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Chapter 16

Gamma-ray Irradiated Poly(L-lactide)
for Bone Repair

Kazuo Isama and Toshie Tsuchiya

National Institute of Health Sciences, Tokyo, Japan

1 Introduction

Poly(l-lactide) (PLLA) with a high molecular weight is used as biodegradable
screws, pins and plates for internal bone fixation in the orthopedics. PLLA has
been well reported on a good osteocompatibility in vivo and in vitro. The y-ray
irradiated PLLA sample was implanted in vivo, and newly bone was formed
around the PLLA implant [1]. It was not clear whether there was the effect of
v-irradiation on the formation of newly bone in this result. However, it was the
fact that y-irradiation decreased the molecular weight and mechanical strength
of PLLA. If the satisfied mechanical property was maintained, the y-irradiation
was suitable for PLLA devices. We performed the wear test of the y-irradiated
PLLA sheets and measured the particle size distribution of wear debris. On the
other hand, PLLA fibers formed bone-like apatite in a simulated body fluid [2].
It was reported that the apatite layer formed on the bioactive glass increased the
attachment and initial proliferation of osteoblasts [3]. If the apatite-forming
ability of PLLA is increased by y-irradiation, there may be a good influence on
osteoblasts cultured on the irradiated PLLA. We clarified the effects of the
y-irradiated PLLA sheet on the osteoblasts and apatite formation in vitro.
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2 Wear Characteristic of the Gamma-ray Irradiated
PLLA Sheets

2.1 Gamma-ray Irradiation of the PLLA Sheets

The PLLA sheets made of high molecular weight PLLA with thickness of 0.3
mm were obtained from Shimadzu Co. (Kyoto, Japan). The PLLA sheets were
v-ray irradiated at the dose of 10, 25 or 50 kGy using 60Co as the radiation
source. The y-irradiated PLLA sheets were preserved in the silica gel desiccator
until next measurement.

2.2 Molecular Weight of the PLLA

The molecular weight of the y-ray irradiated PLLA was determined by gel
permeation chromatography. The polydispersity index was calculated as the
ratio of the weight average molecular weight (Mw) to the number average
molecular weight (Mn). The Mw of the y-irradiated PLLA extremely decreased
with the increasing irradiation dose. The Mw of 271,000 of the unirradiated
PLLA was decreased to 95,000 by irradiation at 50 kGy. In contrast, the
polydispersity index of the y-irradiated PLLA was confined to the slight
increase with the increasing irradiation dose, compatible with a random
cleavage in the degradation mechanism [4-6]. Yoshioka et al. reported
v-irradiation of PLLA caused random cleavage of molecular chain with
hydrolysis of ester bonds. In addition, they detected decomposition products
having a molecular weight higher than lactic acid in alkali hydrolysis products
of irradiated PLLA, and they suggested crosslinkage of molecular chain also
occurred [7, 8]. We also analyzed of the y-irradiated PLLA by high performance
liquid chromatography after alkali hydrolysis. However, the quantity of
decomposition products having a molecular weight higher than lactic acid was
extremely slight. Otto et al. also observed that the molecular weight of PLLA
was decreased from 160,000 to 35,200 by y-irradiation at 25 kGy [9]. Thus,
y-irradiation caused cleavage for molecular chain and decreased the molecular
weight of PLLA.

2.3 Wear Test

The PLLA sheets were cut out in the disk with the 14.0 mm diameter, and glass
column of 11.0 mm diameter and 2.5 g weight was bonded on each PLLA disk.
Then, the PLLA specimen was put in the cylindrical vessel of the 30.0 mm inside
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diameter, in which bottom plane was #400 waterproof abrasive paper. Five
milliliter of balanced electrolyte solution was added in the cylindrical vessel,
and the whole vessel was gyrated of 15 mm radius at 200 rpm for 1 hour using a
rotatory shaker.
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Figure 1. The particle size distribution of wear debris derived from the y-irradiated PLLA
sheet. The center line showed the mean, and the vertical width showed the mean = 2SD
(n=29).
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2.4 Coulter Counter Analysis of Wear Debris

The particle size of PLLA wear debris in balanced electrolyte solution obtained
by wear test was measured using the Coulter counter. The orifice tube with
nominal aperture diameter of 100 um was used and the particle diameter was
measured in the range of 2-60 um. The particle size distribution was obtained
from mean number of each particle diameter. The mean particle diameter of
PLLA wear debris was calculated from 9 times experiment.

