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M-step:

LA

gl 2) = ®,, z\—f"-?a. le.g;)

Cir

if
i EH r p[:h | Cia Gy )

R
'

% ‘.\IJ / |
!?{g.' [ :'h )ioe n(.i!z a\.’— -!,[ :J.‘ | {‘J‘L: J }

it Yoo
M,
GG r
N GG

+ T plz,|g,.¢/)

.\
ﬁ(:. ] b K*""Z;\;—“ﬂ{:" |L.I"‘gj)

CoG

M, .
oo XL (e 8,.8,)

S R

_;_Il— P "‘ ‘-"'IJ | Cr' 1O )

L aYer

+ RE'('

Parameter Settings in
Our Experiments
We set the number of latent clusters. H, at 128 and

used a uniform distribution for the weights (ie 1) of

both 2MAM and 3MAM in all cases. We iterated the
EM algorithm until the improvement of the observed
log-likelihoods between two successive iterations is
less than 0.001.

Data

Cancer-Gene and

Cancer-Cancer Co-occurrences
OMIM (Online Mendelian in Man) is a human-curated
database, containing the comprehensive and
authoritative information on human genes and genetic
disorders. Our focus is placed on genes which are
related with cancers, and we used a software tool

CGMIM, which extracts the description section of

OMIM records to obtain cancers and associated
genes. The CGMIM builds a synonym list from
International Classification of Disease for Oncology
(ICD-0) [14]. The list maps genetic disorders into
21 different types of cancers, which are defined by
the National Cancer Institute of Canada. They are
bladder, brain, breast, cervix, colorectal, esophagus,
kidney. larynx, leukemia, lung, lymphoma, melanoma,

myeloma, oral, ovary, pancreas, prostate, stomach,
testis, thyroid and body-of-uterus, We obtained the
two types of co-occurrence datasets from the OMIM
database downloaded in Oct 2005. Our datasets are
altogether 2,017 genes associated to cancers, 3,743
cancer-gene pairs and 206 cancer-cancer pairs.

Gene-Gene Co-occurrences
Since gene-gene co-occurrences are not available in
OMIM, we obtained this kind of co-occurrences from
the Medline database. We used Locuslink [34], ie a
human curated database, to avoid errors that may occur
in identifying gene names in Medline. The Locuslink
has a list of links, each of which connects a Locus 1D
with a PubMed ID, meaning that we can see whether
a gene (specified by a Locus ID) is in an abstract
(specified by a PubMed ID) or not.

We used a file available at the following ftp site,
and the file we used was generated at Dec 2004:

ftp://ftp.ncbi.nih.gov/refseq/locusLink

From this list, we selected Medline records containing
one or more human genes, focusing on “human” genes
only, We then generated gene-gene co-occurrences
from the selected Medline records. Thatis, if two genes
are in a same Medline record, we can say that these
LWO genes co-occur.

We found some Medline records have a large
number of genes. For example, arecord with PubMed
ID 12477932 contains more than 9,000 human genes
by showing all genes in a microarray experiment. Thus,
we removed the record, each of which has more than
10 genes. We note that this is a normal procedure in
dealing with Medline records. For example, Wilkinson
et al also put this kind of restriction to filtering Medline
records for finding communities of related genes [46].

Our focus is on cancer associated genes, and a
gene-gene co-occurrence pair was removed unless
both genes of the pair are in the 2,017 genes of our
cancer-gene co-occurrence dataset, Finally we
obtained 3,118 gene-gene pairs from Medline.
Table 1 shows a summary of the data information.

Table 1: The size of co-occurrence datasets.

Item Size
gene type 2,017
gene-gene 3,118
cancer type 21
cancer-cancer 206
cancer-gene 3,743
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Preliminary Verification on
Gene-Gene Co-occurrence Dataset
Focusing on genes in cancer-gene Co-0CCUITence pairs
from OMIM, we attempted to confirm that two genes
in each gene-gene pair from Medline are associated
to a same cancer with high probability. When both
two genes in a gene-gene pair are associated with at
least one same cancer, we call such a gene-gene pair
apositive pair, and we computed the ratio of positive
pairs to all gene-gene pairs, which we call the positive
ratio.

We found that among total 3,118 gene-gene
co-occurrence pairs, 1,804 (57.86%) are positive
pairs. We then reduced the size of gene-gene pairs by
the number of co-occurrences and checked the posi-
tive ratio. Table 2 summarizes the obtained results,

As shown in the table, with increasing the co-
occurrence number of gene-gene pairs, the positive
ratio increased. For example, when the number of
co-occurrences is set at more than one, 490 (64.64%)
out of 758 gene-gene pairs are positive pairs. Fur-
thermore, as a baseline, we checked the positive ratio
of randomly generated pairs, That is, we randomly
generated 3,118 gene-gene pairs 1,000 times using
our 2,017 cancer associated genes and checked the
average positive ratio for them, The average posilive
ratio was only 26.65%, with minimum 24.05%,
maximum 29.76% and standard deviation 0.0083,
which is far less than those obtained by our gene-gene
co-occurrence dataset. These results clearly indicate
that the motivation of adding gene-gene co-occurrence
data in Medline to the cancer-gene and cancer-can-
cer data from OMIM would be reasonable.

Experimental Results

Predictive Performance of
Mixture Aspect Model

Evaluation Procedure

We evaluated the performance of MAM by cross-
validation on predicting associated cancer-gene pairs.
We examined four types of MAM (including AM).
That is, we first built AM using only the cancer-gene

Table 2: The ratio of positive pairs in gene-gene co-occurrence dataset.

# co-occurrences - (random) >=1 >1
Dataset size 3,118 3,118 758
Positive ratio (%) 26.65 57.86 64.64

co-occurrence dataset. We then tested two different
2MAM by adding cancer-cancer or gene-gene pairs
to the cancer-gene pairs, which correspond to 2MAM
(CGH+CC) or ZMAM (CG+GG), respectively. Finally
3IMAM was examined by using all these three types
of co-occurrence datasets.

To examine the effect of the traiming data size on
the performance of our models, we checked three dif-
ferent data-size ratios of training to test datasets, 3:1,
1:1 and 1:3, in our cross-validation experiment. For
example, in the 1:1 case, we randomly divided the
original cancer-gene dataset into two subsets of roughly
equal size, and then alternately selected one subset as
a test set and the other as a training set. We carried
out 50 rounds of the cross-validation to reduce the
possible biases caused by random partitioning. In each
round, to compare the performance of different mod-
els, we kept the testing dataset unchanged while add-
ing another type of co-occurrence dataset. In this way,
we made predictions on the same test dataset. We
note that AM cannot compute the likelihood for a can-
cer gene pair in the test dataset unless a gene of this
pair appears in the training data. So we removed all
the pairs which are not in the training data but in the
test dataset. We then used all remaining pairs as posi-
tive test examples. Please note that this experimental
setting is advantageous to AM and not to MAM. Nega-
tive examples, which were used for evaluation only,
were randomly generated to be included in neither the
training dataset nor the positive test dataset. The size
of negative test dataset was set as the same as that of
positive test dataset.

