2002).
PKC family controls numerous signaling cascades by
phosphorylation of target proteins including neuro-
transmitter receptors and G proteins (Hug and Sarre,
1993; Premont et al., 1995). Recent investigations
demonstrate neuronal cytoplasmic localization of
PKCvy in soma including dendritic spines, axon and
synaptic terminals (Kose et al., 1988, 1990) and mod-
ulatory roles of PKC in calcium channel trafficking
via insertion of channels into the plasma membrane
(Zhang et al., 2008). In addition, our preliminary data
showed that morphine (0.3 uM for 24 h) exposure to
the primary cultures of cerebrocortical neurons upre-
gulated calcium channel protein levels in neuronal

©2009 WILEY-LISS, INC.

©2009 Wiley-Liss, Inc.

plasma membrane, whereas mRNA levels of calcium
channel subunits did not change (data not shown).
Taken together with these data it is suggested that
functional interaction between PKCy and Vps34 may
occur and regulate mechanisms of trafficking of cal-
cium channel subunits during morphine treatment.
In this study, we therefore investigated whether
PKCv could be associated with functional changes of
Vps34 during morphine exposure to the primary cul-
tures of cerebrocortical neurons.

MATERIALS AND METHODS

Isolation and primary culture of cerebral cortical
neurons were carried out according to the method
described earlier (Ohkuma et al., 1986). In short, the
neopallium free of the meninges was removed from
15-day-old fetus of ddY mouse (Japan SLC, Hama-
matsu, Japan), minced, dispersed by trypsin, and cen-
trifuged at 1000g. Thereafter, the isolated cells were
cultured at 37°C in humidified 95% air/5% COg for
3 days. After the treatment of 10 uM cytosine arabi-
noside for 24 h, the neurons were used on the 13th
day of the culture.
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Fractions containing membranes and cytosol (S1)
and endoplasmic reticulum plus Golgi complexes (mi-
crosomes, MI) were prepared from the neurons by su-
crose density gradient centrifugation as described ear-
lier (Noble et al., 2000) with a minor modification. All
sucrose solutions contained 10 mM Tris-HCI (pH 7.4),
0.5 mM EDTA, 10 mM NaF, 0.5% Triton X-100 with a
protease inhibitor cocktail (Roche Diagnostics, India-
napolis, IN). The neurons were homogenized and cen-
trifuged at 1000g for 10 min. Resultant supernatant
(S1) was centrifuged at 20,000g for 1 h to yield the
supernatant (S2), and S2 was centrifuged at 100,000g
for 1 h to obtain the crude microsomal pellet (P3).
The P3 was resuspended in 10% sucrose, and this
formed the top of a two-step gradient of 10%/28.5%
sucrose solutions. Following centrifugation at 100,000g
for 2 h, the 10%/28.5% interface was collected (MD).

Cell extracts were subjected to immunoprecipitation
for 2 h using 5 pg of anti-p-PKCy polyclonal antibod-
ies and 25 pl of protein G-conjugated agarose beads
(GE Healthcare UK Ltd., Buckinghamshire, UK) at
4°C. The beads were washed three times with 1 ml of
washing buffer {10 mM Tris-HCl (pH 7.4), 0.5 mM
EDTA, 10 mM NaF, 0.5% Triton X-100 with a prote-
ase inhibitor cocktaill. Proteins bound to the beads
were eluted with SDS/PAGE sample buffer and sub-
jected to immunoblotting as described later. The anti-
body against Vps34 did not work for immunoprecipi-
tation.

Protein concentration in the samples was assayed
by the method of Lowry et al. (1951). PKCy and
Vps34 protein extracts in S1 and MI fractions were
separated by SDS-PAGE on a 7.5% acrylamide gel to
transfer to nitrocellulose membranes. The membrane
was incubated with primary antibody diluted in PBS
(1:1000 for p-PKCy, Stressgen Bioreagents Limited
Partnership, Victoria, B.C., Canada; 1:1000 for Vps34,
Zymed Labs, S. San Francisco, CA) overnight at 4°C.
Thereafter, the membrane was washed and incubated
for 2 h at room temperature with horseradish peroxi-
dase-conjugated goat anti-rabbit IgG diluted 1:5000
in PBS. Immunoblots were detected with chemilumi-
nescence detection (ECL) reagents (GE Healthcare
UK Ltd., Buckinghamshire, UK).

Phorbol 12, 13-dibutyrate (PDBu) and chelerythrine
chloride (CHL) were obtained from Sigma-Aldrich
Co., (St. Louis). Morphine hydrochloride was a prod-
uct of Sankyo Co. (Tokyo, Japan). The data were
expressed as the mean = SEM. The statistical signifi-
cance was assessed by the methods described in each
figure legend following the application of the one-way
ANOVA.

