PrP* (21, 33), whereas binding domains on PrP* that are involved in binding to PrP€ still
remain undetermined. The N-terminally truncated PrP* may be useful for the analysis of

the binding domain on the PrP** molecule to PrP®. Here, we showed an example of the

possible biochemical approach of PrP> manipulation, in which we directly produced the.-

N-terminally truncated PrP* from native PrP%. It has been reported that some conditions
(e.g., pH) of protease digestion affect the N-terminal truncation of the PK-resistant core of
PrP* (24). Thus, further investigation of region-specific denaturation and proteolysis may

be useful not only for the analysis of prion strains but also for the manipulation of PrP>.
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FIGURE LEGENDS

Figure 1. Conformational stability of PrP* of various prion strains. (A)

Immunoblots for conformational-stability assay. Brain homogenates from prion-infected...,

mice (indicated on the left) were treated with 0 - 4 M GdnHCI (indicated on the t_c_)p) fo]]owe\d
by PK digestion. PrP* was detected by either pAb B103 (left colums) or tnAb 44B1 (right
column). Independent assays of each strain were carried out at least 3 times for mAb 4481‘
(indicated in parentheses), and based on quantitative results of the blot probed with mAb
44B1, the denaturation curves were plotted using a non-linear least-squares fit.
Half-maximum GdnHCI concentrations, [GdnHCl],., are indicated for each graph (mean +
SD). Numbers at the top-right cornér in the blots probed with pAb B103 represent the
[GdnHCI)y» values (M). (B) Molecular weights of PrP*.  Brain homogenates from
prion-infected mice (indicated on the top) were treated with PK and immunoblot was probed
with pAb B103 (left). To compare the molecular weight of PK-resistant core of PrP> more

precisely. PK-treated samples were further treated with PNGasae F (right).

Figure 2. Region-dependent conformational stability of PrP™ of the Chandler
strain., Brain homogenates from mice infected with the Chandler (left) and the Obihiro
(right) strains were subjected to the conformational-stability assay and immunoblots were
probed with various anti-PrP antibodies indicated on the left. Epitopes for antibodies are
indicated in parentheses. Due to the relatively weak reactivity, 5-times sample volumes were
loaded for mAb 118. Numbers at the top-right corner in each blot represent the [GdnHC1],

values (M).

Figure 3. Region-dependent conformational stability of PrP* in cells persistsently
0
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infected with the Chandler strain. PrP*-enriched fractions obtained from ScN2a-5 cells
were subjected to the conformational stability assay. Antibodies used are indicated on the

left.

Figure 4. Region-dependent conformational stability of the Chandler PrP> in mice
with different genetic backgrounds. Brain homogenates from Jcl:ICR (Prp**), CS7BL/6)
(Pmp™®), and VLnJ (Prnp™) mice infected with the Chnadler strain were subjected to the
conformational-stability assay. Antibodies used and their epitopes (in parentheses) are
indicated. Numbers at the top-right corner in each blot represent the [GdnHCI],» values

(M).

Figure 5. Region-specific denaturation or removal of PrP* in inoculums for
bioassay. (A) Confirmation of region-specific denaturation. Brains of mice infected with
the Chandler strain were treated with various concentrations of GdnHCl (without PK
treatment) and the fraction containing PrP™ was recovered by ultracentrigation. Small
aliquots of the inoculums were treated with PK and analyzed by immunoblotting with mAb
44B1. (B) Confirmation of removal of the aa 81-137. Brain homogenates from mice
infected with the Chandler and the Obihiro strains were treated with 0 or 3 M GdnHCI and
followed by PK digestion. After terminating proteolysis, samples were ultracentrifuged to
collect the fraction containing PrP*. Small aliquots of the inoculums were analyzed by

immunobloting with mAb 44B1. Equal brain tissues equivalent was loaded in each lane.

Figure 6. Schematic representation of region-specific denaturation of the Chandler

PrP%, PK-resistant core of the Chandler PrP* (from ~aa 81 to 231) were depicted with the
“OA=
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locations of two [-strands (B1 and B2), three a-helices (al to a3), two N-glycosylation sites
(CHO), and an intramolecular disulfide bond (S-S). The locations of epitopes were
indicated with thick lines with aa numbers (in parentheses). The epitope for mAb 44B1 that
recognizes discontinous epitope was indicated with dashed line, while those for other

antibodies that recognize linear epitope were indicated with solid lines. The region I

indicated above (aa 81- 90) was denatured almost completely by up to 2 M GdnHCI treatment,

and the removal of this region generates the 1-2 kDa smaller PK-tesistant PrP*. The region
II (aa 90- 137) was denatured almost completely by up to 3 M GdnHCI treatment, and the
removal of the regions I and II consequently generates the 6-7 kDa smaller PK-resistant PrP*
(region III, aa 137-C-terminus) that is highly resistant to denaturation but lacks prion

infectivity.
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Table 1. Conformational stabilities and incubation periods of prion strains