Evaluation Measures

1) Area Under the ROC Curve (AUC)
The performance of each probabilistic model is
evaluated by the ability to discriminate positive
examples from negative examples in test data
of our cross-validation. We used AUC (Area
Under the ROC curve) to evaluate the
discriminative performance of a model. The AUC
is computed from an ROC (Receiver Operator
Characteristic) curve. The ROC curve is drawn
by plotting “sensitivity™ against “false positive rate”,
using the ranked cancer-gene pairs. The sensitivity

>2 >3 >4 >5 >6
379 276 152 122 99
68.34 69.91 70.2 72.13

76.77
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Ly

(or true positive rate) is the proportion of the
number of correctly predicted positive examples
to the total number of positive examples. The false
positive rate is the proportion of the number of
false positive examples to the total number of
negative examples. More concretely, once we
estimated the parameters of a probabilistic model
from training data, we computed the likelihood of
each cancer-gene pair in test data and ranked them
according to their likelihoods. We then set a cut-
off value to separate positive examples from
negatives and computed the sensitivity and the false
positive rate by changing the cut-off value from the
highest likelihood to the lowest. We [inally plotted
all obtained values of the sensitivity and the false
positive rate to draw an ROC curve.

The AUC, a popular metric for measuring the
performance of different models [5, 18], can be
computed as the area under this ROC curve. We
can see that the larger the AUC, the better the
performance of the model. We further used the
paired sample two-tailed r-test to statistically
evaluate the performance difference between
3MAM and another model. Since we run
crossvalidation 50 times, we have at least 100
values in each of the three different ratios, and so if
the f-value is greater than 3.50 (2.36) then the
difference is more than 99.9% (98% ) statistically
significant.

Log-likelihood Distribution on Positive Test

All these four probabilistic models are trained in
an unsupervised manner and the maximum
likelihood setting, meaning that they are trained to
provide the maximum likelihoods to given training
data. In addition, conveniently enough, they have
the same (common) set' of parameters, ie p(c |z,,),
plg; |z,) and p(z,). Thus, we can compare the four
models each other by the distribution of the
likelihoods for positive test examples, given by each
of the models. If a model provides positive
examples with higher likelihoods than those of
another, we can say that this model is better than
the other.

Results

)AUC

Table 3 shows the AUC for each of the four models
at different data settings and the t-value (in
parenthesis) between the AUC of 3MAM and that
of another model.

Table 3: AUCs and t-values (in parenthesis) obtained
by 50 rounds of cross-validation on cancer-gene pairs.

Ratio of training to test data

Mot 31 111 13
aMAM
(CG+CC+GG)  76.1 746 73.2
2MAM 75.8 742 718
(CG+CC) (2.56) (2.44) (12.9)
SMAM 739 71.4 68.3
(CG+GG) (17.2) (22.5) (38.0)
AM 74.1 705 64.9
(CG) (14.7) (26.3) (55.1)

This table clearly shows that SMAM outperformed
the other three models, and the second best model
is 2MAM (CG+CC). We can easily see that,
compared with AM, the SMAM improved around
210 9% in the discriminative accuracy. Furthermore,
the t-values showed that 3MAM outperformed all
other models by a statistically significant factor in
all cases. These results indicate that incorporating
cancer-cancer and gene-gene pairs from diverse
sources improved the predictive performance
obtained by cancer-gene pairs only.

In addition, we note the following two points on
these results: First. interestingly, 2MAM (CG+GG)
outperformed AM in |:]1 and especially 1:3 cases,
but not 3:1 case. This is probably because gene-
gene co-occurrence data comes from the different
source, Medline, which can supplement original
data, when it is scarce, and can achieve better
performance. Second, since we have only 21 type
of cancers and 2,017 genes, some putative negative
test examples must be positive. This means that
the performance of our model may be under-
estimated.

2) Log-likelihood Distribution on Positive Test
When the probability parameter has a uniform
distribution, a randomly generated cancer-gene pair
has the following log-likelihood:

log I—x# =-4.63
21 2,017

In our unsupervised setting, the log-likelihood of a
positive example should be larger than the above
value. In other words, when positive (test) examples
are given, a better trained probabilistic model would
provide a larger number of examples whose log-
likelihoods are larger than the above value.

'"We note that trained models have different parameter values because the trmning algorthms are different.,
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Figure 1: Cumulative number of positive examples with higher log-likelihoods.

Thus, given a cut-off value, we checked the number
of positive test examples having log-likelihoods
larger than the given cut-off value. Figure | shows
the counted cumulative number of positive test pairs
with higher likelihoods against a given cut-off value.
This figure is drawn from the average over the 50
rounds of our cross-validation at the 3:1 ratio of
training to test data, We found that 3aMAM is clearly
the best among the four models, always keeping
the largest number of examples whose likelihoods
higher than a given cut-off value. These results also

using all the three types of co-occurrence data and
then computed the log-likelihoods of all cancer-gene
paris that are not in the current cancer-gene co-
occurrence data. We repeated this procedure 100 imes
and ranked the new pairs according to the average
log-likelihoods over 100 times. Table 4 shows the list
of top 20 pairs with their log-likelihoods, and a more

Table 4: 20 Cancer-gene pairs with highest log-
likelihoods that are not in aurtra'ming dataset.

confirmed the performance advantage of SBMAM ~ Cancer Type  Gene Name  Log-likelihood
over other models and showed adding cancer- QVARY TP53 ~3.078
cancer and cancer-gene datasets is effective. COLORECTAL BCL2 -3.085
Another empirical finding in this analysis is that STOMACH TP53 -3.113
2MAM (CG+GG) outperformed 2MAM tsﬂgﬁmn CB}E}I((NM :ggf
(CG+CC) in the range of larger than — 4, while  pANGREAS P53 _1.199
2MAM (CG+CC) outperformed 2MAM BREAST NEKB1 —3.222
(CG+GG) in the range between — 4.6 and — 4. THYRQID TP53 -3234
LYMPHOMA TNF -3.235
Mining and Analyzing Unknown o e e
Cancer Associated Genes KIDNEY TP53 ~3.269
BREAST TNF —-3.293
Mining New Cancer-Gene I(":%LIJ_E?E@TAL m’; :g:g?g
Co-occurrences LYMPHOMA NF NFKB1 -3.316
We trained 3MAM using all three types of co- LUNG TNF -3.323
occurrence data and tried to find new associated cancer  COLORECTAL CASP8 -3.330
gene pairs which are unknown in the current literature. EE%LA}I(!EMIA ggg” N g%

The procedure is as follows: We first trained 3MAM

368
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detailed list of top 1,000 pairs is given in Table | of
the on-line supplementary information. The first,
second, third and fourh columns of the on-line
information show cancer names, HUGO IDs [43],
genes and log-likelihoods, respectively.