2.5 Particle Size Distribution of Wear Debris from the PLLA Sheets

The particle size distributions of wear debris derived from the y-ray irradiated
PLLA sheets were shown in Fig.l. With the increasing irradiation dose, the
particle size distribution of wear debris derived from irradiated PLLA shifted
toward the smaller diameter size. The relationship between the irradiation dose
of PLLA and the mean diameter of PLLA wear debris was shown in Fig.2. The
mean diameter of PLLA wear debris was decreased 9.3% by irradiation at 50
kGy. The mean diameter of PLLA wear debris significantly decreased (P <
0.0001 by ANOVA) with the increasing irradiation dose. The tensile strength of
irradiated PLLA also decreased with the increasing irradiation dose [4]. When
the abrasive wore the PLLA specimen, the surface of PLLA would be easily
cracked, because the tensile strength was lower. In fact, the minute crack had
been observed on the surface of the 50 kGy irradiated PLLA disk,
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Figure 2. The effect of y-ray irradiation on particle size distribution of PLLA wear

debris. *Significant difference compared with unirradiated PLLA at P < 0.01.
TSignificant difference compared with 10 kGy irradiated PLLA at P < 0.01.
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microscopically. Therefore, the decrease of tensile strength of PLLA by the
y-irradiation caused the decrease in particle diameter of PLLA wear debris.

3 Apatite Formation on the Gamma-ray Irradiated PLLA
Sheets

3.1 Soaking in the Acellular Medium

The PLLA sheet was cut into 14.0 mm diameter disk and laid in a 24-well dish.
The complete medium of 1 ml was added without the cells. Then, the dish was
stored in a 37°C humidified atmosphere of 5% CO2, and the complete medium
was changed three times a week. Afier soaking for 2 weeks, the PLLA disk was
washed in deionized water five times quickly and dried in a silica gel desiccator.

3.2 Surface Analysis

The surface of the PLLA sheet before and after soaking in the complete medium
without the cells was characterized by scanning electron microscope (SEM),
energy dispersive X-ray analysis (EDX), Fourier transform infrared
spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS) according to
the conventional methods.
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Figure 3. The SEM image (a) and the EDX spectrum (b) of the PLLA sheet after soaking
in the acellular medium for 2 weeks.
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3.3 Apatite Formation on the PLLA Sheels in the Acellular Medium

The SEM micrograph exhibited crystal particles on the surface of the PLLA
sheet after soaking in the complete medium without the cells (Fig.3a). The
crystal particles were identified with hydroxyapatite by EDX, FT-IR and XPS
spectra (Fig.3b). The phosphate band in attenuated total reflection (ATR)/FT-IR
specira became strong with irradiation dose (Fig.4a). Moreover, the element
rations of calcium and phosphorus increased but that of carbon decreased with
irradiation dose, in XPS analysis (Fig.4b). The amount of hydroxyapatite
formed on the y-ray irradiated PLLA sheet increased with irradiation dose [10].

3.4 Surface Carboxyl Group on the PLLA Sheets

The surface carboxyl group on the y-ray irradiated PLLA sheets was determined
by XPS in combination with chemical derivatization. The carboxyl group
content of the PLLA surface was increased by y-irradiation.

The y-irradiation increased the apatite-forming ability of the PLLA sheet.
Tanahashi and Matsuda reported that some negatively charged groups such as
phosphate and carboxyl group strongly induced apatite formation in a simulated
body fluid. They described that the apatite formation was initiated via calcium
ion-absorption upon complexation with a negative surface-charged group [11].
In our study, the molecular weight of PLLA decreased with hydrolysis of ester
bonds by y-irradiation [4]. Therefore, the surface density of carboxyl group of
the y-irradiated PLLA sheets increased with irradiation dose, and the carboxyl
group would promote the apatite-forming ability of the PLLA sheet.
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Figure 4. The phosphate band (a) and the element ratios of calcium, phosphorus and
carbon of the y-irradiated PLLA sheet after soaking in the medium.
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Figure 5. The surface density of carboxyl group of the y-irradiated PLLA sheets by XPS
with chemical derivatization (a) and the relation between the surface density of carboxyl
group and the molecular weight of the y-irradiated PLLA sheet (b).

