

物質安全データシート (MSDS) を作成し、周知させる。	産業界 労働組合	2005-2010	就業時の病気や事故の発生数が、一定の減少傾向にある。 保護具の研究が実践的な成果を挙げている。	雇用者と被雇用者の意識の向上 技術的能力の確立	労働安全衛生規則 576 条（有害原因の除去） 労働安全衛生規則（3編 2 章保護具等） 有機溶剤中毒予防規則（7 章保護具）、 鉛中毒予防規則（7 章保護具等）、特定化 学物質障害予防規則（7 章保護具）、粉じ ん障害防止規則（6 章保護具）等	呼吸用保護具等、皮膚障害防 止用の保護具について、事業 者の義務、労働者の使用義務 等を規定している。
19 技術的措置が可能な場合には、労働者のばく露を回避すべき；適切な保護具を提供する；保護具装着の容認について；保護具の研究が実践的な成績を挙げている。	国家政府 産業界 労働組合 IOMC (WHO)	2005-2010	就業時の病気や事故の発生数が、一定の減少傾向にある。 保護具の研究が実践的な成績を挙げている。	雇用者と被雇用者の意識の向上 技術的能力の確立	石綿障害予防規則 特定化物質障害予 防規則 有機溶剤中毒予防規 則 鉛中毒予防規則 四アルキル鉛中毒予 防規則 労働安全衛生規則	2005 年に石綿傷害予防規則 が制定された。 近年、石綿による肺がん、悪性中皮腫の労働災害補償認定者数等は急激に増加して いる。
20 労働者を石綿肺、その他のアスベスト関連の病気や職業がんを起こす化学物質、職業性のリスクからロッテルダム条約でカバーされている化学物質、職業性健康障害に基づき有害であるとされている物質から保護する。	国家政府 産業界 労働組合	2005-2010	石綿肺とその他のアスベスト関連の病気、および職業がんの症例数が一定の減少傾向にある。	雇用者と被雇用者の意識の向上 立法	石綿障害予防規則 特定化物質障害予 防規則 有機溶剤中毒予防規 則 鉛中毒予防規則 四アルキル鉛中毒予 防規則 労働安全衛生規則	2005 年に石綿傷害予防規則 が制定された。 近年、石綿による肺がん、悪性中皮腫の労働災害補償認定者数等は急激に増加して いる。
21 職業ばく露限界植の設定に向けた調和した取組みにする、ガイドンスを作成する。	IOMC (ILO, FAO, WHO, UNIDO, UNITAR) 労働組合	2006-2010	ガイドンスが作成さ れる。	国際的、国家作業 グループの確立	厚生労働省告示（作 業環境評価基準） 日本産業衛生学会 (許容濃度)	日本産業衛生学会の許容濃 度は米国 ACGIH の TLV と ほぼ同様の値となっている。 作業環境測定の評価で使用 される管理濃度はこれらと は必ずしも整合していない。

行動	行動主体	目標／時間枠	進捗の指標	実施の側面	関連条項など	安衛法関連規制等から見たSAICM指標の到達状況
138 政府間機関によつて国際的に評価された労働現場での化学物質に関する情報源を、労働現場の参加による形式と言語で、開発し更新する手法を確立する。	IOMC (ILO, FAO, WHO, UNIDO, UNITAR) 国家政府 労働組合 産業界 非政府組織	2006-2010	すべての国で、政府間機関によつて国際的に評価された労働現場での化学物質に関する情報源を、労働現場の参加による形式と言語で、開発し更新する手法を確立する。	GHS	労働安全衛生法 57 条	左記の条項で規定された、ラベルおよびMSDSに関するGHSに基づいて分類・表示されるようになっている。GHの分類・表示システムは日本工業規格 (JIS) で規定され、法で規定された表示・MSDSはこれを参照できる。また、安全衛生情報センターHPにおいて、GHSモデルMSDS、GHSモデルラベルを公開している。
139 適切な保護具の開発に関する研究を促進する。	国家政府 産業界 労働組合	2006-2010	すべての国で適切な保護具の開発が研究される。すべての国に、適切な保護具が入手可能である。	ILO の労働安全衛生の国際戦略 研究機関	労働安全衛生規則 (3 編 2章保護具等)	保護具に関するは、その種類や性能に応じ、国家検定規格やJIS規格があり、技術の進歩等必要に応じて改正等が行われる。
140 政府間機関から労働現場の化学物質に関する情報が、雇用者、被雇用者そして政府に、容易で、便利にそして無料で入手できるようにする。	国家政府 産業界 労働組合 非政府組織	2006-2008	すべての国において、政府間機関の化學物質情報が容易に入手できる方法が確立される。	基盤整備 GHS	労働安全衛生法第 19 条の 3 (国の援助) 同法 28 条の 2 第 3 項 同法 57 条の 5 (国の援助等) 同法 63 条 (国の援助) 同法 71 条 (国の援助) 同法 106 条 (国の援助)	国の援助として左記のような規定があるが、情報基盤整備の遅れから、十分に機能しているとは言いたい。また、各国が協力して実施しているSTDS (Screening Information Data Set)などの情報は無料で入手可能になっている。
141 化学物質安全の情報 (例 ILO, WHO, INFOCAP) を共	IOMC (ILO, FAO, WHO,	2006-2010	既存の国際的ネットワークを特定し、	必要な基盤整備		なお、安全衛生情報センターHPにおいて、GHSモデルMSDS、GHSモデルラベルを公開している。
						海外から的情報 (特に英語)に関するは、ネットワークが