Mouse strain Number [GdnHCl]},; (M) Number
Incubation periods
Prions for of pAb  mAbs 44B1' of
(days, mean + SD)
propagation  serial passage’ BI03  /31C6* mice”
Gl slcICR 4® 2.1 21+01" 326 +53 5
Obihioro JcLICR >5 23 2.0+00' 15317 24
Chandler Jel:ICR >5 1.8 3.2+0.2¢ 150+ 8 20
LnJ 2 22 >3.5¢8 27+7 4
C57BL/6) 3 2.3 3.5 153%6 6
22L JelICR 2 1.5  1.7%0.0% 144 +3 5
Fukuoka-1 Jel:ICR . 2.1 2.0+00 146 + 8 8
KUS-m RITVT 3 24 2.5+02¢ 165 % 11 6
TE-m C57BL/6] 3 2.2 2.6 £ 0.2 168 + 4 6

* History (number) of serial passage in mice listed on the left.

" Source of prion: experimental sheep scrapie G1.

¢ Chandler strain passaged in JcLICR mice were then passaged in VLnJ or C57BL/6J mice.

4 Source of prions: the 22L and Fukuoka-1 strains passaged in mice carrying Prup™® but
different from Jcl:ICR mice.

¢ Source of prions: BSE field cases KUS and TE.

"The [GdnHCl],; values were estimated from the denaturation curves plotted by blots probed
with mAb 44B1 (at least three independent asssays). *, higher than G1 (p < 0.05); **, lower
than G1 (p < 0.05).

* The [GdnHCl],, values were estimated from the denaturation curves plotted by blots probed

with mAb 31C6.

b
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615 " Number of mice used for the calculation of incubation period.
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Table 2.  Effect of GdnHCI treatment and PK digestion on prion infectivity

GdnHCI Mice* Survival time
Strain PK
(M) (n/N) (Mean + SD) (dpi)
Chandler 0 - 4/4 159 + 14
1 - 5/5 150+ 9
1.5 - 711 165 + 12
2 - 4/4 176412
3 - 5/5 207 £25
0 + 6/6 170 £ 11
3 + Us® 234, 236, >365
Obihiro 0 - 5/5 152+7
3 + 5/5 186 + 11

“n. number of mice which showed typical clinical manifestations of scrapie and/or were
positive for PrP* in immunoblotting: N, number of mice used in bioassay.

"Two mice showed typical clinical manifestations and were positive for PrP> (at 234 and 236
dpi). one mouse was found died without any symptoms at 336 dpi and was negative for PrP*.

Remaining two mice were still alive without any symptoms (>365 days).
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The human prion protein (PrP) is a glycoprotein with a glycosylphosphat-
idylinositol (GPI) anchor at its C-terminus. Here we report alternative splic-
ing within exon 2 of the PrP gene (PRNP) in the human glioblastoma cell
line T98G, The open reading frame of the alternatively spliced mRNA lacked
the GPI anchor signal sequence and encoded a 230 amino acid polypeptide.
Its product, GPI-anchorless PrP (GPI™ PrPSV), was unglycosylated and
soluble in non-ionic detergent, and was found in the cylosolic fraction. We
also detected low levels of alternatively spliced mRNA in human brain and
non-neuronal tissues. When long-term passaged T98G cells were placed in a
low-oxygen environment, alternatively spliced mRNA expression increased
and expression of normally spliced PrP mRNA decreased. These findings
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Fatal human prion diseases, including sporadic, iatro-
genic and variant Creudzfeldi-Jakob disease (CJD),
inherited prion discases and kuru, are transmissible
spongiform encephalopathies characterized by the
formation and accumulation of an abnormal isoform
of prion protein (PrP) in the brain [1]. Cellular prion
protein (PrPS) is a glycoprotein that is anchored to the
cell surface by a glycosylphosphatidylinositol (GPI)
moiety [1]. CJD is associated with the conversion of
PrPC into a protease-resistant isoform (PrP™), either
on the cell surface or within its compartments [1].
Sporadic CJD is classified on the basis of the molecu-
lar mass of the unglycosylated fragment of PrP™ as
type | (21 kDa) or type 2 (19 kDa), and on the basis of
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imply that oxygen tension regulates GPI™ PrPSV expression in T98G cells.

the genotype at the methionine/valine polymorphic
codon 129, i.e. MM, MV or VV [2]. In a previous study,
we showed that the prion protein gene (PRNP) in human
glioblastoma cell line T98G, which is of the MV geno-
type and produces a form of PrP that is partially resis-
tant to proteinase K (PK) following long-term culture
and high passage number, has no mutation in the coding
region [3]. The PrP™ fragment described here, which dif-
fered from corresponding fragments in typical sporadic
CJD, had a mass of 18 kDa after deglycosylation and
was detergent-soluble [3]. However, in one report, brain
homogenates from dead patients with type 2 PrP and
MV (n = 5) or VV (n = 6) genolypes also contained
PrP fragments that migrated at 18 kDa after deglycosy-
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Hypoxia induces expression of GPl-anchorless PrP

lation and were detergent-soluble [4]. These findings sup-
port the possibility that our findings in T98G cells may
be relevant to PrP™ in sporadic CJD brain,