As shown in Table 4, the top 20 list has some
famous oncogenes such as TP53, BCL2 and TNFE
This result implies that our prediction worked well,
because these popular genes must be related with a
lot of different types of cancers. So we can expecl
that these relations must exist, even if the cancer-gene
co-occurrences in Table 4 are not in OMIM. In other
words, we may say that these relations are easily ex-
pected. Thus in the next section, we focused on genes
which are specific to some cancer but unknown and
tried to analyze how the found genes are related with
the corresponding cancer.

Mining New Genes Specific to Cancer

We computed the following score for all cancer-gene
pairs by using the probability parameters of 3MAM,
which was trained by using all three types of training data.

plg,le)
R(gr,q):———-—_
Zp(g, lc)
where
Z.p(c|z,)p(g,|2,)p(z,)
plg,le)=

Z, Pl |28 | 2)P(2y)
The p(g;| c;) is the conditional probability that given
a cancer type ¢;, g, is related with the ¢;. Thus the
score R(g;, ¢;) is the ratio that a gene g, is related
with ¢,, comparing to all the other cancer types. That
is, it is the probability over cancer types and shows to
what extent gene g, is specific to cancer ¢;. Once
we computed the score for each pair, we sorted the
values for each cancer and selected the top 20 genes
which are not in the cancer-gene pairs in the training
data. Table 2 of the on-line supplementary informa-
tion shows the list of top 20 genes of each cancer. The
first, second, third and fourh columns of this file show
cancer names, HUGO IDs. genes and parameter val-
ues, respectively.

These pairs are unknown pairs in OMIM and
Medling, but our method suggested that each of them
has a strong relationship between a cancer and a gene.
In fact, we can see a biological relationship for each
pair from the literature. Below we briefly describe the
biological, medical and genetic relationships on each
pair of the list, for only the top gene of seven cancers
out of all 21 cancers, owing to the space limitations,

Brain:

The top is MMP17. According to Puente et
al [36], they revealed that MMPI17 is expressed
mainly in the brain, leukocytes, colon, ovary
and testis, using northern blot analysis of
polyadenylated RNAs isolated from a variety of
human tissues. This implies MMP17 can be related
with brain cancer.

Breast:

The top is ZAP70, a member of the Syk tyrosine
kinase family. Recently, Gatalica and Bing [ 15] pointed
out that the loss of Syk tyrosine kinase expression
characterises a subset of breast carcinomas. This
implies a relationship between ZAP70 and breast
cancer.

Colorectal:

The top is CYPIAIL. Hou et al [21] recently
reported the relationship between the CYPIAL
polymorphism and the risk for colorectal adenoma.
Their summary is that the joint carriage of CYPIAI
and NQO1 polymorphisms, particularly in smokers,
was related to colorectal adenoma risk, with a
propensity for formation of multiple lesions. This would
be an evidence for the relationship between CYP1AI
and colorectal cancer. The second is MAD2. The
expression profile of MAD?2 in colorectal cancer was
investigated by Li et al [26]. Their result shows that
the defect of spindle checkpoint gene MAD?2 is
involved mainly in colorectal carcinogenesis. So this
clearly indicates the relationship between MAD2 and
colorectal cancer.

Lymphoma:

The top is LMOI. In the recent study of
leukemogenesis, Lin etal [27] found that almost 60%
of transgenic mice that overexpressed both OLIG2
and LMO1 developed pre-T LBL with large thymic
tumor masses. This reveals the association between
LLMO1 and lymphoma cancer.

Pancreas:

The top is NR5A2. NR5A2, a member of a
nuclear receptor subfamily, is a liver recepter
homolog! (LRH-1). Fayard et al [ 12] showed that
LRH-1 is abundantly expressed in pancreas.
Furthermore, their in situ hybridization and gene
expression studies demonstrated that both LRH and
carboxyl ester lipase (CEL) are co-expressed and
confined to the exocrine pancreas.

Cancer Informatics 2006: 2
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Prostate:

The top is KLK 10, ie kallikrein 10. Bharaj et al [3]
showed the association between single nucleotide
polymorphisms in the human KLK 10 and prostate
cancer. Petraki et al [31] studied the localization of
human KLK10 in benigh and malignant prostatic
tissues and the correlation between the expression of
KLK10 and prostate cancer (PC) prognosis. They
pointed out that kallikreins may function as tumor
suppressors or are down-regulated during cancer
progression. These results imply the relationship
between KLK 10 and prostate cancer.

Testis:

GAGEBI is the top. Chen et al [9] isolated GAGEB1
by differential display PCR. They found that GAGEBI
expression was restricted to testes and placenta on
human multiple tissue Northern blots. This shows some
relationship GAGEB 1 and testis cancer.

Concluding Remarks

We have applied a new probabilistic model MAM,
which was proposed by us in our research on mining
implicit chemical compound-gene relationship, to the
problem of finding new cancer associated genes from
OMIM and Medline. MAM can integrate different
types of co-occurrence datasets effectively, and we
found that MAM performed very well even when
co-occurrence datasets are gathered from
heterogeneous sources.

In this work, we used a uniform distribution for the
component weights (1) of our mixture model to allow
users additional control. Interesting future work would
adjust the weights to achieve the maximum predictive
performance. On the other hand, the gene-gene co-
occurrence data can come from a different source other
than Medline. Since microarray expression data can
reveal the biological relationship of genes, it would be
very interesting to integrate gene-gene co-occurrence
data from microarray expressions,
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Ahstract

Glutathione-S-transferase placental form (GS'T-P) is markedly and specifically inducible in rat chemical hepatocarcinogenesis
and is a reliable marker protemn for pre-neoplasia. To gain insights into the molecular mechanisms at the early stage of hepatocar-
cinogenesis and hepatotoxicity, we investigated the gene expression profile by DNA microarray analysis. We prepared RNA from
GST-P-positive foci in three individual rats and compared with normal liver sections from three individual rats, and labeled RNA
was individually hybridized onto Affymetrix GeneChip Rat Expression Array 230A. DNA microarray analysis showed distinctly
different profiles of dysregulated gene expression and supported the previous finding that some enzymes involved in metabolism and
detoxification are overexpressed and suppressed. Here we discovered that several DNA-binding transcription factors and cofactors,
including sterol-regulatory-element binding protein | (SREBP1) and Wilms' tumour | (WT1)-interacting protein, and their target
genes were dysregulated in GST-P-positive foci. Moreover, genes involved in chromatin components, histone modification enzymes,
and centrosome duplication were highly expressed. These genes were not previously known to be up-regulated during chemically
induced hepatocarcinogenesis, DNA microarray analysis using RNA prepared from tumor marker-positive foci and control tissues
provided a candidate gene link to the early stage of carcinogenesis and hepatotoxicity.
© 2006 Elsevier Ireland Lid. All rights reserved.
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1. Introduction

