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Table 2. Summary for changes in METH-induced behavior and dopamine release in MMP-2-(—/-) and MMP-9-(~/-) mice

Wild-type MMP-2-(—/-) MMP-9-(-/-)
Conditioned place preference T + E>
+TIMP-2-AS N.D.
+MMP inhibitor {
Hyperlocomotion (single) ) + +
+TIMP-2-AS t
+MMP inhibitor T
Locomotor sensitization (repeated) ) + +
+TIMP-2-AS ™
+MMP inhibitor T
Dopamine release T * +
+TIMP-2-AS ™
-+MMP inhibitor {

+, No change; 1, Significant increase;, Significant increase; N.D., Not determined.

binding in wild-type mice, but such changes were signif-
icantly attenuated in MMP-2-(—/—) and MMP-9-(—/-)
mice (19). These results suggest that the MMP/TIMP
system is involved in the METH-induced dysregulation
of dopamine release and receptor signaling. As
dopamine D, receptors function in the feedback inhibi-
tion of dopamine release (40, 41), the downregulation
may contribute to an enhancement of the METH-
induced increase in extracellular dopamine levels.
Recently, Kimetal. (42) have demonstrated that
MMP-3 has a specific role in dopamine neuronal
degeneration. They suggested that the active MMP-3
released from stressed dopamine neurons is a candidate
molecule that activates microglia, leads to production of -
superoxide, and plays a pivotal role in dopamine

neuronal death; and they proposed that abrogation of" "

MMP-3 or inhibition of MMP-3 activity in early
neuronal degeneration may be.an effective. means of
preventing progressive degeneration of dopamine
neurons. This study strongly suggests that MMPs play a
crucial role in the regulation of dopaminergic neurons
in various diseases.

Conclusion

As reviewed in this article, MMP-2, MMP-9, and
TIMP-2 are involved in the rearrangement of the neural
network in the mesocorticolimbic dopamine system,
which plays a crucial role in the development of
behavioral sensitization to METH (Table 2). It is likely
that the MMP/TIMP system plays a role in METH-
induced behavioral sensitization through modulation of
the function of plasma membrane proteins such as
dopamine receptors and transporters. These results,

together with the fact that MMP acts to degrade
components of the ECM such as laminin and
collagen IV, suggest that repeated METH-induced over-
expression of MMP-2, MMP-9, and .TIMP-2 is
associated with the structural and functional changes in
the mesocorticolimbic dopamine: system, leading to
METH-induced behavioral - sensitization and reward
following repeated drug treatment. We have proposed
that some cytokines:and neurotrophic factors such as
basic fibroblast growth factor and brain-derived neuro-
trophic :factor. act ‘as pro-addictive cytokines, whereas
glia:derived neurotrophic factor and TNF-a act as anti-
addictive cytokines, which reduce the rewarding effects
of drugs of abuse (11). It appears that MMP-2 and
MMP-9 can be classified as pro-addictive, whereas
TIMP-2 may be anti-addictive. We propose that the
dynamic changes to, and balance of, levels of pro-addic-
tive and anti-addictive factors in the brain are determi-
nants of susceptibility to drug dependence. Furthermore,
our findings suggest that inhibitions of pro-addictive
factors such as MMP-2 and MMP-9 may be effective in
the treatment of drug dependence.
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Figure 1. Effect of stress on the lever pressing behavior in MAP
self-administered rats under FRS

a. Rats were exposed to electrical foot shock (FS) (0.8 mA, 15 min)
in the operant box. b. Rats were exposed to FS or non foot shock
(NFS) stress in a communication box. The rats in the FS group
(physical stress; closed circle) received the electrical shock directly,
and the rats in the NFS group (psychological stress; open circle)
could escape from the electrical shock, but received various
emotional stimuli from other foot shocked rats in the
communication box. **P<0.01 versus pre group
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CREF receptor antagonist, a-Helical CRF,_,; on the reinstatement of
MAP seeking behavior. ***p < 0.001, compared with the cue and
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Figure 4. Effects of a corticosterone synthetic inhibitor, metyrapone on the
reinstatement of MAP seeking behavior induced by CRF, MAP associated

cue or MAP-priming injection. ***P < 0.001 vs. non-stimuli groups.
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Figure 5. Effects of subtypes of CRF receptor antagonist on relapse to
MAP-seeking behavior in MAP self-administered rats

a, Effects of a selective CRF, receptor antagonist, NBI 27914 (10, 32
ng/side; icv) on relapse to MAP-seeking behavior. b, Effects of a
selective CRF, receptor antagonist, Astressin 2B (32, 100 pg/side; icv)
on relapse to MAP-seeking behavior. *P < 0.05, **P < 0.01 vs. non-
stimuli groups.
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We previously reported the involvement of cannabinoid CB1 receptors (CB1Rs) and nicotinic acetyl-
choline receptors (nAChRs) in the reinstatement of methamphetamine (MAP)-seeking behavior (lever-
pressing response for MAP reinforcement under saline infusion). The present study examined whether
the reinstatement involves interactions between these receptors. Rats were trained to self-administer
MAP with a light and tone (MAP-associated cues). Then, extinction sessions under saline infusion