RESULTS

Using S1 extracts from the neurons, the well-char-
acterized antibody against phospho-Thr514 of PKCy
immunoprecipitated Vps34 along with the p-PKCy
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Fig. 1. A: Coimmunoprecipitation p-PKCy and Vps 34 in the
cerebrocortical neurons. S1 were immunoprecipitated (IP) with
antibody to phospho-PKCy (p-PKCy), and then immunoblotted (IB)
for p-PKCy and Vps34. B: Vps34-IR in MI The neurons were
exposed to PDBu (1 uM for 24 h). The data represent the mean with
SEM ***P < 0.001 vs. control (Bonferroni’s test; n = 5).

(Fig. 1A), suggesting that p-PKCy and Vps34 are colo-
calized in the neurons as molecular complex (Fig. 1A).
PKC activator PDBu (1 uM for 24 h) significantly
increased Vps34 level in MI of the neurons (Fig. 1B).

As phosphorylation of PKCy is activated by mor-
phine (Aoki et al., 2004), whether morphine regulates
the upregulation of Vps34 was examined. Figure 2A
shows that morphine exposure (0.3 uM for 24 h)
increases PKCy phosphorylation in S1 of the neurons.
We further investigated whether the increase of
PKCvy phosphorylation regulates Vps34 during mor-
phine exposure. Morphine exposure significantly
increased Vps34 level, which was significantly sup-
pressed by CHL (1 uM for 24 h), a PKCy inhibitor, in
MI (Fig. 2B).

DISCUSSION

Vps34 forms a heterodimer with Vpsl5, a serine/
threonine kinase (Stack et al., 1993) and localizes in
Golgi apparatus and endosomes (Stack and Emr,
1994). Vps34 regulates vesicular trafficking in the
endosomal/lysosomal system and participates in the
recruitment of proteins with PI(3)P-binding domains
to intracellular membranes (Lindmo and Stenmark,
2006). On the other hand, PKCvy works as a serine/
threonine kinase to control numerous signaling cas-
cades by phosphorylating target proteins such as neu-
rotransmitter receptors, G proteins, and ion-channels
as other kinases do (Hug and Sarre, 1993; Premont
et al.,, 1995). As shown in this study, p-PKCy and
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Fig. 2. A: Upregulation of p-PKCy-IR in S1 of the neurons. The
neurons were exposed to morphine (MRP; 0.3 pM for 24 h). The
data represent the mean with SEM ***P < 0.001 vs. control (Bon-
ferroni’s test; n = 5). B: Changes in Vps34 level in MI of the neu-
rons during morphine exposure. The neurons were exposed to mor-
phine (MRP; 0.3 pM for 24 h) and/or PKC inhibitor CHL (1 uM for
24 h). The data represent the mean with SEM ***P < 0.001 vs. con-
trol. ###P < 0.001 vs. MRP (Bonferroni’s test; n = 5).

Vps34 are present together in molecular complexes in
S1 of the neurons and the stimulation of PKC by
PDBu upregulates Vps34 in MI of the cortical neu-
rons. These results suggest that Vps34 may be trans-
located to Golgi and endosomes by activation of PKCry
and produce the PI(3)P for regulation of membrane
trafficking.

A recent paper reported the blockade of carbachol-
stimulated degranulation by inhibitory antibodies to
hVps34 in the cells overexpressing M, muscarinic
receptors (Windmiller and Backer, 2003), which sug-
gests a link between hVps34 and G,q-coupled recep-
tors. In addition, several investigations provide a
direct link between trimeric G-proteins and Vps34-
Vps15 (Slessareva et al., 2006; Volinia et al., 1995).
On the other hand, previous reports have also
revealed that a Ggg-coupled receptor, metabotropic
glutamate receptor 5 (mGluR5), relates to the devel-
opment of morphine-induced rewarding effect (Aoki
et al., 2004) and that upregulation of the G,q11 pro-
tein and PKC is important in the development of sen-
sitization to morphine-induced hyperlocomotion
(Narita et al., 2002). Several lines of evidence suggest
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that glutamatergic projections to the nucleus accum-
bens originating from prefrontal cortex, hippocampus
and amygdala (Meredith et al., 1993) regulate emo-
tional and behavioral processing. Therefore, it is sug-
gested that activation of glutamatergic neurons by
morphine causes regulation of Vps34 through the
stimulation of mGluR5, Guqm,. and PKCy cascade in
the nucleus accumbens. In fact, this study demon-
strates that morphine increases both Vps34 and
p-PKCvy protein levels and inhibition of PKCy sup-
presses the upregulation of Vps34. Thus, it is specu-
lated that upregulation of Vps34 by morphine in the
Golgi apparatus and endosomes facilitates, in turn,
the trafficking of several protein serving in vesicular
transport or recycling systems. These findings provide
direct evidence that upregulation of Vps34 is medi-
ated through the activation of PKCy during morphine
treatment.

In conclusion, these data indicate that p-PKCy and
Vps34 are present together in molecular complexes in
the neurons. The treatment with morphine increases
PKCy and Vps34 levels. The inhibition of morphine-
induced increase in PKCy phosphorylation reduced
Vps34 level. These results indicate that opioid recep-
tor activation increases PKCy phosphorylation in the
neurons and, in turn, upregulates Vps34 during
short-term treatment with morphine.
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