有し交換し提供する国際的情報ネットワークを強化する。	UNIDO, OECD, UNDP) バーゼル条約事務局 労働組合	リンクを強化する。			十分に活用されている。 一方、日本からの情報は、言葉の壁があり、発信が十分では無いようには思われる。 政府が行った規制対象物質のGHSに基づいた分類結果を英語に翻訳し公開している。
142 国レベルでの ILO 安全作業プログラムの確立と、ILO 条約 170、174、および 184 の批准を促進する。	IOMC (ILO) 国家政府 産業界 労働組合	2006-2010	ILO 条約 170、174 および 184 がすべての国で批准され、実施がすべての国でなされ、ILO 安全作業プログラムが確立される。	ILO 条約 能力向上 170 (化学物質)、 174 (大規模産業災害防止)、 184 (農業における安全健康)は、日本では批准していない。	ILO 条約 170 (化学物質)、 174 (大規模産業災害防止)、 184 (農業における安全健康)は、日本では批准していない。
143 有害物質に関する ILO 条約の拡大と更新のための新しいメカニズムを確立し、それらを行動規範、情報の周知、規制、技術的協力などの他のさまざまな活動とリンクさせることにより、労働現場における化学物質の安全使用に対する総合的アプローチを実施する。	IOMC (ILO) 国家政府 産業界 労働組合	2006-2010	有害な物質に関する ILO 条約が更新され、他の関係する戦略とリンクしている。	ILO 条約 能力向上	(ILO の戦略課題で、日本国 内問題ではない。)
144 適切な労働現場の関係者に国際的リスク評価の結果を伝える方法を確立し、雇用者、被雇用者及び行政の関係する役割と責任を規定する。	IOMC (ILO, WHO, UNIDO, UNDP) 国家政府 産業界 労働組合	2006-2010	適切な労働現場の関係者のための国際的リスク評価の結果について周知させるメカニズムをすべての国で確立される。	IPCS OECD 化学物質 プログラム	IPCS、OECD SDS などに 関する情報は入手可能であるが、これらの評価を行政的な施策や事業者の化学物質管理に反映させるメカニズムは確立されていない。
145 化学物質の有害な影響から労働者を守るために国の监察制度の確立を推進し、雇用者と被雇用者間で、化学物質	IOMC (ILO) 国家政府 産業界 労働組合	2006-2010	すべての国において化学物質の安全使用に関する监察制度が確立される。	ILO 条約 能力向上 労働安全衛生法 (10 章監督等)	日本ではさまざまな化学物質管理に関する制度があり、また监察制度もある。

安全を最大にし、労働現場の危険有害性を最小化するための対話を推進する。	非政府組織				制度はよく整備されている。
146 國および国際的なレベルでのソーシャルパートナー間や公共のメディアを通じた化学品質安全関連の情報の周知を強化する。	IOMC (UNEP, ILO, FAO, WHO, UNIDO, OECD, UNDP) バーゼル条約事務局 国家政府 産業界 労働組合 非政府組織	2006-2010	すべての国において、化学品質安全に関する情報の周知の仕組みを確立される。	GHS	法令ごとに化学品質安全に関するデータが集積されているが、それらは統合されておらず、また周知システムは十分ではない。
147 (企業、自営業等) すべてのセクターにおいて労働者の知る権利の重要性を強調する。つまり労働者に提供される情報は環境と同様かわらの安全衛生を守るに十分でなければならない。	IOMC (ILO, FAO, WHO, UNIDO, OECD, UNDP) 国家政府 産業界 労働組合 非政府組織	2006-2010	すべてのセクターで労働者の知る権利が、すべての国で確立される。	GHS 労働安全衛生に関する ILO の国際戦略	労働者に提供される情報は、限定されたものであり、事業者の責務として規定されている。労働者の「知る権利」は規定されていない。
148 化学物質による労働現場の危険有害性を、特に化学物質のコントロール・バンディングのような簡単で実行可能な方法により除去する。	IOMC (ILO, FAO, WHO, UNIDO, OECD, UNDP) 国家政府 産業界 労働組合	2006-2020	化学物質による労働現場の危険有害性を除去する。	ILO 条約と戦略	コントロール・バンディングに関しては、中央労働災害防止協会で、すでに普及活動を行っている。中小零細企業における対策は十分とはいえない。
149 労働環境でばく露される化学物質の危険有害性やばく露から守る適切な方法に関する十分で正しい情報が提供されなければ、被雇用者は危険有害な環境での労働を拒否できる権利を確立する。	IOMC (ILO) 国家政府 産業界 労働組合 非政府組織	2006-2010	すべての国において、被雇用者が危険有害な環境での労働を拒否する権利を確立する。	モデル的な法律 適切な言語による情報	労働安全衛生法 24 条、25 条 (事業者の義務) で見られるように、労働者の安全は労働者の権利というより、むしろ事業者の責務として捉えられている。

【能力向上と技術協力】

行動	行動主体	目標／時間枠	進捗の指標	実施の側面	関連条項など	安衛法関連規制等から見たSAICM 指標の到達状況
255 化学物質の使用と廃棄に直接もしくは間接的に係わるすべての人々に、必要な訓練と能力向上を推進する。	IOMC (ILO, FAO, WHO) 国家政府 労働組合 産業界	2006-2010	訓練能力がある。	ILO 労働安全衛生の地球規模の戦略	労働安全衛生法 59条 (安全衛生教育) 同法 60条 同法 60条の2 労働安全衛生規則 592条7(特別の教育一ダイオキシン)、 石綿障害予防規則	事業者が行うべき労働者に対する必要な訓練が規定されている。

研究成果一覧（平成20年度）

論文発表

発表者氏名	論文タイトル	発表誌名	巻号	頁	出版年
Hiroshi Jonai.	POINT OF VIEW: Legal structure needed on risk from chemicals	The Asahi Shimbun		05/05/2008	2008
Jonai H	Implementation of the GHS in Japan	Ind Health	46	443-447	2008

学会発表

発表者氏名	論文タイトル	発表誌名	巻号	頁	出版年
Jonai H	GHS Implementation in Japan	Fall meeting of the Society for Chemical Hazard Communication in Arlington, USA			2008

翻訳の成果

- ・ 国連危険物輸送勧告 改訂16版
- ・ OECD テストガイドライン : TG404, TG405, TG407, TG408, TG409, TG414, TG416, TG418, TG419, TG420, TG421, TG422, TG423, TG424, TG425, TG426, TG427, TG428, TG429, TG430, TG431, TG435, TG440, TG471, TG473, TG474, TG475, TG476, TG483, TG486
- ・ 欧州 CLP 規則