4 Osteoblast Differentiation on the Gamma-ray Irradiated
PLLA Sheets

4.1 Micromass Culture of Osteoblasts

Mouse osteoblast-like MC3T3-E1 cells (RIKEN Cell Bank, Japan) and normal
human osteoblast NHOst cells (Clonetics Corporation, MD, USA) were grown
in alpha minimum essential medium (a-MEM) supplemented with 20% fetal
bovine serum. The PLLA sheet was cut into 14.0 mm diameter disk and laid in a
24-well dish. The 20 pl of cell suspension (2x106 cells/ml) was delivered on the
disk. After the cells were attached on the disk, 1 ml of the complete medium that
contained 10 mM disodium B-glycerophosphate in the culture medium was
added. The complete medium was changed three times a week, and the cells
cultured for 2 weeks in a 37°C humidified atmosphere of 5% CO2.

4.2 Assay of Proliferation and Differentiation of Osteoblasts

The cell proliferation was estimated with the cell number, the protein and DNA
content. The number of the cells cultured on the PLLA sheet was determined by
WST-8 assay. The protein and DNA contents of the cell lysate were measured
by the Lowry method and the fluorescence assay using Hoechst 33258 dye,
respectively [12, 13].
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The osteoblastic differentiation was estimated with the calcification, the
collagen synthesis and the alkaline phosphatase (ALP) activity. The calcium
depositions of the cell cultures were stained by alizarin red S, and the areas
stained dark-red were measured. The calcification was calculated as the
normalized area in the cell number. Moreover, the collagen synthesis was
evaluated by the hydroxyproline content of the cell lysate, and the ALP activity
of the cells was measured using p-nitrophenylphosphate as a substrate [12, 13].
The osteoprogenitor cells first differentiate into immatute osteoblasts
characterized by the expression of ALP and then into mature osteoblasts
characterized by the expression of osteocalcin and calcification [14].

4.3 Osteoblasts Cultured on the PLLA Sheets

The cell number of MC3T3-El cells cultured on the PLLA sheet did not change
with increasing irradiation dose (Fig.6a). The protein and DNA contents of the
cells also did not change. The other side, the cell number, protein and DNA
contents of NHOst cells cultured on the PLLA sheet slightly decreased with
irradiation dose (Fig.6b). The calcification of MC3T3-E1 cells (Fig.7a) and
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Figure 6. The cell numbers of (a) MC3T3-El and (b) NHOst cells cultured on the
y-irradiated PLLA sheet.

NHOst cells (Fig.7b) remarkably increased with irradiation dose. The collagen
synthesis and ALP activity of MC3T3-El and NHOst cells also increased as
same as the calcification, respectively [12, 15]. The y-ray irradiated PLLA
remarkably promoted the differentiation of osteoblasts. The y-irradiated PLLA
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hardly affected the proliferation but remarkably promoted the differentiation of
osteoblasts. It was expected that the low molecular weight PLLA eluted to the
medium, because the molecular weight of PLLA decreased by y-irradiation.
Otto et al. also reported when mouse osteoblastic cells were cultured with
v-irradiated PLLA wire for 48 hours, DNA content did not change, but ALP
activity increased by 28% [16].
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Figure 7. The calcifications of (a) MC3T3-El and (b) NHOst cells cultured on the
y-irradiated PLLA sheet.

Ikarashi et al. reported that heat treatment of PLLA did not affect the
proliferation of MC3T3-El cells cultured on heat treated PLLA, but the
differentiation of MC3T3-E1 cells was increased. They described that lower
change in the molecular weight of PLLA was a cause of stimulation of MC3T3-
E1 cells cultured on the heat treated PLLA [17].