Ié:yw "g‘_’s’ id CB1 " without cues were conducted. After that, a reinstatement tests were conducted by either presenting the
Cr:\;;:lgmm receptors cues or a MAP-priming injection. Systemic and intracranial administration of HU210, a cannabinoid CB1R

agonist, into the nucleus accumbens core (NAC) and prelimbic cortex (PrC) reinstated MAP-seeking
behavior. The reinstatement caused by the systemic HU210 treatment was attenuated by intracranial
administration of AM251, a cannabinoid CB1R antagonist, into each region mentioned above. Meanwhile,
reinstatement induced by the MAP-associated cues and MAP-priming injection was also attenuated by
intracranial administration of AM251 in each region. In these regions, the attenuating effects of AM251
on the reinstatement induced by each stimulus were blocked by the intracranial administration of
mecamylamine, a non-selective nAChR antagonist, but not by scopolamine, a muscarinic ACh receptor
(mAChR) antagonist. Furthermore, the intracranial administration of DHBE, an ¢4B2 nAChR antagonist,
but not MLA, an «7 nAChR antagonist, into each region blocked the AM251-induced attenuation of the
reinstatement, These findings suggest that relapses to MAP-seeking behavior may be due to two steps,
first inhibition of ACh transmission by the activation of cannabinoid CBIRs and then the inactivation of
24p2 nAChRs.

Drug-seeking behavior
Methamphetamine
Nicotinic ACh receptors
Relapse

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction re-exposure to MAP-associated cues, previously paired with MAP-
taking, as well as a MAP-priming injection (1.0 mg/kg, i.p.); however,

Relapse to drug-seeking behavior is a hallmark of drug depen- the site of action of the antagonist responsible for attenuating the

dence, but an effective treatment has yet to be developed. In human
addicts and animal models of relapse, three different kinds of
stimuli are capable of eliciting drug-seeking behavior: stress, cues
predicting drug availability, and re-exposure to a previously self-
administered drug (Shalev et al., 2002). Understanding the neural
mechanisms by which these stimuli elicit relapse is a prerequisite
to creating adequate pharmacotherapies for drug dependence.
We have previously demonstrated that the systemic adminis-
tration of a cannabinoid CB1R antagonist SR141716A (rimonabant)
(Anggadiredja et al., 2004a) and nicotine (Hiranita et al.,, 2004, 2006)
attenuates the reinstatement of MAP-seeking behavior induced by

* Corresponding author. Tel.: +81 956 20 5629; fax: +81 956 39 3111.
E-mail address: tyamamot@niu.ac.jp (T. Yamamoto).

0028-3908/$ — see front matter © 2008 Elsevier Ltd, All rights reserved.
doi:10.1016/j.neuropharm.2008.08.012

reinstatement is unknown. Therefore, the first purpose of this study
is to identify this region. We reported that the nucleus accumbens
core (NAC) and prelimbic cortex (PrC) were involved in the rein-
statement of MAP-seeking behavior (Hiranita et al., 2006). Recently
it was reported that endocannabinoid was important for the neural
plasticity of glutamatergic neurons between these regions (Robbe
et al., 2003). Therefore, we focused -on these two regions. Mean-
while, it has been shown that SR141716A, a cannabinoid CB1R
antagonist, stimulates the release of ACh in the medial prefrontal
cortex (mPFC) (Gessa et al., 1998; Tzavara et al., 2003a). Electro-
physiological studies reported that endocannabinoids functioned as
antagonists at nAChRs. Thus, anandamide and 2-arach-
idonoylglycerol (2-AG), endogenous cannabinoid CB1R agonists,
inhibited the function of nAChRs (Oz, 2006; Spivak et al., 2007).
Furthermore, a cannabinoid CB1R antagonist AM251 attenuated
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Fig. 1. Effect of HU210, a cannabinoid CB1 receptor agonist, in MAP self-administered rats. (a) Effect of systemic treatment with HU210 in MAP self-administered rats (n = 6). ***,
P < 0.001 compared with vehicle. (b} Effect of the intracranial administration of HU210 into the nucleus accumbens core (open circles) and prelimbic cortex (closed circles) in MAP
self-administered rats (n = 7, each). **, P < 0.01 and ***, P < 0.001 compared with vehicle, Coronal brain maps show a schematic representation of where the annuluses were placed.
The numbers indicate the distance from the bregma in the anteroposterior plane. Mapping also includes the location of the tips of the cannulas used in all experiments,

nicotine self-administration and nicotine-seeking behavior in rats
(Shoaib, 2008). Such findings indicate that the cannabinoid system
modulates AChrgic transmission. Consequently, it is possible that
a cannabinoid CB1R antagonist SR141716A (Anggadiredja et al.,
2004a) attenuates reinstatement of MAP-seeking behavior by
mediating AChrgic transmission. However, little is known about the
interaction between the cannabinoid system and nAChRs during
relapse to drug-seeking behavior. The second purpose of this study
is to clarify the interrelation between cannabinoid CB1Rs and
nAChRs.

Neuronal nAChRs are comprised of combinations of o (2-9) and
B (2-4) subunits arranged to form a pentameric receptor (Grottick
et al,, 2000). The principal subtypes in the central nervous system
are believed to be 0452 and homomeric «7 nAChRs (Grottick et al,,
2000). Their distribution in the PFC and striatum, including the PrC
and NAC, respectively, is known to be similar (Gotti et al., 2006).
Although it is well established that nicotine has a rewarding effect,
the nAChR subtypes involved in the reinstatement of drug-seeking
behavior are unknown. Therefore, the third purpose of this study
was to identify the nAChR subtypes responsible for the CBIR-
nACHR interaction.