Rat glutathione-S-transferase placental form (GST-P)
15 a phase Il detoxification enzyme and its expression
1s completely repressed in normal liver. GST-P 1s also
a well-known tumor marker that is specifically induced
during chemical hepatocarcinogenesis in rats (Sato,
1989; Satoh et al.. 1985). GST-P expressed single cells
are detected in the liver after treatment of diethylni-
trosamine (DEN) and might be precursors of preneo-
plastic foci and nodules (Satoh et al., 1989; Satoh et al.,
2005). Hepatocyte nodules in six models of liver car-
cinogenesis were analyzed and the amount of GST-P was
elevated in all types of nodules (Eriksson et al., 1983).
Measurement of GST-P-positive foci 1s rapid detec-
tion of carcinogenic agents in the medium-term rat
liver bioassay (Ito test), which is considered 1o be a
reliable tool for prediction of promoting or reducing
activity of chemicals on hepatocarcinogenesis. Over
300 chemicals have already observed and this test was
recommended as an alternative to long-term carcino-
genicity testing at the International Conference on
Harmonization (ICH) (Ito et al., 2003). GST-P-positive
foct are induced by not only DEN but many chemicals.
Gamma-glutamyltranspeptidase is also expressed in
GST-P-positive foci derived from precursor cells and
GST-P-positive foci are important for detoxification for
carcinogen (Satoh et al., 2005). Carcinogenic activity of
nitroso compounds, including DEN, is well studied, but
the mechanisms of hepatotoxicity of these compounds
are poorly understood. Analysis of GST-P-positive
foci 1s valuable for the understanding of the molecular
mechanisms of hepatocarcinogenesis, detoxification
and hepatotoxicity.

Transgenic rats using the regulatory element of the
GST-P gene revealed that a gene involved m liver
cell transformation is not physically linked with the
GST-P gene, but the expression is regulated by com-
mon transcription factors (Morimura et al., 1993). Fur-
ther, we identified the enhancer element responsible for
tumor-specific expression of the GST-P gene (Sakai and
Muramatsu, 2005: Suzuki et al., 1995). This indicates
that analysis of the expression profile in GST-P-positive
foci leads to the identification of the responsible gene for
liver cancer and understanding the mechanism of hepa-
tocarcinogenesis,

Carcinogenesis is a genetic and epigenetic disease
arising from multiple molecular changes and these
events lead to changes in gene expressions. Recently,
it was reported that specific differences in the gene
expression profile revealed by ¢cDNA microarray anal-
ysis of GST-P-positive foci and the surrounding tissue,
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and metabolic enzymes were found as up- and down-
regulated genes (Suzuki etal., 2004). Direct comparisons
of gene expressions between normal liver and chem-
ically induced preneoplastic foci provide more useful
information related to the molecular mechanisms of car-
cinogenesis. Although genes involved in transcriptional
regulation are one of the most important factors in car-
cinogenesis, their expression levels are generally lower
than those of metabolic enzymes and are hard to evaluate
by DNA microarray analysis.

In this study, we conducted microarray analysis of
mRNA from GST-P-positive foci in three individual rats
and compared with normal liver sections from three indi-
vidual rats. Labeled RNA was individually hybridized
onto GeneChip Rat Expression Array 230A, and several
differentially expressed genes were found to be involved
in transcriptional regulation, which were not previously
known to be regulated during chemically induced hepa-
locarcinogenesis.

2. Materials and methods
2.1, Chemical hepatocarcinogenesis of rats

Carcinogenic experiments were done according to the
Solt-Farber protocol (Solt and Farber, 1976). Experiments
were imtiated by intraperitoneal injection of DEN (200 mg/kg)
(Wako Pure Chemical Industries, Lid., Osaka, Japan) into 5-
week-old Sprague-Dawley rats. After the animals had been fed
basal diets for 2 weeks, they were changed o basal diets con-
taining 0.02% 2-acetylaminofluorene (Nacalai Tesque, Kyoto,
Japan). Three weeks after DEN injection, partial hepatectomy
was performed and livers were extirpated 8 weeks after DEN
injection. Control rats were injected with saline and fed basal
diets. All animal care and handling procedures were approved
by the animal care and use committee of Osaka University.

2.2, Preparation of RNA from rar liver

To map the exact location of GST-P-positive foci, one of
the serial frozen sections (10 wm) from the liver was treated
with rabbit anti-GST-P antibody and immunohistochemical
staining was performed with the DAKO ENVISION System
(DAKO Co., Tokyo. Japan). RNA was prepared from the area
corresponding to GST-P-positive foci in hyperplastic nodules
induced in three individual rats or sections from three control
ruts by RNeasy Mini Kit {(QIAGEN, Hilden, Germany ).

2.3. Oligonucleotide microarray and data analysis

Target RNA amplification and labeling with biotinylated
nucleotides were carried out using MEGAscript T7 Kit
(Ambion, Austin, TX) and Enzo BioArray High Yield RNA
Transcript Labeling Kit (Enzo [hagnostics, Farmingdale,
NY) as specified by the manufacturer. The quality and
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size distribution of the targets were determined using the
Agilent 2100 Bioanalyzer (Agilent Technologies, Palo Alto,
CA). Labeled and fragmented RNA of individual rats was
hybridized onto GeneChip Rat Expression Aray 230A
{Affymetrix, Santa Clara, CA) using standard methods. We
calculated the background correction and normalization of the
array data using Robust Multi-Array (RMA) method in the
R package. Statistics of differential expression between genes
was estimated using the linear modeling features of the limma
library of the R. Limma computes p-values of moderated
t-statistics by emprical Bayes shrinkage of the standard error
toward a common value

3. Results and discussion
3.1, Detection of GST-P-positive foci

To examine the expression profile of GST-P-positive
foci during hepatocarcinogenesis, hyperplastic nodule-

induced rats were prepared according to the Soli-Farber
procedure (Solt and Farber, 1976). Eight weeks after

DEN treatment, the livers, which had a large number of

foci and nodules, were excised and immunohistochemi-
cal experiments indicated that an approximately 70-80%
region contained GST-P-positive foci (data not shown).

3.2. DNA microarray analysis of gene expression

We prepared biotinylated target RNA from GST-
P-positive foci and normal liver secrions in three
hyperplastic nodule-induced rats and three control rats,
respectively. Each target was individually hybridized
with the Rat 230A Array containing the primary probe
sets against well-annotated full-length genes. The scatter
plot of the gene expression pattern between three inde-
pendent control rats showed excellent reproducibility
of results with an average correlation coefficient + S.D.
(0.93 £ 0.035). In the case of GST-P-positive foci, good
reproducibility was also obtained (average of correlation
coefficient + 8.D., 0.95 4+ 0.0068). On the other hand,
the average of the correlation coefficient £ S.D. derived
from comparisons of control versus GST-P-positive foci
was (0.74 + 0.026. These results indicate that expression
profiles in the same groups were indistinguishable,
but dysregulation in many genes was observed during
hepatocarcinogenesis.