Alzheimer’s disease (AD) and prion disease share a
common feature - aggregation and deposition of
abnormal proteins [5]. Intracerebral injection of post
mortem brain extracts from AD patients induced
deposition of amyloid p-peptides in the hippocampus
of B-amyloid preursor protein transgenic mice [6].
Some cohort studies have indicated that cerebral ische-
mia and stroke significantly increase AD risk [7.8], and
hypoxia seems to be an important contributor to the
onset and progression of AD [9]. Recent magnetic
resonance imaging studies have also suggested that
changes in areas of the brain with the highest oxygen
requirement are associated with sporadic CJD [10,11].
A retrospective study detected these changes in 39.1%
of sporadic CJD patients (n = 1036) [10]. A study of
human cerebral ischemia and perinatal hypoxic/ische-
mic injury confirmed the presence of PrP immunore-
activity within axons in the penumbra of white matter
damage and within neuronal soma of gray matter
damage [12). We therefore speculated that oxidative
stress is a causative factor in prion disease. To test this
hypothesis, we investigated the effects of hypoxia on
PrP expression using T98G cells as our model system.

Results

Detection of the splice variant form of PrP mRNA
in T98G cells

First, we analyzed PRNP mRNA by RT-PCR. We
used total RNA isolated from TY8G cells to generate
RT-PCR products from PRNP exon 2. We found that
cells grown under normoxic conditions produced a
528 bp product (supplementary Fig. S1) when the cells
were cultured for 24 days after two passages (P2D24)
and for 24 days after 18 passages (P18D24) (Fig. 1A).
In contrast, total RNA from P18D24 cells exposed 1o
hypoxic conditions (5% O;) for the last day expressed
a shorter product, i.e. 296 bp, but the genomic DNA
from P18D24 cells and total RNA from P2D24 cells
did not express this product (Fig. 1A). Because addi-
tion of coball ion can mimic hypoxic conditions [13],
we next studied its effects on RT-PCR products. Total
RNA from P2D39 cells cultured with 0 or 300 pm
CoCl, for the last day yielded the 528 bp RT-PCR
product (Fig. 1B). Total RNA from PI3D24 cells
cultured the same way, however, expressed the 528 bp
product and the shorter RT-PCR product (Fig. 1B),
just as PI18D24 cells exposed 1o hypoxic conditions
(Fig. 1A). To amplify the shorter RT-PCR product,
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we decreased the elongation time to 36s to avoid
saturation by the longer PCR product [14], With an
elongation time of 60 s, the shorter RT-PCR product
was not amplified and only the 528 bp product was
produced (data not shown).

When we performed direct sequencing of the shorter
product, we found that a 232 bp sequence was missing
from the 528 bp sequence (supplementary Fig. S1). We
identified an intronic sequence with the canonical dinu-
cleotides for splicing (GT at the 5 end and AG at the
3" end) and a pyrimidine tract (16 pyrimidines/20
bases) 20 nucleotides upstream of the 3" splice site
[15,16]). Thus, our data indicate that alternative splicing
occurred within PRNP exon 2.

To determine the cryptic splice sites, we designed
exon-exon junction primers that annealed with the donor
and acceptor sites (E2SV3, E25V4 and E2SV5; supple-
mentary Table S1), and used total RNA isolated from
P18D24 cells to generate RT-PCR products, As expected,
we detected a 1433 bp product from cells grown under
hypoxic conditions. In addition, we detected two shorter
RT-PCR products - a 676 bp product when we used
E2SV3 and a 553 bp product when we used E2SV4
(Fig. 1C). Surprisingly, we also detected these products
in total RNA from cells grown under normoxic condition
(Fig. 1C). However, when using genomic DNA, we
detected only full-length PCR products (Fig. 1C). Thus,
the exon-exon junction primers were able to detect
mRNA for the splice variant of PrP (PrPSV).

Direct sequence analysis revealed that the only muta-
tion in the 1433 bp RT-PCR product was an adenine to
guanine substitution in the first position of codon 129,
i.e. the common M129V polymorphism (supplementary
Fig. S1; T98G PrP, accession numbers AB300823 and
AB300824); the alternatively spliced 1201 bp product
also contained the polymorphism (supplementary
Fig. S1; T98G PrPSV, accession numbers AB3008235
and AB300826). PRNP encodes a 253 amino acid poly-
peptide, including an N-terminal signal sequence (resi-
dues 1-22) and a GPI anchor signal sequence (residues
231-253) (Fig. 1D, upper part). Alternative splicing
resulted in use of exons 2a and 2b with a cryptic donor
site and a eryptic acceptor site (Fig. 1D, lower part),
with an open reading frame encoding a 230 amino
acid polypeptide comprising the N-terminal portion
(residues 1-217) of PrP from exon 2a and the C-terminal
peptide (residues 218-230) from exon 2b (lower panel).

Expression of the GPl-anchorless splice variant of
PrP in T98G cells

We next investigated the prion protein expressed by the
alternatively spliced mRNA. To detect PrPSV, we raised
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