Implementation of the GHS in Japan

Hiroshi JONAI¹

¹Graduate School of Science and Technology, Nihon University, 1-8-14 Kanda Surugadai, Chiyoda-ku, Tokyo 101-8308, Japan

Received May 22, 2008 and accepted June 11, 2008

Abstract: The GHS is a United Nations Recommendations issued in 2003 which aims to enhance the protection of human health and the environment by providing an internationally comprehensible system for hazard communication. It is expected for countries to implement the GHS as soon as possible with a view to having the system fully operational by 2008. Capacity building projects are ongoing in many countries in order to achieve full implementation. In Japan, GHS-related activities that have been initiated include translation of the GHS documents, gap analysis between the GHS and the current laws, model classification of regulated substances, amendment of Industrial Safety and Health Law, standardization of the GHS elements, development of manual, guidance and educational tools. These activities are briefly described in this paper. Critical issues that impede full implementation of the GHS in the country are also discussed. Focus is given to the system for classification and labelling of hazardous chemicals limited to regulated and controlled chemicals and on the need to develop "Right to know" concepts in chemical management. These issues may be addressed adequately as Japan works towards the full implementation of the GHS.

Key words: GHS, Chemical, Hazard, Implementation, Japan

Introduction

The Globally Harmonized System of Classification and Labelling of Chemicals (GHS)¹⁾ is a United Nations Recommendations issued in 2003 which aims to enhance the protection of human health and the environment by providing an internationally comprehensible system for hazard communication. The GHS includes the following elements: (a) harmonized criteria for classifying substances and mixtures according to their health, environmental and physical hazards, and (b) harmonized hazard communication elements, including requirements for labelling and safety data sheets (SDS).

The World Summit on Sustainable Development (WSSD) held in Johannesburg 2002 encouraged countries to implement the GHS as soon as possible with a view to having the system fully operational by 2008. In response to this statement, the activities to implement the GHS have been done all over the world. In Japan, the government and private sectors have started a series of the projects for the implementation of the GHS. The author is the chief delegate of Japan to United Nation's Sub-Committee of Experts on the GHS (UNSCEGHS).

This paper introduced an outline of projects mainly led by the government and discussed the issues to be addressed in order to fully implement the system in Japan.

Activities towards the Implementation of the GHS

Establishment of the inter-ministerial committee

Around the same time as UNSCEGHS was established, an inter-ministerial committee which consisted of policy makers, GHS experts and industrial representatives was organized in 2001. Its original objectives and tasks were to exchange and share information on GHS among ministries and to play a pivotal role in UNSCEGHS. Seven government offices^a and experts from national laboratories and industries have participated in the inter-ministe-

^a Ministry of Health, Labour and Welfare (MHLW)

Ministry of Economy, Trade and Industry (METI)

Ministry of the Environment (MoE)

Ministry of Internal Affairs and Communications (MIC)

Ministry of Agriculture, Forestry and Fisheries (MAFF)

Ministries of Land Infrastructure and Transport (MLIT)

Ministry of Foreign Affairs (MOFA)

rial committee.

Among the significant actions taken by the inter-ministerial committee included the following:

- (1) Japanese translation of the GHS documents,
- (2) Information sharing among ministries with respect to the relevant domestic laws,
- (3) Classification of chemicals under each relevant domestic law,
- (4) Deliberation on the agenda items and documents of the UN Sub-Committee meetings in order to come up with Japan's position on issues that are of relevance not only to the nation but to the global implementation of the GHS.

Japanese translation of the GHS documents

Translating the GHS draft documents into Japanese was started at the very beginning of the national projects (February 2002) because the Japanese version was considered as an indispensable material for the implementation of the GHS. The inter-ministerial committee acted as an organiser for the translation of documents. The committee, recognizing at that time that the GHS would become an essential element in future chemical management systems, paid particular attention to and ensured that technical terms were harmonized in the Japanese version of the GHS documents to resolve the inconsistencies of terms used in the different laws governing chemical use in Japan. The translation was a joint effort of the multi-sectoral stakeholders that included the government agencies, chemical industry representatives, experts from academia and national/public laboratories.

The work on the Japanese translation brought an unexpected benefit. Government officers engaged in the work became much familiar with the concept of the GHS. In the mean time, they identified similarities and differences between the current Japanese law and the GHS. Through this work, gap analysis was also accomplished.

The Japanese translation of the first GHS documents except the Annexes was completed in March 2004. It took two years because of the arduous task of harmonisation of technical terms and some ambiguities included in the GHS documents. In coming up with the Japanese translation of the GHS documents, the inter-ministerial committee exerted much effort in choosing the most relevant Japanese terms and tried to be as faithful as possible to the original English text. The Japanese versions of the 2nd revised edition of the GHS are now available from the MHLW²⁾ and MOE³⁾ homepages.

Gap analysis between the GHS and current Japanese laws

Differences between the GHS and current Japanese laws were analyzed to identify gaps and issues that will impede the full implementation of GHS in Japan.

Chemicals which are regulated under the current single or overlapping Japanese laws were also identified.

The gap analysis underscored the absence of laws that aim to transmit hazard information to users and handlers of chemicals. Majority of the laws and regulations concerned with chemicals were made primarily for risk management and have been limited to specific safety measures to the exclusion of hazard communication. A handful of these laws included the system for labelling but only for the listed chemicals. Furthermore, the information concerned with a hazard on the label consists of full precautionary statements, few hazard statements and no pictogram. Some signal words are required but different from GHS's.

Activities in each ministry for the introduction and implementation of the GHS (Chemicals regulation law)

There are more than thirty laws or regulations concerned with classification or labelling of chemicals in Japan. The Industrial Safety and Health Law was amended to introduce the GHS in 2005 and became effective from the 1st of December 2006. However, a label made based on the GHS is required only for 99 substances, and SDS for 640 substances.

In December 2005, MHLW started recommending to industries to voluntarily comply with the GHS requirements for labelling of chemicals under the Poisonous and Deleterious Substances Control Law which regulates chemical products containing toxic or corrosive substances. For the time being, other laws and regulations have not aligned its provisions to the GHS and have not signified their intent to do so.