3.3. Expression profile of enzymes involved in
metabolism and detoxification

Genes were examined in which the expression was
enhanced or reduced in GST-P-positive foci compared
with control liver. Significantly changed transcripts were

selected by moderated r-statistics. There were 15,923
probes on the chip, and 375 and 199 genes were signif-
icantly up- and down-regulated, respectively, with log
ratio values outside of 1 10 —1 (p<0.05). Of these,
the twenty most up- and down-regulated genes are
shown in Tables | and 2 together with p-values for
staustical significance. Significant up-regulation of the
GST-P gene (Gstpl/Gstp2) expression was observed
in GST-P-positive foci (Table 1). It is known that
enzymes involved in metabolism and detoxification are
induced or repressed during chemical hepatocarcino-
genesis (Sato, 1989; Suzuki er al., 2004). Overexpres-
sion of metabolic enzymes, which were reported to
demonstrate increased expression in hyperplastic nod-
ules, including aldehyde dehydrogenase, aflatoxin Bl
aldehyde reductase, NAD(P)H dehydrogenase and glu-
tathione peroxidase 2, and the suppression of carbonic
anhydrase 3, were detected by DNA microarray analysis
(Tables | and 2). Semi-quantitative reverse transcriptase-
coupled PCR experiments were performed on several
selected genes and it was confirmed that the expression
patterns were similar to those observed with microarray
(data not shown). These results indicate that our study
would be suitable for discovering new genes to provide
new information on hepatocarcinogenesis, detoxifica-
tion, and hepatotoxicity.

3.4. Expression profile of transcripts involved in
transcription

Probes on the chip were divided into various cate-
gories based on Gene Ontology (Ashburner et al., 2000).
Observation and analysis of the expression profile for
genes involved in transcription, one of the categories,
provides valuable information to understand the mech-
anism of carcinogenesis. Transcripts categorized as
ranscription  with significantly changed expression
with log ratio values outside | to —1 are listed in
Tables 3 and 4, and most have not previously been
found to be differentially expressed during chemically
induced hepatocarcinogenesis. For example, Pawr was
overexpressed in GST-P-posiuve foci. Pawr also termed
par-4, which interacts with Wilms' tumor 1 (WT1) and
modulates functions of WTI (Johnstone et al., 1996).
WT1 is a sequence-specific DNA-binding protein and
functions as both a tumor suppressor and an oncogenic
factor (Loeb and Sukumar, 2002). The WT1 gene exerts
an oncogenic function rather than a tumor-suppressor
gene function in solid tumors as well as leukemias
{Sugiyama, 2001). In prostate cancer cell line, ectopic
expression PAWR repressed Bel-2 expression through
WTI1 (Cheemaet al., 2003). However, Loeb revealed that
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A list of the twenty genes most highly induced in GST-P-positve foci
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Giene symbaol Giene title Log ratio p-value GenBank accession no.
Akribs Aldo-keto reductase family 1, member B8 6.65 8.40E-07 NM.173136
Ye2 Glutathione-S-transferase Y¢2 subunit 538 1.32E-06 NM_001009920
Gstpl/Gstp2 Glutathione- S-transferase, pi 1/2 514 431E-06 NM_O12577 NM_138974
Aldhlal Aldehyde dehydrogenase family |, member Al 442 9.18E-05 NM.022407
AkrTa3 Aflatoxin B aldehyde reductase 417 4.17E-05 NM_013215
Aldh3al Aldehyde dehydrogenase family 3, member Al 1.89 1.07E~04 NM.D31972
Ngol NAD(P)H dehydrogenase. quinone | 372 9.79E-05 NM_017000
Serpinb | a_predicted Serine (or cysteine) proteinase inhibitor, clade B, 372 IE-02 NM.001031642
member la (predicted)
LOC294067 Similar to ww domain binding protein § 371 1.92E-05 XM_21527
RDG:621458 Neurofilament, light polypeptide 3164 8.68E-M4 NM_031783
RGD1310542 predicted Similar to RIKEN ¢DNA 4930457P18 (predicted) s JI3E-04 NMOO1014154
Brain expressed X-linked 1 3156 6.18E-4 NM.001037365
Rnl30_predicted RING finger protein 30 (predicted) 3.54 2.56E-04 NMOD1013217
Anxal Annexin A2 353 6.18E-04 NM_019905
Ca2 Carbome anhydrase 2 351 4.17E-05 NM.O19291
Ddiedi [INA-damage-inducible transcript 4-like 345 5.30E-06 NM_080399
Gpx2 Glutathione peroxidase 2 i 8.23E-05 NM_183403
RGID: 1303152 Ectodermal-neural cortex | 13 | 36E-04 NM_001003401
Dserlll Down syndrome critical region gene 1 -like | ax JATE-05 NM_175578
LOCS00040 Similar to testis-derived transcript 3 240E-04 XM _ 575396

Log ratio indicates a logarithm of the fold-change vs. the expression level of the control rats, Statistics of differential expression between genes was
estimated using the linear modeling features of the limma library of the R, Limma computes p-values of moderated r-statistics by emprical Bayes
shrinkage of the standard error toward a common value.

lable 2

A list of the twenty genes most highly repressed in GST-P-positive foc

Ciene symbol Ciene title Log ratio p-value GenBank accession no

Pgeld Alpha-2u globulin PGCL4 4.75 1.88E~-02 NM_147215

Pyel3/5/174 Alpha-2u globulin PGCL3/5/1/4 -4.71 | 79E-02 NM_147212 NM_147213

NM_I47214 NML147215

Pgcld Alpha-2u globulin PGCL4 448 8. 86E-03 NM_147215

Ca3 Carbonic anhydrase 3 —-3.72 2.20E-02 NM_019202

Apoad Apolipoprotein A-1V 163 1LOIE-04 NM_012737

Cyp3ul3 Cytochrome P450, family 3, subfamily a, -3.53 6. 18E-04 NP.6T1739.1
polypeptide 13

Cype Cytochrome P450, subfamily 11C ( yroin 3.50 8.20E-03 NM.019184
4-hydroxylase)

Ca3 Carbonic anhydrase 3 345 6.62E-03 NM.019292

LOC36R066 Similar to thioether S-methyl ase -3.25 221E-03 XM.347233

Fasn Fatty acid synthase -3.04 2.66E-03 NM_017332

Cyp2a2 Cytochrome P450, subfamily 2A. polypeptide 1 -3.03 2.28E-02 NM_012693

Sultla2 Sulfotransterase family 1 A, member 2 2,83 S52E-03 NM.031732

UstSr integral membrane tansport protein USTSr -2.75 221E-02 NM_134380

Apoa2 Apolipoprotein A-11 274 1.83E-03 NM.013112

Slc27as bile acid CoA ligase ~2.69 2. 10E-03 NM.024143
Ab2-060 —2.68 1.36E—04 Al411138

Avpria Arginine vasopressin receptor |A 2,53 TO6IE-03 NM_053019
Malic enzyme 3. NADP(+)-dependent. ~2.51 6.18E—04 AAUGARGY
mitochondrial {predicted)

