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into the culture supernatant, where it regulates gene expression via a two-component
system consisting of AgrA and AgrC (17). To determine whether agrBD is related to
the signaling component that is secreted from C. perfringens cells, we assayed the
ability of agrBD® to modulate toxin expression. Culture supernatant was collected
from the wild-type C. perfringens strain 13 or the agrBD"-" mutant TS230 at early log
phase (ODg = 0.5), and was then added to TS230 cells. The cells were incubated at
37°C for 15 min and total RNA was prepared and analyzed by Northem analysis. The
transcription of toxin genes was significantly increased in the TS230 cells only when
the wild-type supematant was added (Fig. SA), suggesting that the TS230 cells lacked
the ability to produce the signal molecule and release it into the supernatant. To further
confirm that the signal molecule in the supernatant of strain 13 was produced from the
agrBD region, the supematant was collected from a TS230 mutant strain that had
been complemented with an intact agrBD (TS230/pTS1304). When this supernatant
was tested on TS230 cells, the expression of toxin genes, especially that of pfod, was
strongly induced (Fig. 5A). These data clearly indicate that the ugrBDr" gene is
responsible for production of an extracellular autoinducible signal molecule that
controls the expression of toxin genes in C. perfringens.

In C. perfringens, the VirR/VirS-VR-RNA system is known as a global regulator and
can regulate the expression of many toxin genes, including ple, pfeA and colA; however,
the signal that activates the sensor protein VirS has not been identified. Since the
agrBD? locus controls the expression of a subset of toxin genes similar to that of the

VirR/VirS-VR-RNA system, it seemed highly probable that VirS is a sensor protein for
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the signal molecule produced from the agrBD® region. To examine this hypothesis, an
agrBD-virR/virS double-knockout mutant was constructed (designated TS231), and
the effect of the wild-type supernatant on toxin transcription in the double mutant was
examined. The transcription of pfoA in the TS231 mutant was not activated by the
wild-type supernatant (Fig. 5B). In contrast, when TS231 was complemented with the
plasmid pTS405. which contains the intact virRAvirS genes, the resulting strain
(TS231/pTS405) could sense the extracellular signal, and the transcription of toxin
genes was significantly induced by the addition of wild-type or TS230/pTS1304
supernatants (Fig. 5C). In addition, the transcription of ple and colA in TS231/pJIR418
or TS231/pTS1304 was also up-regulated by addition of the wild-type supernatant (Fig.
5C). It was suggested from these data that VirR/VirS is important for sensing of the
extracellular signal and activation of toxin gene transcription in C. perfringens.
However, it remains possible that another two-component system or another protein
plays a role in the sensing of this signal, and thus further experiments will be needed to
elucidate the relationship between the signal molecule from agrBD®" and the VirS

sensor protein,

Regulation between agr and virR/virS

In S. aureus, the agr signaling s.ystem results in a positive feedback loop, and the
expression of both agrBD™ for AIP production and agrA/agrC for AIP sensing are
positively regulated in an operon (15). To examine the regulatory mechanism of the

agr system in C. perfringens, Northern analysis was performed by using TS133 and
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TS230. At first, RNA was isolated from the wild-type strain (strain 13), TS133, and its
complement strain TS133/pTS405, which were cultured for 2 h and 3 h. As in previous
experiments, transcription of pfoA was absent in TS133 but recovered in TS 133/pTS405
(Fig. 6A). In contrast, the transcriptional levels of agrD and the 2.5-kb operon in the
three strains were almost the same at 2 h under a virR/AvirS-negative background (Fig.
6A), although the level of agrD transcript was slightly decreased in TS 133/pJIR418 at
3 h, which was thought to be not significant.

Next, Northern analysis was performed by using strains 13/pJIR418, TS230/pJIR418
and TS230/pTS1304 to check the virRAirS transcription under agrBD“-negative
conditions. As shown in Fig. 6B, the transcription of the virR/virS operon was too faint
to confirm its regulation, but the mRNA level was almost the same in all three strains.
These results suggested that the agr regulatory system involving the agrBD" and
virR/virS operons in C. perfringens is not completely analogous 1o the agr regulation

system in §. aureus.