Classification of 1,400 chemicals which are regulated under the current laws

In Japan, the SDS is required for approximately 1,400 chemicals which are regulated under the following laws: Industrial Safety and Health Law; Poisonous and Deleterious Substances Control Law; and PRTR Law. MHLW, MAFF, METI and MOE have decided to introduce the GHS criteria for these chemicals as a joint project, aiming to help industries making labels and issuing SDSs. The classification work was performed by experts from laboratories and the industries. The output of the project was validated by members of the inter-ministerial committee. In early October 2005, the inter-ministerial committee published the tentative classification of 11 chemicals and the finalized output was published at the end of February 2007. The public was encouraged to give its comments that can be conveniently submitted via the website. The final classification results partly amended by the comments can be seen from the website of the National Institute of Technology and Evaluation (NITE)⁴⁾.

The results of the projects are not compulsory, thus, allowing industries to use their own data and classify chemicals on the basis of their own judgement.

Development in GHS Implementation in Japan

GHS classification manual and technical guidance

The development of a GHS classification manual and a technical guidance was another collaborative project of the inter-ministerial committee. These are not regulatory but reference oriented materials. The main objective is to facilitate the classification of the 1,400 chemicals within the limited time schedule, and to eliminate any discrepancies in classification among experts.

One of the unique points of the manual is that it allows for users to refer to data sources that are reliable for the classification of hazards, such as those peer-reviewed by international authorities. Furthermore original scientific papers that principally target highly technical readers are not generally used. This feature of the manual enables industries to have ready access to references that have been rated for their quality and relevance.

The GHS classification manual and the technical guidance in Japanese are also published via NITE's homepage⁴⁾.

SDS under the Japanese Industrial Standards (JIS)

The SDS used in Japan follows the requirements set by ISO. Taking into account the expected future amendments of the corresponding laws, the SDS format under the JIS was revised in accordance to the GHS (JIS Z 7250) in 2005.

The JIS is a set of national standards and the responsible body in its formulation is the Japanese Industrial Standards Committee. Flexible revisions, therefore, are possible in the event of any changes made in the GHS. Given the difficulties concerning revisions of laws, reference to the JIS will avoid the possibility of obsolescence.

JIS on the labelling method of hazards

Under the current Japanese laws, there is neither standard pictogram nor hazard statement regarding hazards. To address this gap, JIS developed the standard labelling methods corresponding to GHS in 2006.

JIS on classification of chemical hazards

JIS-SDS and JIS-labelling system in accordance to the GHS have been developed. However, the classification system of chemicals in Japan has not been aligned with the GHS. Furthermore, there is neither law nor regulation that has incorporated a comprehensive classification system. Drafting of JIS-classification corresponding to the GHS is in progress.

Software to classify mixtures

The software to classify mixtures was developed in Japanese by METI. This is freely available to interested parties after signing up in the METI website⁵⁾.

Guidance for risk-based labelling of consumer products

METI developed the draft guidance for risk-based labelling of consumer products in collaboration with stakeholders coming from the consumers group, manufacturing sector, academia and other partners. The guidance in Japanese is now available in the NITE website⁶⁾.

Miscellaneous activities for the dissemination of GHS

In order to embark on a nationwide public campaign to increase awareness on the GHS, several ministries and organisations developed a package of information, education and communication materials comprising of brochures, audiovisual presentations, and government advisories, among others.

Many training courses on chemical management are being held in Japan. Seminars on GHS and workshops focusing on chemical classification have also been conducted. Participants in these seminars and workshops, numbering to more than three thousand, were safety hygienists, chemical risk managers, those in charge of labelling of consumer products, policy makers, staff in labour standards inspection offices and scientists.

In addition, several research and development projects, parallel with global GHS activities, have been completed. The following are some examples;

Assessment of public awareness of the GHS;

Research to improve information communication for the blind people;

Training needs assessment to obtain skills and knowledge necessary to classify chemical hazards; Development of educational materials to better understand the classification criteria and labelling system of the GHS (*The author has developed several materials in CD format that can be requested free of charge*).

The activities are chronologically summarized in Fig. 1.

Issues to be Resolved

Japan fully implements the laws for maritime and air transportation following the Model Regulations of Transport of Dangerous Good. On the other hand, there are no laws requiring labels and SDS for all hazardous chemicals. Existing laws and regulations in Japan concerning chemical control have been developed for risk control.

The biggest issue then in the implementation of the GHS is that the system for classification and labelling of