2. Materials and methods
2.1. Subjects

One hundred thirty-three subjects were used. Male Wistar/ST (Nippon SIC Co.,
Hamamatsu, Japan) rats (250-350 g, 10 weeks old) were individually housed in
a temperature- and humidity-controlled environment under a 12-h light/dark cycle
(lights on at 7:00 a.m.). Food and water were available ad libitum in the home cage
except when daily food intake was limited to 15-20 g after the implantation of
catheters to fix the distance between the proximal position of a catheter in the vein
and the surface of the atrial auricle, Rats were trained and tested between 9:00 a.m.
and 5:00 p.m. Procedures for animal treatments were conducted in accordance with
the Guide for the Care and Use of Laboratory Animals as adopted and promulgated
by the Declaration of Helsinki and Faculty of Pharmaceutical Sciences, Kyushu
University Publication, enacted 1988. In all studies, within-subject designs are used
so that each animal served as its own control, and the overall number of subjects was
minimal.

2.2, Surgery

Silascon catheters (inner and outer diameter; 0.5 and 1.0 mm, respectively;
Kaneka Medix Co., Japan) were surgically implanted into the jugular vein under
sodium pentobarbital (40 mg/kg, intraperitoneal (i.p.), Kyoritsu Seiyaku Co., Japan)
anesthesia as described previously (Hiranita et al., 2006). After the surgery, catheter
patency was maintained by daily infusion of 0.15 ml of a saline solution containing
heparin (30 U/ml) after each session, After catheterization in the jugular vein, rats
were fixed in a stereotaxic apparatus. Two guide cannulas (inner and outer diam-
eter: 0.4 and 0.7 mm, respectively; stainless steel pipe) were bilaterally implanted
1 mm above the NAC (coordinates: anteroposterior, mediolateral, and dorsoventral,
+12, +1.6, and ~7.8 mm relative to the bregma, midline, and skull surface,
respectively), and PrC (+3.2, £0.75, and —4.7). Two stainless steel screws were
implanted in the skull for support. The cannulas and screws were held in place with

dental cement. An obturator (stainless steel) was inserted into each guide cannula to
prevent blockage,

2.3. Drugs

MAP HCl (Dainippon Pharmaceutical, Osaka), (Nattick, MA), mecamylamine (a
non-specific nAChR antagonist, Sigma-Aldrich), (—)-scopolamine (a muscarinic
AChR (mAChR) antagonist, Sigma-Aldrich), dihydro-B-erythroidine HBr (DHBE, an
«4P2 nAChR antagonist, Sigma-Aldrich) and methyllycaconitine citrate (MLA, an o7
nAChR antagonist, Sigma-Aldrich) were dissolved in saline, while AM251 and
HU210, a cannabinoid CB1R antagonist and agonist, respectively, were dissolved in
dimethyl sulfoxide. MAP was delivered intravenous (i.v.) for self-administration
(0.02 mg/0.1 mlfinfusion) and i.p. for priming injections (1.0 mg/kg) 30 min before
tests. Systemic administration of HU210 (10-32 pug/kg) was done subcutaneously
(s.c.) 15 min before the sessions. Drugs administered intracranially (0.5 pl/side) were
microinjected into the brain 5 min before sessions through an injection cannula
(inner and outer diameters were 0.1 and 0.35 mm, respectively; a stainless steel tube
was used) that extended 1 mm below the guide cannula (stainless steel) using
a microsyringe (Hamilton),

2.4. Apparatus

The injector system contained a fiuid swivel (Instech Lab,, Inc. PA) mounted on
the top of each operant chamber {Neuroscience, Inc. Japan). One end of the swivel
was connected via polyethylene tubing (Kaneka Medix Co. Japan) encased in
a protective stainless steel spring tether (Instech Laboratories, Inc. PA) to the ani-
mal’s catheter while the other end of the swivel was connected via polyethylene
tubing to the infusion pump. The operant chambers were enclosed in ventilated,
sound-attenuating cubicles and controlled by computer software (Med Associates
Inc., VT). The chamber’s light was switched on throughout the session. Lever-
pressing responses resulted in the infusion of MAP (0.02 mgfinfusion over 6 s)
accompanied by light (mounted 4 cm above the lever, 200 lux) and tone (85 dB/
2.9 kHz) for 26 s (MAP-associated cues). The subsequent 20 s was a ‘time out’
period during which lever presses were still recorded but not accompanied with
infusions.

2.5. MAP self-administration, extinction, and reinstatement

Two days after surgery, rats were trained to self-administer MAP under a fixed
ratio (FR-1) schedule of reinforcement (each lever-press is reinforced) in a 2-h daily
session for 10 days (MAP-taking). Each injection was accompanied by light and tone
(MAP-associated cues). During this time, inactive lever responses had no pro-
grammed consequences, but were recorded. After MAP 10 days of self-administra-
tion, 5 daily extinction sessions (1-h), were conducted during which active lever
responding resulted in an infusion of saline instead of MAP without presentation of
the MAP-associated cues (or until the rats achieved the extinction criterion of less
than 10 responses per session on the previously active lever). Reinstatement (drug-
seeking behavior) tests under saline infusions were carried out for 30 min from day

Table 1
Effect of intracranial injection of HU210 on food-taking responses (responses/min)