Thrsp Thyroid hormone responsive protein ~2.46 2.54E-04 NM.012703

Sle21ald Solute carrier family 21, member 10 241 3.05E-02 NM_031650

Log rutio and p-value are described in Table 1.
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Gene Symbol Gene title Log ratio p-value GenBank accession no.
Rnf30_predicted Ring finger protein 30 (predicted) 3154 2.56E~04 NM.001013217
Copeb Core promoter element binding protein 1.92 221E-02 NM.031642
Basp| Brain acidic membrane protein 1.69 1.50E-02 NM.022300
Copeb Core promoter element binding protein 1.66 1.7T0E-03 NM.D31642
Hiatip2. predicred HIV-1 Tatl inferactive protein 2 (predicied) 1.61 6.54E—04 XM.214927
L3mbtl2 predicted 1(3)mbt-like 2 {Drosophila) (predicted) 1.59 1.29E-03 NM_001033695
Ppp2ca Protein phosphatase 2a, catalytic subunit, alpha 1.58 3.776-03 NM_017039
isoform
Ppp2ca Protein phosphatase 2a, catalytic subunit, alpha 1.56 2.53E-03 AlDD9467
1soform
Maged | Melanoma antigen, family D, | 141 941E-03 NM.053409
Als2erd Amyotrophic lateral sclerosis 2 (juvenile) 1.41 4.83E-02 NML.133560
chromosome region, candidate 3 homolog (human)
Hmgh2 High mobility group box 2 1.35 4.16E-02 XM.573272
Npml Nucleophosmin | 1.34 4.18E-02 NM.012992
Pdlim] PDZ and LIM domain | 127 1.22E-02 NM.H 7365
Mdm2 _predicted Transformed mouse 3T3 cell double minute 2 1.24 264E-02 XM 235169
(predicted)
Soxd_predicted SRY-box containing gene 4 (predicted) 119 236E-02 XM 344594
Npm| Nucleophosmin | 1.18 192E-03 NM.012992
Carm] _predicted Coactivator-associated arginine methyltmsferase | 114 207TE-(02 NM_001030041
(predicted)
Tgif_predicted TG interacting factor predicted 1.14 3.74E-03 NM_.001015020
lvns 1 abp_predicted Influenza virus NSIA binding protein (predicted) 1.09 1LOSE-02 XM 213898
Pawr PRKC, apoptosis, WTI, regulator 1.07 428E-03 NM.033485
RGD1304726_predicred Similar 1o RIKEN ¢DNA 6330509002 (predicted) 1.06 249E-02 NM_001024993
Ets2 v-gts erythroblastosis virus E26 oncogene homolog 2 1.03 1.24E-02 XM239510
(avian}
Rbbp7 Retinoblastoma binding protein 7 1.02 4.15E-03 NM.O31816

Log ratio and p-value are described in Table |

WT1 transcriptionally up-regulates anti-apoptotic genes
such as Bel-2 in rhavdoid cell line (Loeb, 2006; Mayo
et al., 1999). In GST-P-positive foci. we found mRNA
overexpression of Bel-2 (log ratio, 0.776; p =0.0330) by

Table 4
A list of genes involved in transcription repressed in GST-P-positive foci

microarray. The different regulation mechanism of Bel-2
expression is caused by cell lineage and isoform-specific
differences in WT1 function (Loeb, 2006: Mayo et al.,
1999). Further characterization of pawr would lead the

(rene symbol Gene title Log ratio p-value GenBank accession no
Thrsp Thyroid hormone responsive protein 2,46 2.54E-04 NML.O12703
Thrsp Thyroid hormone responsive protein 1.82 2 14E-02 NM.012703
Thrsp T'hyroid hormaone respansive protein 1.68 6,14E-03 NM.012703
Srebll Sterol regulatory element binding factor | -1.57 424E-03 XM.213329
AtfS Activating transcription factor 5 1.39 8.82E-03 NM.172336
Sec 1412 SECI4-like 2 (S. cerevisiae) 1.36 S.06E-03 NM_053801
Protocadherin | (cadherin-like 1) (predicted) 1.27 B8 40E-03 XM_225997
Gls2 Liver mitochondrial glutaminnse 1.22 1 40E-02 NM.138904
Per2 Period homolog 2 -1.14 74SE-03 NMLO31678
Idbhd Inhibitor of DNA binding 4 =1.12 9.70E-03 NM.175582
Clpl Cardiac lincage protein | =1.11 JI12E-02 NMLO01025136
Temblid Transforming growth factor beta | induced transcript 4 =1.10 5.86E-03 L25785
Rxra Retinoid X receptor alpha -1.02 1.24E-03 NM.O12805
Hesb_predicted Hairy and enhancer of split 6 (Drosophila) (predicted) 1.01 541E-03 NM_001013179

Log ratio and p-value are described in Table |
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understanding of oncogenic or umor suppressor gene
function of WT1 during hepatocarcinogenesis,

On the other hand, several sequence-specific DNA-
binding transcription factors were repressed during
hepatocarcinogenesis  (e.g.  Sterol-regulatory-element
binding factor | (Srebfl)/Sterol-regulatory-element
binding protein | (Srebpl) and retinoid X receptor alpha
(RXRalpha)) (Table 4). SREBPs have been established
as lipid synthetic transcription factors for cholesterol and
fauy acid synthesis (Eberle et al., 2004), The expression
of fatty acid synthase and apolipoprotein A-1Tare mainly
regulated by SREBP1, and these genes were suppressed
in GST-P-positive foci (Table 2). Further, SREBPI
is required for the induction of thyroid hormone-
responsive protein (THRSP) in hepatocytes (Martel et

al., 2006). Brown et al. (1997) reported that exposure of

Thrsp antisense oligonucleotide inhibited the expression
of mRNAs encoding lipogenic (fatty acid synthase,
ATP citrate lyase and malic enzyme) and glycolytic
(pyruvate kinase) enzymes. The log ratios of these genes
were —3.04 (p=0.00266), —1.51 (p=0.00105), —0.508
(p=0.0221) and =205 (p=0.000531), respectively.
These observations suggest that the aberrant decrease of
lipogenic and glycolytic enzymes may be caused by the
suppression of SREBP1. This raises the possibility that
hepatotoxicity induced by nitroso compounds would be
cased by the down regulation of SREBPI.

One of nuclear receptors, retinoid X receptor alpha
(RXRalpha) was also decreased in GST-P-positive
foci. RXRalpha dimerizes with constitutive androstane
receptor (CAR), pregnane X receptor (PXR) and per-
oxisome proliferator-activated receptor (PPARalpha).
Hepatocyte RXRalpha-deficient mice revealed that hep-
atocyte RXRalpha is required for induction of metabolic
enzymes by the ligands of CAR, PXR. and PPARalpha,
and 1s essential for xenobiotic metabolism in vivo (Cai
et al., 2002). Hepatotoxicity may be caused by decrease
of RXRalpha expression in GST-P-positive foci.