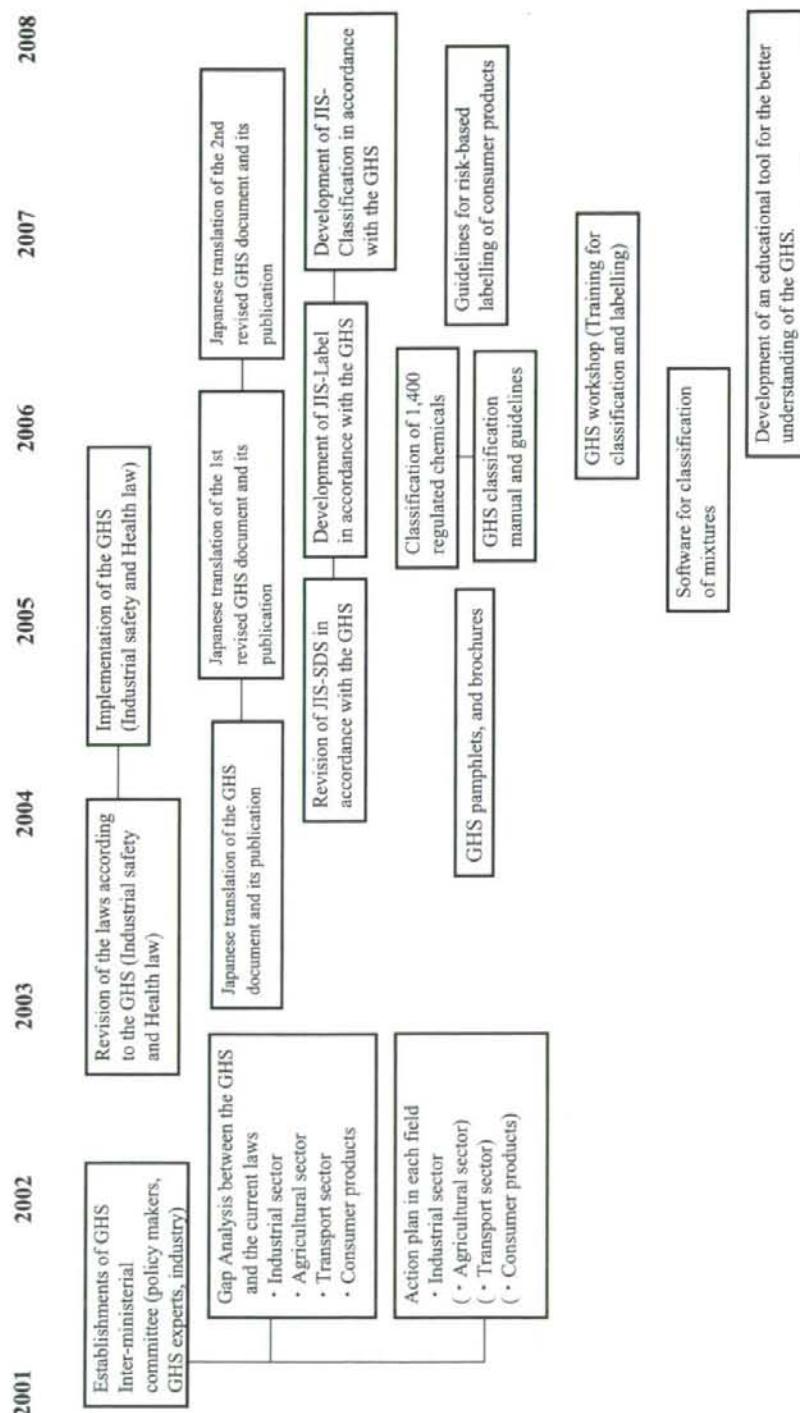


Fig. 1. Summary of the activities for the GHS implementation in Japan.

hazardous chemicals apply only to regulated and controlled chemicals under certain laws. Unlike the GHS that applies to all hazardous chemicals, the Industrial Safety and Health Law of Japan requires labels based on GHS requirements for 99 regulated substances only. Article 119 of the law describes that "The person who violates the provisions regarding labelling shall be punished with a penal servitude not exceeding six months or with a fine not exceeding 500,000 yen." It then becomes difficult for the government to increase the number of chemicals that has to be classified and labelled if the purpose for such will mainly be for risk control. Furthermore, the stiff penalties may dissuade policy makers in adding on this list. In the event that the law prescribes that more chemicals follow the GHS requirements, industries concerned may be hard-pressed to immediately comply because they do not have enough data and human resources to complete the classification and labeling process. This Catch-22 situation puts the Japanese society in a bind where the very law that seeks to protect human health also hinders the implementation of the GHS regarded to be even more vital in attaining protection of human health and the environment.

This selective application of the GHS becomes confusing and, at times, dangerous. For instance in the case of mixtures, content of hazard information will need to refer to those that correspond to the regulated chemical leaving out potentially important information about the chemical that is not regulated. The end result of this classification system may be deficient at the very least or as a worse case, totally erroneous.

The concept of the "Building Block Approach" introduced in the GHS was not intended to delimit the chemicals to be classified but was aimed at providing flexibility in the implementation of the GHS. The fundamental essence is to accept classification of hazards done under regulations set by different sectors as long as these are in accordance with the GHS. In Japan, however, it can be said that the chemicals themselves are the core of the "Building Block Approach".

With consideration of the above issues, Japan needs to step up its initiatives in framing laws that will require

classification and labelling of all chemicals and will confer to users of chemicals their right-to-know about hazardous substances they are exposed to.

It is deplorable that many accidents and diseases caused by chemicals still occur yearly. The GHS has great potential as a preventative strategy in advanced chemical management like Control Banding as well as a good tool for hazard information dissemination. The "Right-To-Know" concept has not been developed for chemical control in Japan partly because of the age-old rule-based control system. Chemical control will be more complicated due to the increasing number of chemicals and the diversity of their use. Chemical control must be done and this responsibility must be shared by every user. Unless people are informed, it is difficult for them to make the proper decisions. Informing the public needs to become part of our government and social fabric. Law maker should establish a legal framework aimed at informing workers and consumers about chemical hazards.

References

- 1) Globally Harmonized System of Classification and Labelling of Chemicals (GHS). http://www.unece.org/trans/danger/publi/ghs/ghs_welcome_e.html. Accessed June 5, 2008.
- 2) Rev.2 Globally Harmonized System of Classification and Labelling of Chemicals (GHS). <http://www.mhlw.go.jp/bunya/roudoukijun/anzenisei07/pdf/f-all.pdf>. Accessed June 5, 2008 (in Japanese).
- 3) Rev.2 Globally Harmonized System of Classification and Labelling of Chemicals (GHS). <http://www.env.go.jp/chemi/ghs/kariyaku2.html>. Accessed June 5, 2008 (in Japanese).
- 4) Classification Results. <http://www.safe.nite.go.jp/ghs/list.html>. Accessed June 5, 2008.
- 5) GHS Classification Tool. http://www.meti.go.jp/policy/chemical_management/GHS/land%20of%20thousand%20of%20GHS%20classification.htm. Accessed June 5, 2008.
- 6) Guidance for Risk-based Labelling of Consumer Products. http://www.safe.nite.go.jp/ghs/risk_consumer.html. Accessed June 5, 2008.

05/05/2008

THE ASAHI SHIMBUN

Workplace accidents involving chemicals appear to be never-ending.

In January, three workers died from carbon monoxide poisoning while laying pipes for industrial water in an underground pit.

A month earlier, a fire at an ethylene plant in Ibaraki Prefecture killed four workers.