Nucleus accumbens core ©
HU210 (pefside)
250209
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Fig. 2. Effects of the intracranial administration of AM251, a cannabinoid CB1 receptor antagonist, into the nucleus accurnbens core and prelimbic cortex on the reinstatement of
MAP-seeking behavior induced by MAP-associated cues, MAP-priming injections, and systemic administration of HU210. (a) Effects of the intracranial administration of AM251 into
the nucleus accumbens core and prelimbic cortex on the reinstatement induced by MAP-associated cues and MAP-priming injections (n = 7, each). Open squares, and open and
closed circles represent groups given non-stimuli (NS), MAP-associated cues, and MAP-priming injections. **, P < 0.01, and ***, P < 0.001 cornpared with the cue presentation and
MAP-priming injection alone. (b) Effects of the intracranial administration of AM251 into the nucleus accumbens core and prelimbic cortex on the reinstatement induced by
systemic treatment with HU210 (32 pgfkg, s.c.) (n = 7, each). Open squares and circles represent groups given non-stimuli (NS) and HU210, respectively. ***, P < 0.001 compared
with HU210 alone. NS means lever responses under the extinction condition.

6 of extinction (or the day after rats achieved the extinction criterion) every 6 days Drugs were preadministered in a counterbalanced order. Each rat was evaluated by
under an FR-1 schedule. In the cue-induced test, immediately after the onset of the both cue- and MAP-induced reinstatement. In our pilot study, levels of active lever
session, rats were re-exposed to the MAP-associated cues, and each press on the respanses induced by MAP-associated cues and MAP-priming injections did not
active lever resulted in presentation of the cues. In the MAP primed reinstatement change during at least the third time. Therefore, each rat was given either the cue-
test, MAP (1.0 mg/kg i.p.) was injected 30 min before the test. Each response during stimulus or MAP-priming injection alternately and had 6 reinstatement tests in total,
the test session resulted in an infusion of saline but not the MAP-associated cues. that is, 3 tests per stimulus,
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a selective «4B2 and o7 nicotinic acetylcholine receptor antagonist (DHBE and MLA, respectively) on the reinstatement. NS means lever responses under the extinction condition,
whereas ND means no pretreatment with test drugs.
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Table 2
Effect of intracranial injection of AM251 on food-taking responses in rats given the inductive stimuli (responses/min}
Inductive stimuli of the reinstatement Nucleus accumbens: core Prelimbic cortex
AM251 (ug/side) . s AM251 (ug/side)
0 : 10 32 h 0 : 10 32
MAP-associated cues 224+19 1211218 201 £ 21 241+14 249407 259+ 12
MAP-priming injection 223 +11 205420 225+ 15 249+ 1.1 246+ 14 242+ 12
HU210 (32 pgfkg, s.c.) 224419 211 + 18 201421 241+14 249 +07 259+ 12
Table 3
Effect of coadministration of AM251 with cholinergic antagonists on food-taking responses in rats given the inductive stimuli (responses/min)
Inductive stimuli of the reinstatement Nucieus accumbens core o Prelimbic cortex
AM251/(32 pgfside) AM251 (32 pg/side)
,Mecamylamine(p»glside) 3 s R Mecamylamine (pg/side) :
. o1 R e e e T
MAP-associated cues 254 :+£12 240+15. 212418 25611 243408 251+ 11
MAP-priming injection " 1212416 235+20 233212 255090 T261£14 - 256+ 10
-~ DHBE (pg/side) ' e . DHBE (igfside)
0. . 32 100 0 : 32 : 100
MAP-associated cues 256+08" - 21108 221 18 = 22,8+ 16 243+ 13 24.7+11
MAP-priming injection 243 %13 : 247+11 256£08 239+£15 0 - 226 +11 220414
' - MLA (ugjside) ‘ o MIA(uglside) , o
MAP-associated cues - 251408 250£10 222700 0 256+08 226 £13: LTS
MAP-priming injection ;. 229+10 221416 251408 1229411 22,5+ 10" -'229+10
: Scopolamine (pgfside) S " Scopolamine (pgfside) ‘ L
; G0 R 320 0 B T nE 32
MAP-associated cues : 227419 244+ 18 243415 24908 253 +11 250+ 11
MAP-priming injection 21.2+16 235420 225+16 246+10 259+ 11 250+ 12

2.6. Operant task performance for food pellets

All subjects pressed a lever for food-pellet reinforcement under the FR-1
schedule 5 min after the self-administration session, Each test ended when rats had
received 30 pellets. The time limit was 1200 s,

Table 4
Effect of AM251 or cholinergic antagonists alone on food-taking responses
{responses/min)

Braxjnjregions . AM251(ugfside) e
Nucleus accumbens core 22253210 ok 244:1: 11 260411
Prehmbxccortex = 248409

- 240+09

Nucleus accumnbens coré
Prelimbic cortex "+

Nucleus accumbens core
Prehmblc cortex

Nucleus accumbens core .
Pre]xmbxc cortex

letis accumbens core.
Prehmbtccortex i

2.7. Data analysis

Data represent the mean + SEM number of lever responses. Response totals
were analyzed by ANOVA (a within-subjects design). A one-way ANOVA was used to
compare means, and Bonferroni-Dunn tests were used for post hoc analyses.
Differences were considered significant at P < 0.05. All statistical analyses were
performed by using the Stat View software program (v. 5.0; SAS Institute Inc., Cary,
NQC).