3.5, Expression of transcripts coding chromatin
maodification enzymes

Sequence-specific transcription factors require cofac-
tors for transcription from the chromatin context and
chromatin components affect gene expression (Sterner
and Berger, 2000). The expression of cofactors and
chromatin components during hepatocarcinogenesis has
not been studied well. Recent studies demonstrated that
cofactors possess histone modification activities, which
are required for the change of chromatin conforma-
tion and the regulation of gene function. Generally,
histone acetylation promotes transcription, although his-
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tone methylation both positively and negatively regu-
lates gene expression dependent on the position of the
lysine residue on histone. An epigenetic program includ-
ing histone and DNA modifications is important for the
maintenance of inheritable information and the distur-
bance of epigenetic balances may lead to alterations
in gene expression, resulting in cellular transformation
and malignant growth (Lund and van Lohuizen, 2004).
Microarray analysis revealed that coactivator-associated
arginine methylransferase (Carml) and Rbbp7, also
termed retinoblastoma suppressor-associated protein
46 (RbAp46), were induced in GST-P-positive foci.
CARMI catalyzes the methylation of histone H3 at
Argl7 and can also function as a coactivator for tran-
scription factor NF-E2-related factor 2 (Nrf2), which
regulates the induction of Phase Il detoxifying enzymes,
including GST-P, through its transactivation domain (Lin
et al.,, 2006; Miao et al.. 2006). Although increased Nrf2
was detected in hyperplasic nodules, the extremely high
level of GST-P expression during hepatocarcinogenesis
was difficult to explain by the slight induction of Nrf2
alone (Ikeda et al., 2004 ). Here we found the overexpres-
sion of Carm1 in GST-P-positive foci. Increase of both
Nrf2 and Carm] expression and the cooperative regu-
lation of gene expression may lead to the induction of
GST-P expression during hepatocarcinogenesis.

We also found the induction of RbAp46, which con-
tributed 1o the regulation of gene expression as a sub-
unit of histone acetyltransferase, histone deacetylase
and chromatin remodeling complexes NURD (Zhang et
al., 1999). Li et al., 2003 reported that the expression
of RbAp46 suppressed colony formation in soft agar,
and inhibited tumor formation in nude mice. They also
showed that high levels of RbAp46 expression promoted
apoptotic cell death, resulting in the inhibition of tumori-
genicity of neoplastigenic breast epithelial cells. These
results suggest that overexpressed RbApd6 in GST-P-
positive cells may function as a suppressor of tumori-
genicity in the early stage of hepatocarcinogenesis,

3.6. Expression of transcripts coding chromatin
components and related factors

High mobility group box 2 (Hmgh2), a member of
HMGB family proteins, was up-regulated in GST-P-
positive cells, HMGB proteins are abundant nonhistone
nuclear proteins that have been found in association with
chromatin. HMGB family proteins contain two DNA-
binding HMG-box domains and bind to DNA without
sequence specificity, but play important architectural
roles in the assembly of nucleoprotein complexes in a
variety of biological processes including the initiation
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of transcription and DNA repair (Thomas, 2001). Fur-
ther. HMGB2. while showing no coactivator activity on
its own, can promote transcription activity together with
histone acetvlransferase. HMGB2 acis mainly at the
level of elongation and is a coactivator for transcrip-
non from chromatin emplates (Guermah et al., 2006).
Hmgb2 is frequently overexpressed in malignant gas-
tromntestinal stromal tumors and ovarian cancer (Koon et
al., 2004; Ouellet etal., 2006). Overexpression of Hmgh2
may be common feature of carcinogenesis. HMGB2
binds with high affinity to DNA modified with the can-
cer chemotherapeutic drug cisplatin and enhancement of
cisplatin sensitivity in Hmgb2 transfected human lung
cancer cells (Arioka et al., 1999; Farid el al., 1996).
Cisplatin-induced hepatotoxicity may be promoted by
overexpressed Hmgh2,

Nucleophosmin was identified as a positively regu-
lated gene in GST-P-positive cells. Nucleophosmin is
a key regulator for centrosome duplication, the mainte-
nance of genomic integrity, and ribosome assembly. At
the steady state, nucleophosmin localizes mainly in the
nucleolus, whereas aberrant cytoplasmic localization of
nucleophosmin is observed in acute myeloid leukemias
(Mariano et al., 2006). Observation of localization of
nucleophosmin would be important for the understand-
ing of roles of overexpressed nucleophosmin in GST-P-
positive foci. Recent studies suggest that nucleophosmin
may be a Ran-Crm| substrate that controls centrosome
duplication and utilizes a conserved Crml-dependent
nuclear export sequence in its amino terminus to enable
shuttling between the nucleolus/nucleus and cytoplasm
{Wang et al., 2005; Yu et al,, 2006). Further, purification
of nucleophosmin binding protein revealed that nucle-
ophosmin directly interacted with ribosomal protein L35.
This interaction mediated the colocalization of nucle-
ophosmin with both maturing nuclear 605 ribosomal
subunits and newly exported and assembled BOS ribo-
somes (Yu et al., 2006). Interestingly, Crm| (log ratio,
0.908; p=0.0427) and ribosomal protein L5 (log ratio,
0.830; p=0.00429) were also up-regulated in GST-P-
positive foci. Overexpression of these genes may disturb
multiple processes involved in nucleophosmin, which
accelerate oncogenesis.

DNA microarray analysis in this study uncovered sev-
eral genes, which expression was induced or repressed
during hepatocarcinogenesis, and some of these genes
possess anti-oncogenic as well as oncogenic activities
and may be involved in regulation of GST-P expression.
Our study provided a candidate gene link 1o the early
stage of carcinogenesis and hepatotoxicity. To elucidate
the mechanisms of the early stage of hepatocarcinogen-
esis medialed by these genes, further characterization

of aberrantly expressed genes in GST-P-positive cells 1s
necessary. We proceed to observe the effect of overex-
pression of these genes up-regulated during hepatocar-
cinogenesis, especially epigenetics regulatory factors, on
transformation and the induction of GST-P expression.
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Abstract.

MicroRNAs (miRNAs) are endogenous small noncoding RNAs (20

23 nucleotides)

that negatively regulate the gene expressions at the posttranscriptional level by base pairing to
the 3' untranslated region of target messenger RNAs. Hundreds of miRNAs have been identified
in humans and evolutionarily conserved from plants to animals, It is revealed that miRNAs
regulate various physiological and pathological pathways such as cell differentiation, cell
proliferation, and tumoriogenesis. By the computational analysis, it is predicted that 30% of
protein-encoding genes are regulated by miRNAs. In this review, we discuss recent remarkable
advances in the miRNA biogenetic and functional mechanisms and the involvements of miRNAs
in cell differentiation, especially in hematopoictic lineages, and cancer. These evidences offer the
possibility that miRNAs would be potentially useful for drug discovery.