Effect of a stationary culture supernatant on pfeA transcription

To further analyze the mechanism by which the extracellular signal in the culture
supernatant of C. perfringens regulates toxin gene expression, the effect of addition of
the C. perfringens culture supernatant on pfoA expression was examined in more detail
by Northern analysis. Although the expression of ple and colA was also partially
regulated by the extracellular signal molecule in the supernatant, we focused on the

regulation of pfoA in this analysis, since pfoA appears to be the main target of this
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system. First, the supernatant was removed from wild-type strain 13 cells that were
cultured to various growth stages (Fig. 7A, 2h-8h). These cells were used as recipient
cells, and were re-suspended in fresh TSF medium. As a control, cells were
re-suspended in the supernatant that had been removed. After 15 min of incubation in
the added medium or supernatant, total RNA was prepared from the recipient cells. In
the control experiment (see the “sup” lane in Fig.7A), maximum transcription of pfoA
was observed when the supernatant from a 2-h cell culture was added. However, pfoA
transcription in the recipient cells was clearly observed within 15min after the
supernatant was replaced with fresh TSF medium (Fig. 7A, lane TSF). Surprisingly, the
transcription of pfoA occured even in the 8h-cultured recipient cells following
replacement of the supernatant with fresh medium (Fig. 7A). Furthermore, the
transcription of pfoA in the 3h-8h cultured recipient cells (lane TSF; 3 h-8 h of culture)
was at a much higher level than that observed in the recipient cells cultured for 2 h in
the presence of a 2-h culture supernatant (Jlane 2 h sup). These data suggest that there is
another signaling molecule in the supernatant that negatively controls pfoA expression,
especially at the stationary-phase, because removal of the culture supernatant and
re-addition of fresh medium leads to activation of pfoA transcription in the 3 h (mid
log)- to 8 h (stationary)- cultured recipient cells. Furthermore, these data presumably
suggest that the amount of signal molecule that binds to recipient cells is sufficient to
activate pfoA transcription. And through the removal of the stationary phase supernatant,
the concentration of the inhibitory substance might decrease, and the remaining

activator bound to cells could stimulate pfoA transcription.
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To confirm this hypothesis, the supernatant from the stationary phase was diluted
with TSF medium and added to TS230 recipient cells. As predicted, diluted supernatant
from the stationary phase could activate pfoA transcription, with a maximum activation
observed at a four-fold dilution (Fig. 7B). These data suggest that there may be an
inhibitory molecule in the supernatant from the stationary phase that represses pfoA
expression but that this inhibition is abrogated when the hypothetical inhibitor is diluted.
The proportions of activator concentration and inhibitory molecule might be important
for determining the transcriptional level of the pfoA gene. Thus, in C. perfringens, a
gradual accumulation of the inhibitor might occur over the culture period, and, when the
concentration of the inhibitor reaches a certain threshold, it may completely stop
transcription of pfoA. This mechanism could explain the decrease in toxin production at
the stationary phase of growth in C. perfringens.

In this study, we examined novel regulatory genes (agrBD) for toxin production in
C. perfringens. These genes are highly similar to the agr system in S. aureus, and we
have shown that the agrBD locus is responsible for the production of an extracellular
signal molecule that stimulates the expression of toxin genes in C, perfringens. We also
found that the two-component VirR/VirS system appears to be required for the
regulation by the signaling molecule produced by agrBD®,

In C. perfringens the functions of agrBD”, the VirR/VirS system, and VR-RNA seem
to be quite similar to those of S, aureus agrBD™, AgrA/AgrC and RNAIIL, respectively.
Consequently, the two bacteria might have evolved similar regulatory systems to control

their pathogenicity towards humans. However, the genes involved in the regulation of
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toxin genes are scattered around the genome of C. perfringens, whereas the genes
involved in the agr system are located in a cluster on the S. aureus chromosome (17).

It is of note that toxin gene expression in C. perfringens reaches a maximum during
the log-phase of growth and completely stops at the stationary phase, whereas in many
other pathogenic bacteria, toxin gene expression commonly starts at the stationary phase.
Induction of toxin gene expression at the stationary phase is mainly mediated by a
quorum-sensing mechanism. In contrast the agrBD” system of C. perfringens induces
the expression of toxin genes in the early stages of cell growth. For this expression
pattern, there may be other unique systems that ensure the specific expression of loxin
genes at the early stages of cell growth. From the data in this study, we predict that there
might exist in C. perfringens a system whereby inhibitory molecules are secreted into
the medium. However, these molecules would stop toxin gene expression only upon
reaching a critical level at the stationary phase. The balance between the agrBD®
activator system and a second, as-yet-undefined inhibitory system may be important for
the proper control of gene expression in C. perfringens.