Each time such tragedies occur I am reminded of the absence of a national framework to educate the public—workers and consumers both—and bring about preventive measures.

Industrial accidents are nothing new to Japan. There were scores during the period of high economic growth that started in the 1950s, and as a result, industries banded together to create a safe working environment.

Nowadays, however, industry officials are wont to blame accidents on the failure of previous generations to adequately pass down the safety systems established by postwar baby boomers.

The consensus seems to be that generic safety education is all that is lacking.

But is that really the only problem? I cannot help but think there is a more serious issue at play, and one that is unique to Japan: the absence of a system to inform workers of the danger of chemical substances and other hazardous materials.

Such a system has neither been legally established nor even socially accepted in Japan, unlike many other forward-thinking countries.

For proof, one need look no further than the people who developed lung cancer and mesothelioma after repeated exposure to asbestos. "We had no idea we were inhaling such a dangerous substance," is a complaint commonly heard among this group.

Another example was the ignorance of patients who contracted hepatitis C through tainted blood products, many of whom said they had no idea there was a risk of viral infection.

Bluntly speaking, the government and industries have for too long neglected their "duty to inform" the public about potential dangers, while workers and consumers have treated their "right to know" with blissful indifference.

The United States and Europe have been tackling such problems regarding chemicals for several decades. When a product contains a dangerous substance, for example, a warning label is attached to alert users.

In 2003, the United Nations Economic and Social Council published a recommendation in the form of guidelines called the "Globally Harmonized System of Classification and Labeling of Chemicals" (GHS) aimed at protecting human health and the environment. It is an initiative to introduce a global standard to classify and label harmful substances.

I had a hand in drafting the recommendation. The work led to a re-examination of legal frameworks in the United States and Europe, and in a few years a comprehensive, multinational system is expected to be launched for worldwide consumption.

But Japan has no legal framework to adopt the system as is.

Based on the 2003 U.N. recommendation, Japan's Industrial Safety and Health Law was revised in 2006 to require that warning labels be used with 99 substances, but only when found in products used in the workplace. The number is paltry, considering there are 60,000 kinds of chemical substances in the workplace.

The creation of a "safety culture" was proposed decades ago. Unfortunately, based on the numerous problems concerning safety in recent years, I feel we are actually moving backward, away from our goal.

It is important to educate workers and consumers, but it is easier said than done. Before tackling worker and consumer education, we must create a system to alert them to the dangers using labels or other means. If people know that what they are handling is potentially dangerous, it is only natural to believe they will pay more attention and take precautions.

Unless people are informed, it is difficult for them to make the proper decisions. Informing the public needs to become part of our government and social fabric. I urge lawmakers to establish a legal framework aimed at informing the public, from consumers to workers, about product safety.

The author is a professor at the Graduate School of Science and Technology, Nihon University.(IHT/Asahi: May 5,2008)

參考資料： SAICM 世界行動計畫

国際的な化学物質管理のための戦略的アプローチ(SAICM)の概要

●正式名称

Strategic Approach to International Chemicals Management

●背景

- ・1990年代中頃からの、化学物質によるリスクを削減するためのさらなる手法の必要性や、化学物質に関する国際的な活動をより調和のとれ効率のよいものとすべきとする議論等を踏まえ、2002年のUNEP管理理事会において、国際的な化学物質管理のための戦略的アプローチ(SAICM)が必要であることが決議されました。
- ・2002年のヨハネスブルグサミット(WSSD)で定められた実施計画において、2020年までに化学物質の製造と使用による人の健康と環境への悪影響の最小化を目指すこととされ、そのための行動の一つとして、SAICMを2005年末までに取りまとめることとされました。

●これまでの経緯

- ・SAICM策定に向けた具体的な議論は、UNEPを事務局として、3回にわたる準備会合、地域別会合等において進められてきました。
- ・2003年11月、第1回SAICM準備会合がバンコクにて開催され、SAICMの大まかな構成と今後の作業の進め方について了承されました。
- ・2004年10月、第2回SAICM準備会合がナイロビにて開催され、SAICM最終文書の構成・章立て、盛り込むべき事項、今後の作業の進め方などについて議論が行われました。
- ・2005年3～5月に地域会合(アジア太平洋地域は4月4～7日、バンコクで開催)が開催され、政府及び関係者の意見交換が行われました。
- ・2005年9月、第3回SAICM準備会合がウィーンにて開催され、おおよその案文が取りまとめられました。
- ・2006年2月、国際化学物質管理会議(ICCM)においてSAICMが取りまとめられました。国連環境計画(UNEP)において承認されました。

●SAICMの関連文書

- ・ハイレベル宣言(「ドバイ宣言」)(High-Level Declaration) [PDF 24KB]
2020年までに化学物質が健康や環境への影響を最小とする方法で生産・使用されるようにすることを目標に掲げた、30項目からなる政治宣言文。
- ・包括的方針戦略(Overarching Policy Strategy) [PDF 75KB]
SAICMの対象範囲、必要性、目的、財政的事項、原則とアプローチ、実施と進捗の評価について記述した文書。
- ・世界行動計画(Global Plan of Action) [PDF 363KB]
SAICMの目的を達成するために関係者がとりうる行動についてのガイダンス文書として、273の行動項目をリストアップしたもの。

※ 2006年2月、ICCMに提出されたSAICM構成文書案の仮訳は、こちらから御覧いただけます。

※ SAICMの原文(英文)は、まだ最終版が配布されておらず、ICCMに提出された資料(ICCMホームページの文書SAICM/ICCM.1/2~4)が最新版です。

●今後の予定

- 今後、世界保健機関(WHO)や国際労働機構(ILO)などの関連国際機関にも、承認のため提出されます。SAICMのフォローアップのため、国際化学物質管理会議が2009年、2012年、2015年、2020年に開催されます。

●我が国の取組

- 我が国としては、SAICMの考え方を環境基本計画等の政策文書に位置づけるとともに、関係省庁による連絡会議において、SAICMに沿った取組の状況についてフォローアップを行うこととしています。
- SAICM関係省庁連絡会議において、SAICM国内実施計画を策定中です。