2.8. Histology

After the experiments, all rats were deeply anesthetized with pentobarbital
(52 mg/kg, i.p.) and transcardially perfused with phosphate-buffered saline followed
by 4% PLP {periodate lysine paraformaldehyde). The brains were removed, soaked in
PLP for at least 24 h, sliced at a thickness of 80 ym, mounted on MAS-coated slides,
and stained with cresyl violet. The positions of the injection cannulas were
inspected under a light microscope.

3. Results

The total amount of MAP-intake was 3.3 + 0.7 mg, iv. for
10 days. Systemic administration of HU210 dose-dependently
increased number of the lever responses in the MAP self-admin-
istration paradigm [MAP-seeking behavior, from 4.3 + 0.7 to
23.2 + 2.4, F2, 15) = 34.247, P < 0.001] (Fig. 1a). Intracranial
administration of HU210 into the NAC and PrC also increased lever
responses [F(2, 18) = 18.620, P < 0.001, and K2, 18) = 40.443,
P < 0.001, respectively, Fig. 1b]. On the other hand, intracranial
administration of HU210 into the NAC and PrC did not affect
responses for food-reinforcement [food-taking responses] (Table 1,
P> 01)

Re-exposure to the MAP-associated cues increased lever
responses from 3.4 & 0.7 to 30.7 + 0.8 |K(1, 16) = 515.165, P < 0.001
compared with the NS group, Fig. 2a). This increase was dose-
dependently attenuated by the intracranial administration of
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Fig. 4. Effects of intracranial priming-administration of AM251 and cholinergic antagonists alone into the nucleus accumbens core and the prelimbic cortex in MAP self-admin-
istered rats. Open and closed circles represent drug-priming injections into the nucleus accumbens core and prelimbic cortex, respectively (n = 6, each).

AM251 into the NAC [F(2, 15) = 30.973, P < 0.001, Fig. 2a]. MAP-
priming injections also increased lever responses from 3.4 £ 0.7 to
47.8 + 3.4 [F(1, 16) = 308,145, P < 0.001, Fig. 2a], Similar to the
cue-induced increase in lever responses, the MAP-priming injec-
tion-induced increase was also attenuated by the intracranial
administration of AM251 into the NAC [F(2,15) = 34.475, P < 0.001,
Fig. 2a]. Correlation coefficients between the total amount of MAP-
intake and number of active lever responses induced by MAP-
associated cues (r = 0.343, P < 0.01) and MAP-priming injections
(r = —0.481, P < 0.001) were revealed. As to the PrC, increased lever
responses induced by MAP-associated cues and MAP-priming
injections were also attenuated by the intracranial administration
of AM251 [F(2, 15) = 41.524, P < 0.001 and F(2, 15) = 95.203,
P < 0.001, respectively, Fig. 2a]. The intracranial administration of
AM251 into the NAC and PrC also attenuated the increase in lever
responses induced by systemic HU210 treatment [F(2, 15) = 69.847,
P < 0.001, and F(2, 15) = 40.745, P < 0.001, respectively, Fig. 2b]. In
contrast, intracranial administration of AM251 into the NAC and
PrC did not affect food-taking responses in rats given the MAP-
associated cues, and MAP- and HU210 (32 pg/kg, s.c.)-priming
injections (Table 2, P > 0.1).

Mecamylamine (1.0-3.2 ug/side, intra-NAC) dose-dependently
antagonized the attenuation of lever responding induced by intra-
NAC AM251 [F(2, 15) = 35.002 (cues) and 31.138 (MAP-priming
injection), respectively, P < 0.01, Fig. 3a]. With regard to the PrC,
intracranial administration of mecamylamine also blocked the
attenuating effect of the intracranial administration of AM251 on
lever pressing [F(2, 15) = 28.078 (cues) and 51.028 (MAP-priming
injection), respectively, P < 0.001 Fig. 3a]. However, scopolamine
(1.0-3.2 pgfside, intra-NAC and intra-PrC, respectively) did not
block the intra-NAC and intra-PrC AM251-induced attenuation of
the lever responses induced by each stimulus (P > 0.3, Fig. 3a). On
the other hand, intra-NAC DHPE blocked the attenuation of lever
pressing induced by intra-NAC AM251 [F(2,15) = 38.504 (cues) and
94.037 (MAP-priming injection), P < 0.001, Fig. 3b]. In the PrC,
intracranial administration of DHPE also antagonized the attenua-
tion induced by the intracranial administration of AM215 [F(2,
15) = 67.111 (cues) and 48.347 (MAP-priming injection), P < 0.001,
Fig. 3b]. However, MLA (1.0-3.2 ug/side, intra-NAC and intra-PrC,
respectively) did not block the intra-NAC and intra-PrC AM251-
induced attenuation (P > 0.7, Fig. 3b). Meanwhile, the coadminis-
tration of AM251 with cholinergic antagonists did not affect
food-taking responses (Table 3, P > 0.1).

Microinjection of neither AM251 nor cholinergic antagonists
alone into the NAC and PrC reinstated MAP-seeking behavior
(Fig. 4). In addition, these treatments did not alter food-taking
responses (Table 4, P > 0.1).