Moreover, they reported that the low molecular weight PDLLA did not
affect the proliferation, but increased the differentiation of MC3T3-El cells.
They also indicated that low molecular weight PDLLA stimulated the
differentiation of MC3T3-E1 cells [18]. In our recent studies, the low molecular
weight PLLA enhanced the differentiation of MC3T3-E1 cells but inhibited that
of NHOst cells [14, 19]. The present results, which the differentiations of
MC3T3-El and NHOst cells both increased on the y-irradiated PLLA sheet,
would not be caused by the low molecular weight PLLA. The surface of the
y-irradiated PLLA should good influence on the differentiation of osteoblasts.
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Fujibayashi et al. compared in vivo bone ingrowth and in vitro apatite
formation on Na20-CaO-SiO2 glasses. The quantities of newly bone formed on
the glasses correlated with their apatite-forming abilities in simulated body
fluid. They propose to evaluate the apatite-forming ability in order to confirm
the in vivo bioactibity of biomaterials [20]. In our present study, the
v-irradiation enhanced the apatite-forming ability of the PLLA sheet, and then
the y-irradiated PLLA sheet promoted the differentiation of osteoblasts. The
osteoblast differentiation should connect with the apatite formation on the
y-irradiated PLLA sheet.

5 Conclusions

The molecular weight of PLLA decreased with the increasing irradiation dose.
In addition, the particle size distribution of PLLA wear debris shifted toward the
smaller diameter size, and the mean diameter of PLLA wear debris significantly
decreased, with the increasing irradiation dose. It was indicated that the
lowering of the molecular weight by y-ray irradiation caused the decrease in
tensile strength of irradiated PLLA and the particle size of PLLA wear debris
derived from irradiated PLLA.

The hydroxyapatite was formed on the PLLA sheet in the acellular medium,
and the y-irradiation enhanced apatite-forming ability of the PLLA. On the other
hand, the y-irradiated PLLA hardly affected the proliferation but promoted the
differentiation of osteoblasts with increasing irradiation dose. It was suggested
that the connection between the apatite formation and the osteoblast
differentiation on the y-irradiated PLLA sheets.
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Tin octylate (tin 2-ethylhexanoate) is a compound widely used as the polymerization catalyst applicable to
biodegradable polylactide plastics. To figure on the quantity of a residual tin octylate in medical materials,
a quantitative determination method was established for octylic acid (2-ethylhexanoic acid) that is a
decomposition product of tin octylate under an acid condition with hydrochloric acid. Octylic acid was
extracted from the medical materials with a mixture of acetone and n-hexane (3:7) containing a small
amount of hydrochloric acid by shaking overnight at 37°C. The extract was trimethylsilylated(TMS), and
the TMS derivative was analyzed by GC/MS. A capillary column of DB-5 ms (0.25 mmé X 25 m with a
film thickness of 0.25um) was used for GC, and the TMS derivative was determined using an ion of m/z 201
in the MS.  Of four samples studied, TMS derivative of octylic acid was detected in two samples.

quantitative value converted into tin octylate was 134.4pg/g (n=3, CV=14.3%) and 6.5pg/g (n=3,

Mean

CV=28.7%), respectively, which were detected at the same concentration level in the repeated analyses.

F—D—F:222FAAXH U BRAX, 2-2FAA~AFTH U/, BIETTAF v 2, GCMS.
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Analysis of Tin Octylate (Tin 2-ethylhexanoate) in Polymer Materials

by Harunobu NAKASHIMA, Yoshiyuki SAWABE, Kazuo ISAMA and
Toshie TSUCHIYA
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Fig.1. Chemical reaction of Tin(II) 2-ethylhexanoate
under hydrochloric acid (Conditons for hydrosis
were 37°C for 10 minutes at room temperature)
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Fig.2. Total Ion Chromatogram and Mass Spectrum of
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Fig.3. Total Ion Chromatogram and Mass Spectra of 2-ethylhexanoic acid-trimethylsily]l(TMS) derivative
and Decanoic acid-trimethylsilyl(TMS) derivative
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(4) Decanoic acid-trimethylsilyl(TMS) derivative

Fig.4. Chemical Structures of Each Substance
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Table 1. Analytical Results of tin 2-ethylhexanoate in

high-polymer materials
No. material molecular weight tin 2-ethylhexanoate ( u g/g) CV(%)
Sample No.1 PLGA 200,000 1344 £ 193 (14.3)
Sample No.2  PLLA 200,000 6.5+ 19 (28.7)
Sample No.3 PLLA 200,000 N.D.
Sample No4 PLLA 5,000 N.D.

N.D. : Not detected, under 0.01 4 g/g (n=3)
PLLA: poly(L-lactic acid) PLGA: poly(lactic-co-glycolic acid)
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