The unique regulation of toxin expression in C. perfringens is consistent with the
requirement of C. perfringens to secrete various tissue-degrading toxins and enzymes at
an early stage of infection. These secreted products enable the organism to acquire
essential nutrients from the host (resulting in gas gangrene) that are required for the
survival and growth of the bacteria. Genomic analysis has shown that C. perfringens
lacks many genes related to amino acid biosynthesis, with the exception of genes for the

three amino acids cysteine, serine and glycine. Thus, in order to survive, especially in a
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host environment, C. perfringens may require a well-coordinated system to secrete

numerous toxins and enzymes for the degradation of host cells and for the effective
import of nutrients from the environment. Therefore, it is very important to precisely
clucidate how these extracellular regulatory systems control the virulence of C.
perfringens. Elucidation of these regulatory systems may lead to an understanding of
the relationship between C. perfringens and other bacteria that co-exist in the intestine
or in wounds and, furthermore, to the identification of new therapeutic targets for the

treatment of life-threatening diseases caused by C. perfringens.
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FIGURE LEGENDS

Fig. 1. Analysis of the agr region in C. perfringens.

A. Gene map of the agr region in C. perfringens. B. Alignment of the deduced amino
acid sequence of Agrl’)c" in C.perfringens and S. aureus AIPs. Conserved residues are in
red and the deduced sequence of the mature peptides is in bold. C. Northern analysis
of the agrBD® region.  RNA was isolated from strain 13 after culturing for 1-h, 2-h,
3-h and 4-h.

Fig. 2. Northern analysis of the agrBD“’ mutant and complemented strains.

An agrBD null mutant (TS230) was constructed by a double-crossing-over method,
and the agrBD® region was complemented by transformation with pTS1304 and
pTS1303. Total RNA was prepared from 2-h and 3-h cultured cells and 10 pg of total
RNA was used for Northern analysis. The internal regions of pfeA, colA, ple, and

agrD were used as probes.

Fig. 3. Deletion analysis of the agr region.

To determine the role of each gene in the operon, deletion plasmids were constructed
and transformed into the agrBD" null mutant, TS230. Each strain was cultured and
RNA was isolated following 2 h and 3 h of culture. The RNA was used for Northern
analysis of the indicated toxin genes. In the deletion table, - indicates no activity, ++
indicates the plasmid has activity to induce the expression of toxin genes, and +
indicates the plasmids have activity but the activity is lower than that of pTS1304,
The internal regions of pfoA, colA, ple, agrD were used as probes.

Fig. 4. Cross-streaking of TS230 and TS133.

The virR mutant strain, TS133 was streaked onto a blood-agar plate, and then several
streaks of TS230 were made at a right angle to TS133. The distance between the iwo
strains was decreased with each successive streak.

Fig. 5. Effect of the wild-type supernatant on the expression of toxin genes in TS230
and TS231.

The culture supernatant was collected from strain 13 and added to the indicated strains
to check the effect of the supernatant on sensor protein activity. The supernatant was
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collected from the wild-type strain, strain 13/pJIR418 and strain TS230/pTS 1304, after
culturing for 1.5 h, respectively. Total RNA was prepared 15 min after addition of the
supernatant.  A. The supernatant (sup) was added onto the agr null mutant, TS230. B.
The supernatant (sup) was added onto the agr null-virR mutant, TS231/pJIR418. C. The
supernatant (sup) was added onto TS231 that contains an intact virRAvirS,
TS231/pTS405

Fig. 6. The regulatory relationship between agrBD and virR/virS.

A. The regulation of agrBD by virRvirS. Total RNA was isolated from 2 h and 3
h-cultured strain 13/pJIR418, TS133/pJIR418 and TS133/pTS405. B. The regulation
of virRwvirS by agrBD®. Total RNA was isolated from strain 13/pJIR418,
TS230/pJIR418 and TS230/pTS1304. 10 pg of total RNA was used for Northern

analysis.

Fig. 7. Effect of the supemnatant on toxin gene expression.

A. The supernatant was removed from the various time points of the culture. The cells
from each time point were incubated with TSF at 37°C. As a control, the removed
supernatant was re-added to the same cells. RNA was isolated after 15 min of
incubation. Lane 1, TSF control; lane 2, culture supernatant, B. The supernatant
from strain 13 after 6 h of culture was diluted with TSF medium and added to T$230
cells. RNA was isolated after a 15-min incubation.

Table 1. Strains and plasmids
Table 2. Primers used for PCR analysis.
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