4. Discussion

MAP-associated cues and MAP-priming injections reinstated
MAP-seeking behavior. Systemic administration of HU210,

a cannabinoid CB1R agonist, also reinstated this behavior. Rein-
statement produced by these three stimuli was attenuated by the
intracranial administration of AM251, a CB1R antagonist, into the
NAC and PrC. The treatments did not affect food-taking behavior,
indicating these effects of AM251 to be due to specific behavioral
effect on MAP. These findings suggest that CB1Rs in these two
regions have an important role in reinstatement of MAP-seeking
behavior. Regarding the cannabinoid system, this is the first iden-
tification of the regions responsible for MAP cravings. In each
region, the attenuating effect of AM251 was blocked by mecamyl-
amine, a non-selective nAChR antagonist, but not by scopolamine,
an mAChR antagonist. The effects of mecamylamine were
mimicked by DHBE, but not by MLA, an 04B2 and «7 nAChR
antagonist, respectively. These findings suggest an important role
of interaction between CB1Rs and «4f2 nAChRs in reinstatement of
MAP-seeking behavior. Recently, CB1R agonists, such as A%-tetra-
hydrocannabinol (THC) and WIN55,212-2, inhibited ACh release in
the mPFC and hippocampus (Gessa et al, 1998; Tzavara et al,
2003b). These inhibitory effects were suppressed by SR141716A,
a CB1R antagonist. SR141716A alone promoted ACh release in both
regions (Gessa et al., 1998; Tzavara et al,, 2003b). These findings
suggest the cannabinoid system to be an inhibitory modulator of
AChrgic transmission. Considering this inhibitory regulation of
CB1Rs, our findings suggest that relapses to MAP-seeking behavior
may be due to two steps, first inhibition of ACh transmission by the
activation of CB1Rs and then the inactivation of a4B2 nAChRs.
Additionally, we previously reported that SR141716A, nicotine, and
donepezil, an acetylcholinesterase inhibitor, attenuated reinstate-
ment of MAP-seeking behavior (Anggadiredja et al, 2004a;
Hiranita et al., 2004, 2006). Nicotine and ACh have greater affinity
for 2482 (K; values: 0.79 and 44 nM) than for «7 nAChRs (5000 and
14,300 nM) (Decker et al,, 1995; Gotti et al,, 2006). Considering this
preference of nicotine and ACh for a4p2 nAChRs, our previous and
present findings support an important role for «4p2 nAChRs in the
reinstatement of drug-seeking behavior.

In our previous study, systemic administration of mecamyl-
amine alone neither reinstated MAP-seeking behavior nor poten-
tiated the reinstatement induced by cues and MAP-priming
injections (Hiranita et al., 2006). The present study demonstrates
that intracranial injection of neither mecamylamine nor DHBE
alone reinstated MAP-seeking behavior. Therefore, thése results
suggest the functional normalization of «4p2 nAChRs to be
important for the blockade of reinstatement of MAP-seeking
behavior. However, ACh and nicotine have less affinity for a7 than
for 2482 nAChRs (Decker et al.,, 1995; Gotti et al., 2006). Therefore,
these findings suggest that activation of a7 nAChRs through
‘endogenous’ ACh might not be enough to produce a behavioral
effect. Meanwhile, CB1Rs in the NAC and PrC have an inhibitory role
in glutamatergic transmission (Mackie, 2005; Robbe et al,, 2001),
whereas endocannabinoid is involved in the neural plasticity of
glutamatergic neurons between these two regions (Robbe et al,
2003). Recently, the activation of glutamatergic neurons was
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reported to reinstate cocaine-seeking behavior (Kalivas and
McFarland, 2003). Although the present results did not demon-
strate a role for o7 nAChRs in reinstatement, &7 nAChRs are
expressed in glutamatergic terminals from the cortex to the stria-
tum and ventral tegmental area (VTA) (Mansvelder et al., 2002).
Therefore, the distribution of a7 nAChRs has a very similar distri-
bution to that of CB1Rs. This finding suggests the activation of
glutamatergic transmission via 7 nAChRs to contribute to the
reinstatement of drug-seeking behavior. Therefore, 0452 and o7
nAChRs might have opposite roles in the reinstatement of drug-
seeking behavior, inhibitory and facilitatory, respectively.

This report is the first indication that «482, but not a7, nAChRs
have an inhibitory role in relapse to drug-seeking behavior. To
attenuate the relapse, it may be important to target the rewarding
property of a4f2 nAChRs. Indeed, regarding nicotine, DHBE
reduced self-administration (Corrigall et al., 1994; Grottick et al.,
2000) and conditioned place preference (Walters et al.,, 2006),
whereas MLA affected neither self-administration (Grottick et al,,
2000) nor the threshold elevation of electric brain stimulation
during nicotine withdrawal (Markou and Paterson, 2001). a4f2
nAChR knockout mice showed decreases in nicotine place prefer-
ence (Cincotta et al., 2008). Mutant mice lacking the 82 subunit
showed decreased nicotine self-administration relative to the wild-
type mice (Picciotto et al., 1998). The mice did not exhibit nicotine
place preference, while a7 nAChR knockout mice did (Cincotta
et al, 2008; Walters et al, 2006). Considering the rewarding
property of «4f2 nAChRs, activation of this receptor may be
important in preventing cravings for not only MAP but also other
abusive drugs.