※ 関係省庁連絡会議の資料はこちらから入手できます。

※ 諸外国におけるSAICM実施状況に関するセミナー(2008.3.12)について

※ SAICMアジア太平洋地域会合に向けた国内フォーラム(2007.3.16)について

●関連会合

- 「国際化学物質管理戦略(SAICM)アジア太平洋地域会合」について
[PDF 39KB]

●リンク

- SAICM事務局
- ICCM事務局

世界行動計画

(国際化学物質管理会議の文書をもとに環境省仮訳)

摘要

1. SAICM の世界行動計画は、ハイレベル宣言及び包括的方針戦略に記載された約束及び目的を追求するために利害関係者によってとられうる作業領域及び関連する自主的な活動から構成されている。これらは、持続可能な開発に関する世界首脳会議の場で、ヨハネスブルグ実施計画において表明された、化学物質が、人の健康と環境にもたらす有意な悪影響を最小化する方法で使用、生産されることを 2020 年までに達成するという約束を再確認している¹。本計画は、適宜見直されるべきガイダンス文書とみなされるべきであり、記載されている活動は、その適用可能性に応じて、SAICM の実施期間中に、関係者によって検討・実施されるべきものである。
2. 本摘要は、政策決定者のために、世界行動計画の構成と、SAICM の目的を達成するためにとられうる活動の一覧表について簡潔に概観することをねらいとしている。世界行動計画には、可能な作業領域並びにその関連活動、行動主体、目標と時間枠、進捗の指標及び実施の側面について、SAICM の包括的方針戦略に含まれる 5 分野の目的、すなわち、リスク削減、知識と情報、ガバナンス、能力向上と技術協力及び不法な国際取引の 5 項目に沿ってグループ化されている。本摘要の目的上、複数の分野にまたがる横断的な措置を表わすために、追加の見出し「一般的な実践活動の改善」を用いている。
3. 本摘要の後に 3 つの表を掲載する。表 A は、作業領域及びその可能な関連活動の番号の要約表である。表 B は、作業領域とともに、その可能な関連活動、示唆される行動主体、目標と時間枠、進捗の指標及び実施の側面を一覧表とし、パラグラフ 2 に挙げた 5 分野の目的に対応した 5 つのセクションとして記載している。それぞれの作業領域は、要約表 A では単一の主要なカテゴリーに記載されているものの、詳細な表 B においては複数の目的の下で現れることがある。行動主体、目標と時間枠、進捗の指標及び実施の側面を扱う欄は、完全には議論されておらず、合意に至るまでの時間がなかった。しかし、関係者が関連する活動を実施するにあたり、これらが有用かもしれない。表 B において使用されている略語の表も添付されている。
4. 国際化学物質管理会議参加者は、<http://www.chem.unep.ch/saicm> から入手可能な文書 SAICM/ICCM.1/4 の表 C に反映されているいくつかの活動について、決定に至ることができなかった。世界行動計画は SAICM の目的の達成を助けるための進化するツールであることに留意し、関係者は、これらの項目を今後議論しうるものである。国際化学物質会議の第 1 回会合と第 2 回会合の間において、地域会合の開催などの活動がなされ得る。

¹持続可能な開発に関する世界サミット報告、南アフリカ、ヨハネスブルグ、2002 年 8 月 26 日-9 月 4 日 (United Nations publication, Sales No. E.03.II.A1 and corrigendum)、第 1 章決議 2 附属書

5. さまざまな目的の分野は、それらに対応する作業領域と共に、密接に相互連関している。したがって、化学物質の不適正な管理から人の健康と環境を保護するために、数多くのリスク削減活動が必要である。これらのリスク削減活動の大多数は、化学物質に関する我々の知識と情報、化学物質に関連するすべての部門におけるガバナンスの取決め（体制的協調、規制の枠組みと公共政策を含む）及びそのライフサイクルすべてにわたる化学物質の適正管理に関連する一般的な習慣によって支えられる必要がある。さらに、開発途上国及び移行経済国の活動を支援するための、有意義で時宜を得た能力向上及び技術支援は、化学物質の不適正な管理に起因する人の健康と環境へのリスクを削減する上で実質的な改善を得るために必要不可欠である。

6. 世界行動計画はまた、地球的、地域的、国家的及び地方的なレベルにおけるすべての関係者にとって、化学物質の適正管理を支援する彼らの活動の現状を評価し、適正管理における格差に対処するための優先事項を明らかにすることを含め、ガイダンスとしての用を果たす。優先事項と時間枠は、例えば化学物質管理の現状とある国においてある手段をとる能力を考慮すると、各国間で異なるであろうことは強調すべきである。政府とその他の関係者は、各国の情勢及びSAICMの目的に合致した化学物質の適正管理のための適切で包括的な能力を築き維持していくために、柔軟な計画を採用することが想定されている。

7. 一般に、以下の活動を優先すべきである；

- (a) 先進国と、発展途上国及び移行経済国における化学物質の適正管理のための能力格差を縮めることに焦点を置いた活動
- (b) 既存の協定と作業領域の実施を支援する活動
- (c) 既存の協定と作業領域で対処されていない問題を対象とした活動
- (d) 2020年までに以下のことを確実にするための活動
 - (i) 科学に基づくリスク評価に基づき、そして費用と便益、より安全な代替物質の利用可能性とそれらの有効性に配慮しつつ、人の健康と環境に不合理か他の手段では管理できないリスクをもたらすとされる化学物質又は化学物質の使用については、もはやそのような用途のためには製造・使用されず、
 - (ii) 科学に基づくリスク評価に基づき、費用と便益に配慮しつつ、人の健康と環境に不合理か他の手段では管理できないリスクをもたらすとされる化学物質の意図しない放出によるリスクは、最小化される
- (e) 不合理で管理不可能なリスクをもたらす化学物質を対象とした活動
- (f) 化学物質の健康リスク及び生態リスクに関する、科学に基づく適切な知識の生成を促進し、それをすべての関係者に利用可能なものとするための活動。