There is evidence demonstrating an involvement of «7 nAChRs
in the effects of CB1R agonists. In rats, systemic administration of
MLA, but not DHBE, antagonized the discriminative effects of A%-
THC and reduced self-administration of WIN55,212-2 (Solinas et al.,
2007). Meanwhile, we previously showed that effect of a cannabi-
noid agonist altered the MAP withdrawai/extinction state.
Repeated administration of the cannabinoid agonist, AS-THC,
during the extinction phase, suppressed reinstatement of MAP-
seeking behavior induced by cues and a MAP-priming injection
(Anggadiredja et al, 2004a). However, after extinction training,
although A®-THC had no effect by itself, coadministration of the
agonist and MAP at small doses reinstated MAP-seeking behavior
(Anggadiredja et al., 2004a). These findings suggest that the inter-
action between nAChR subtypes and the cannabinoid system may
switch from a7 to ¢4B2 nAChRs before and after MAP withdrawal/
extinction. In contrast to the cannabinoid system, ¢4f2, but not o7,
nAChR, contributed to the effect of nicotine effects before and after
withdrawal. As shown above, 2452, but not «7, nAChRs contribute
to nicotine reinforcement before nicotine withdrawal (Corrigall
et al,, 1994; Grottick et al., 2000). During the nicotine withdrawal
phase, the administration of DHBE precipitated the signs of with-
drawal (Malin et al, 1998), whereas MLA did not affect the
threshold elevation of electric brain stimulation during nicotine
withdrawal (Markou and Paterson, 2001).

The present study showed an interaction between CB1Rs and
@42 nAChRs in the NAC and PrC for the reinstatement of MAP-
seeking behavior. Other regions might also be involved. We
previously demonstrated the involvement of the amygdala and
hippocampus in reinstatement of MAP-seeking behavior (Hiranita
et al., 2006). The involvement of information processing from these
two regions to the PrC or NAC in reinstatement is reported (Di Ciano
and Everitt, 2004; Fuchs et al., 2007; Miller and Marshall, 2005).
Additionally, intra-amygdala SR141716A failed to affect cue-
induced reinstatement of heroin-seeking behavior (Alvarez-Jaimes
et al, 2007). Therefore, it is unlikely that there is interaction
between CB1Rs and nAChRs in the amygdala as there is in the NAC
and PrC. Whether such interaction occurs in the hippocampus,

however, remains to be elucidated. Meanwhile, several studies
reported the involvement of nAChRs in the VTA in the behavioral
effects of nicotine. Microinjection of DHBE into the VTA reduced
nicotine self-administration (Corrigall et al, 1994). In a place
conditioning procedure, DHBE was found to block both the
rewarding and the aversive properties of intra-VTA nicotine (Lav-
iolette and van der Kooy, 2003). However, MLA blocked nicotine
reward and switched the motivational valence from rewarding to
aversive (Laviolette and van der Kooy, 2003). Nicotine produced
a reduction in intracranial self-stimulation threshold, while intra-
VTA MLA attenuated the effect of nicotine (Panagis et al., 2000). On
the other hand, rats self-administered A%-THC into the VTA (Zangen
et al, 2006). As to the VTA, these findings may suggest the
involvement of not only #4f2 but also «7 nAChRs in the cannabi-
noid system. Therefore, the manner in which CB1R and nAChR
subtypes interact might not be the same in each region of the brain.

Despite differences in brain regions and incentive stimuli,
AM251 and DHE on reinstatement of MAP-seeking behavior were
equipotent in their effect. In our previous study, nicotine equi-
potently attenuated reinstatement induced by cues or MAP-
priming injections (Hiranita et al., 2006). The effects of nicotine
were attenuated by mecamylamine at the same dose range
(Hiranita et al., 2006). In other laboratories, the microinjection of
SR141716A into different brain regions equipotently attenuated
heroin- (Alvarez-Jaimes et al., 2007) and nicotine-seeking behavior
(Kodas et al, 2007) induced by cues. Additionally, systemic
administration of SR141716A equipotently attenuated the rein-
statement of heroin-seeking behavior induced by cues or heroin-
priming injections (De Vries et al., 2003). However, cannabinoid
CB1Rs are expressed more densely in the cortex than in the nucleus
accumbens (Mackie, 2005), whereas both ¢482 and «7 nAChRs are
expressed densely in the PFC and striatum (Gotti et al., 2006). We
previously reported that an opioid receptor antagonist, naltrexone,
attenuated the reinstatement of MAP-seeking behavior induced by
cues, but not MAP-priming injections (Anggadiredja et al., 2004b),
A corticotrophin-releasing factor receptor antagonist, CP-154,526,
attenuated reinstatement induced by cues more effectively than
that induced by MAP-priming injections (Moffett and Goeders,
2007). Considering these differences, it is very surprising that
singular mechanisms regulate reinstatement.

In summary, the present study demonstrated that CB1Rs and
a4P2 nAChRs play a key role in the relapse to MAP-seeking
behavior. These findings further provide support for considering
substances that inactivate cannabinoid CB1Rs and «4Bp2 nAChR
agonists for relieving drug cravings.
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Summary

The drug self-administration procedure is necessary for the study of addiction in terms
of two similarities with human, One similarity is drug taking pattern, and the other is rein-
statement of drug-seeking responses after the withdrawal. This procedure consists of two
phase, called as the acquisition of drug taking behavior and the extinction. The drug taking
behavior is formed on the base of reinforcing effects of drug under a fixed ratio schedule. On
the other hands, a progressive ratio schedule is a useful procedure to estimate the potency of
reinforcing/rewarding effect. Clinically, drug craving can be triggered by taking the other drug
which has the effects similar to abused drug, by stimuli previously associated with drug-tak-
ing, or by exposure to stressors. In preclinical study, these three initiating factors also rein-
state drug-seeking. From the studies that clarify the responsible brain regions, the importance
of the nucleus accumbens, prefrontal cortex and hippocampus is clarified. The brain regions
associated with drug craving are identified using a PET and fMRI technologies. In the future
study, it is expected to integrate/reconstruct between the identified brain regions that pro-
voke drug craving in humans and responsible brain regions that induce reinstatement of drug-
seeking in animal model of drug dependence.
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HIREL LR SNTES. L L, BREOBEISZEY~OBEOHRTH), O
FICEEPEINLTY S,

AT, b b OEMIBEATEMR L LT 2B AT S ERELIY LY, BWIRFES
BORBITEAT L TRIL.

1. YO “HSHST & “BERE" CED R

KEAFDEBRRTOEYEESEL, BREIRS T D BT TwA. £
KT AT, & D COEMEINR 2 SHEICB T, BOTEERBWIERENIC
EW BT A HORSEREI, JVBRYERDLLEEZ OGNS, —F, HORE LMK
5ok, BEMOERRBICERND HEN "yoked” EBRELSHOLMITENT:, “yoked” FE
ERikld, B L7-200FEBRRATHLNS, WAL LA-2HTHECL > THME LTO
EAHEICEASS (HOCRE5HE). ZoK, BV —2RUTEDEZEAT LENH
ERVHOEBOBYIC, BORSEO LN LICTSE L CHBHIICREROERITEA S
h5 (yokedB). HOOBETLA—2#ETHTErOMEILD 24, EWEACHL THER
WIREFRL, £CALTHL, FRICHED LT, HMAHBREZHBRT 20885 5 KR
BT BIT D RS VBRI, ahA VRT 72y I VACRSEDS XU yoked O
THEREMZZAD SN2 00, ZOMMIHECRSETHEECEVESHAL, Lo 72%.
X512, aNA VRERICEMERTE L FRT L HORSHTE, MEBTOIVY I VR
DOWEENE L HIMT 2D, yokedBTIRZFD L) ZEAFROLATVERVY, TDXIHIL,
Y SRS BN BN TH LI L o T, BYoRBEREYORSE - K5 /35 —
VAR —ThoTh, BRIENSHL, JOTIEWEIIIHTS “BR L0 THR
ZWERLE LD L EKREW,

2. EWEIITE & RURRITBHORR

B CRS EREE, ORPERITEOMEERE, OXY L ARERICY I B TOH
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K178 7WLCORMRIRA E EAZ S 2RI 51 2 LR RAERRE L VT O L= LK
OB LE (final ratios; breaking point)

Uni Dose Pretreatment Final Ratios
Drug . .
(mg/kg/inj) (2~ 4weeks) (high range)
Morphine 0.25 - 1,350~ 1,600
+ 1,260~ 6,400
Dihydrocodeine 1.0 - 950~ 1,900
+ 4,530~ 10,760
Pentazocine 10 - 1,350~ 3,810
+ 2260~ 3810
Alcohol 800 - 1,600~ 6,400
+ 3200~ 6,400
Diazepam 1.0 - 950~ 3,200
+ 670~ 1,900
Cocaine 011 - 1,600~ 6,400
+ 800~ 3,200
Nicotine 0.25 - 1,350~ 2,690
+ 670~ 1,900

HWERBERERIET b, 2~ BRI OWEBREOSILRAIRS (+), TLREHEERO KIEHMNIRS
(=) 2fToTv3d. X7 LYH5EIH

% (BE) ARD2O0EZDP LW L. EMEKFHEOPT TR, MFLSVWTREYOFOR
1ERR B ROFER L LT, $ABRBEBVTREY~DEBE EWRETH) EH0
iR E LTRAIRTY A,

EIEEITE

M HCHRETHERIZIZ, X (Fixed-Ratio ; FR) EEE L LR #E (Progressive-
Ratio ; PR) EERENHVWOLI TS, FREBRETIE, BdeFE L -REORBIC L - TH
e L CoEYEEsElHES. —F, PREREZIEOERICLELR LM LEKEZ R
EEMEELHET, BYBRZHESTAENOLAA-HLEK (FL—Fv7 R4 VM) T
SN 5. PRERRKE, BALZHE HBHREOMS 2 EBMNICIHET 2 LTHEHLZAETD
5. RK1E, PVERHOWERAROLZEDCBTETL—F v ZFRA VP ERLTWS?, EWHE
CIRGITENHEN SNz, & OICHEBREL 2~ AMRERNRS T4, EVeABLT
Ve P aFA YTCREBMEENER SRS, ZOX)RKRETTR, TL—Fr 8L VL
ARG AR S BICHARTE L EMT 5. ChoofT8i sy — ik, BEERO
ERDORERESEBRYEL, BHERENSSICHRINIBEGL I SEs. —F, KE
HEIEE L CL BRI E RIS 2N ITENRA, I VRO aF VTR, TL—F
YIRA v ME, ARAEERKERIRS I A CHICRAT A I o 7.

EWRRITE
BRE, BOEERBEIEDOBEOFRANALEHLMITLIHETHS. BEEH
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