8. 多くの作業領域を最も有効なものとするには、協調して取り組むことが重要である。そのため、すべての関係者にとって、地球規模の優先事項に関する適切な協力的活動をとることが重要である。これらは、特に以下を含んでいる。

- (a) 脆弱な集団を含む関係者と協議しつつ、活動の優先順位付けのための計画作成を含めた広範な開発課題に、化学物質問題を統合すること。

- (b) 健康、安全、労働安全衛生及び環境に関する既存の関連する国際的な条約の批准及び実施を促進すること。
- (c) 化学品の分類および表示に関する世界調和システム（GHS）及び汚染物質排出移動登録（P R T R）のような、環境と健康及び化学物質からの保護のための既存の国際的に認識された基準、手段及びアプローチの実施を促進すること。
- (d) 水銀やその他の世界的懸念のある化学物質から生じるリスクが最小化されるよう、削減を促進すること。
- (e) 有害廃棄物の量及び毒性の削減を促進すること。
- (f) 化学物質及び有害廃棄物の不法な取引を防止するための努力を推進すること。
- (g) 化学物質及び有害廃棄物に関する問題のすべての領域に対処するため、地域及び国センター及びその他の関係者の間のより大きな協力を推進すること。
- (h) 有害性の強い駆除剤を削減し、段階的に廃止するため、代替化を推進すること。
- (i) すべての関係者における化学物質の適正管理に関する能力向上、教育及び訓練並びに情報交換を推進すること。
- (j) すべての関連する産業界における自主的なイニシアティブ及びプロダクトスチュワードシップを推進すること。
- (k) ガソリン中の鉛の段階的な廃止を推進すること。
- (l) 汚染された地域の浄化を推進すること。

リスク削減の支援策

9. リスク削減の目的において、人の健康と環境の保護を目的とした作業領域は、特に脆弱な集団に関する優先的懸念事項に対処するための行動計画策定を含むであろう。女性や小児の健康を保護するための施策の例として、受胎前や妊娠中、乳幼児期、小児期及び思春期を通して化学物質への暴露を最小化することが挙げられる。労働者のための労働安全衛生は、国による査察制度や化学物質による作業環境の有害性を最小化するための適切な労働安全衛生基準の施行によって推進されるであろう。安全かつ効果的な代替物質の開発・使用を含め、評価と関連研究が優先づけられる可能性のある物質のグループには、以下のものが含まれる－残留性蓄積性毒性物質（PBTs）、高残留性・高蓄積性物質、発がん性、変異原性の化学物質と、とりわけ生殖・内分泌、免疫、神経系に悪影響のある化学物質、残留性有機汚染物質（POPs）水銀や世界的な懸念のあるその他の化学物質、高生産量又は高使用量の化学物質、後半に開放系使用している化学物質、その他の国レベルでの懸念のある化学物質。有害廃棄物の最小化は、国家の計画と政策や、啓発活動と取り扱い者の保護によって促進されるであろう。汚染された土地は、特定と修復が議題である。汚染防止措置には、ガソリン中の鉛の段階的廃止が含まれるであろう。中毒や他の化学物質事故への対応能力が強化されるであろう。

知識と情報の強化

10. 知識と情報の強化措置には、化学物質のライフサイクルのいずれかの段階において有毒な物質に暴露する可能性のある人々を対象とした教育、訓練及び啓発活動を改善することと、正当

な営業秘密の必要性に配慮しつつ、市場にあるすべての化学物質の有害性についてのデータを収集し周知することが含まれるであろう。この分野におけるその他の措置として、人の健康と環境に対する化学物質の影響のモニタリングの強化、調和されたリスクアセスメント、GHS の実施の努力と、国の環境汚染物質排出移動登録制度（PRTR）の策定と公表などがある。

ガバナンス：体制、法規、および方針の強化

11. SAICM のガバナンスに関する目的の中心は、有害廃棄物の越境移動及びその処分の規制に関するバーゼル条約、国際貿易の対象となる特定の有害な化学物質及び駆除剤についての事前のかつ情報に基づく同意の手続に関するロッテルダム条約、残留性有機汚染物質に関するストックホルム条約、労働者の保護に関する ILO(国際労働機関)条約などの化学物質や有害廃棄物に関する既存の国際的取決めを批准し、実行するために国の法制度を点検する措置と、国内的及び国際的なレベルでの化学物質安全政策と活動に関して、協調と相乗作用を改善するための措置であろう。もう一つの中心となる分野は、化学物質のライフサイクルにおける管理において、特に女性を含むすべての関係者の参加を確実にするための措置であろう。開発援助、持続可能な開発、及び貧困削減計画のための戦略の中へ化学物質管理を統合する措置は、資源をより効果的に化学物質安全活動に振り向けるために重要であろう。ガバナンスの分野におけるその他の措置には、化学物質事故時の緊急準備・対応システムの開発、保護区域における化学物質の使用に関する検討、化学物質の製造と使用に起因する人の健康と環境の被害に関する責任・補償制度に関する訓練、化学物質と有害廃棄物の不法な取引を防止・探知する活動などが含まれるであろう。

キャパシティー・ビルディングの促進

12. キャパシティー・ビルディングの措置は、地方、国及び地域レベルでの SAICM の体系的実施を支援するために必要な技能を、協調の下、戦略的計画、リスク評価・管理、試験・研究及び不正取引の規制を含む化学物質安全性の全分野にわたり提供するための、職員の訓練を含んでいる。

不正な国際取引への対処

13. 化学物質と有害廃棄物の不法な取引を防止し、探知するために、化学物質と有害廃棄物の越境移動に関する国際条約のより効果的な適用に向けた努力を含む、国家、地域及び国際レベルでの活動が必要である。

一般的な実践活動の改善

14. 作業領域の表には、利用可能な最高の技術(BAT)と環境のための最良の慣行(BEP)に従ったクリーナープロダクション手法の開発や実施など、一般的な化学物質管理の実践活動を改善するための多くの活動が含まれる。同様に、化学物質を使用しない代替手法の使用も含む、より良き農業手法が推進されるであろう。製品の安全な生産と使用のための企業の社会及び環境に対する