Keywords: microRNA, RNA cleavage, translational repression, target mRNA, base pairing

Introduction

MicroRNAs (miRNAs) are endogenous short non-
coding RNA molecules (20-23 nucleotides) that
regulate cell differentiation, cell proliferation, and
apoptosis through post-transcriptional suppression of
gene expression by binding to the complementary
sequence in the 3' untranslated region (3'UTR) of target
messenger RNAs (mRNAs) (1). Hundreds of miRNAs
have been identified in humans and they are evolution-
arily conserved (1, 2). In addition, the presence of up to
1000 miRNAs is estimated by computational analysis
(3). Strikingly, 30% of protein-encoding genes in
humans are predicted to be regulated by miRNAs (4).
Recently, it has been revealed that altered expression
of specific miRNA genes contributes to the initiation
and progression of diseases such as cancer (5-10).
This review focuses on the biogenetic and functional
mechanisms and the involvements in cell differentiation
and cancer in mammalian miRNAs and the wtility of
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miRNAs in drug discovery.
Mechanisms of biogenesis and function

Most miRNA genes are located in the introns of
host genes or outside genes. Unlike Drosophila, most of
the human miRNA genes individually exist, although
some human miRNAs are found in polycistronic clusters
(5,8,9).

The miRNAs are synthesized through multiple steps
(Fig. 1). Initially, the miRNAs are transcribed as long
RNA precursors (pri-miRNAs) (11). As pri-miRNAs
usually contain the cap structure and the poly(A) tail,
it is suggested that the transcription of miRNAs is
carried out by RNA polymerasell (12). The pri-
miRNAs are processed into the precursors of approxi-
mately 70 nucleotides (pre-miRNAs) with a stem-loop
structure and a two nucleotide 3' overhang by the
RNase 1l enzyme Drosha and the double-stranded-
RNA-binding protein DGCR8/Pasha (13, 14), and pre-
miRNAs are exported from the nucleus to the cytoplasm
by Exportin-5 in a Ran guanosine triphosphate-
dependent manner (15). Pre-miRNAs exported in the
cytoplasm are processed by another RNase 111 enzyme,
Dicer, and only one strand (guide strand) as a mature
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miRNA is incorporated into a RNA-induced silencing
complex (RISC) that mediates either target RNA
cleavage or translational inhibition, while the another
strand (passenger strand) is excluded. Which strand is
incorporated in RISC is determined by the stability of
the base pairs at the 5' end of the duplex (16, 17). The
incorporated guide strand guides the RISC to the
complementary sequence in the 3'UTR of target mRNA.
When the guide strand shares perfect or near perfect
base pairing with the 3'UTR of target mRNA, the target
mRNA is degraded by Argonaute2 (Ago2), a component
of RISC (18). On the contrary, when the guide strand
shares partial base pairing, translation is target-specifi-
cally repressed without the target mRNA degradation
(19). Recent studies have revealed that RISC is at least
composed of Dicer, Ago2, and the double-strand RNA
binding protein TRBP, and RISC efficiently processes
pre-miRNAs to mature miRNAs (20). Furthermore,
RISC more efficiently cleaves target mRNAs by using
the pre-miRNAs than the duplex miRNAs that do not

Diagram of the miRNA biogenetic and functional mechanisms, Whether the target mRNA cleavage by RISC occurs in

have the stem-loop. These results suggest that miRNA
processing by Dicer, assembly of the mature miRNA
into RISC, and target RNA cleavage by Agol are
coupled. Compared to the RNA cleavage mechanism
by Ago2, the translational repression mechanism by
miRNAs had been poorly understood. Recently, it was
revealed that the target mRNAs binding to RISC through
partial base pairing are accumulated in the cytoplasmic
foci referred to as processing bodies (P-bodies) (21, 22).
P-bodies, in which the mRNAs are stored or degraded by
the decapping enzymes and exonucleases, do not contain
the translational machinery (23). Furthermore, the
disruption of P-bodies by the silencing of GWI82, a
key protein in P-body, inhibits translational silencing in
not only partial base pairing but also perfect base pairing
(24), although the localization of target mRNA with
perfect base pairing is not detected in P-bodies (21).
These results suggest that, at least in part, translational
repression appears to be caused by the recruitment of
target mRNAs to P-bodies. However, whether localiza-
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tion of the RISC-target mRNA complex in P-bodies is a
cause or a result of the translational repression and
whether the target mRNA cleavage by RISC occurs in
the cytoplasm or P-bodies remain controversial issues.

Cell differentiation

Increasing evidence indicates that miRNAs have
distinct expression patterns among tissues and cells in
different differentiation stage (23). It is reported that
overexpression of miR-124, which is preferentially
expressed in brain, shifted the gene expression profile
of HeLa cells towards that of the brain. Similarly,
overexpression of miR-1 shifted the expression profile
towards that of the muscle in that miR-1 is preferentially
expressed (25). These results indicate that miRNAs
play important roles in cell differentiation and character-
1zation.

Recently, it was revealed that miRNAs also played
critical roles in the differentiation of mammalian
hematopoietic lineage. For example, miR-181 is
preferentially expressed in the thymus and B-lymphoid
cells of mouse bone marrow and promotes B cell
differentiation by overexpression in hemapoietic
stem/progenitor cells (26). Conversely, overexpression
of the miR-181a, one member of the miR-181 family,
was reported to repress megakaryoblast differentiation
in humans (27). By the induction of megakaryoblast
differentiation, the expression of endogenous miR-181a
is downregulated through the acetylcholinesterase,
protein kinase (PK) C, and PKA cascade. The expres-
sion of miR-130a is also downregulated by the induction
of megakaryoblast differentiation (28). miR-130a
targets the transcriptional factor MAFB that is a
transcriptional activator of GPIIB, an important protein
for platelet physiology. Furthermore, miR-223 is up-

regulated by the retinoic acid-induced replacement of

NFI-A  with CCAAT/Enhancer binding protein
(C/EBP) &, and promotes human granulopoiesis (29).
As miR-223 repressed NFI-A translation, the upregula-
tion of miR-223 by C/EBPa and granulopoiesis further
accelerated through positive feedback by miR-223.

Cancer

It has been revealed that the change of miRNA
expressions contributes to the initiation and progression
of cancer. More than 50% of miRNAs are located in
cancer-associated genomic regions or in fragile sites
(5). The expression of miR-15a and miR-16, which
locate as a cistronic cluster at 13ql4, is deleted or
decreased in most cases (approx. 68%) of B cell chronic
lymphocytic leukemia (B-CLL) (6). Both these miRNAs
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negatively regulate the expression of B cell lymphoma 2
(Bcl2), that is reported to be expressed in many types of
cancer including leukemias, and inhibit cell death (7).
Overexpression of miR-15 and miR-16 in the MEG-01
cell line actually induces the apoptosis. Inversely, one
cluster of miRNAs, miR-17 - 92 polycistron, was found
to increase in the cancers such as B-CLL (8). The
expression of six miRNAs in this cluster is upregulated
by c-mye, whose expression and/or function are one
of the most commeon abnormalities in human cancers,
and miR-17-5p and miR-20a included in this cluster
negatively regulate the expression of transcriptional
factor E2F1 (9). Furthermore, mice reconstituted with
hemotopoietic stem cells overexpressing miR-17 - 19b
exhibit accelerated c-myc-induced lymphomagenesis
(8). Furthermore, it was revealed that miRNA expres-
sion profiles enable researchers to successfully classify
poorly characterized human tumors that can not be
accurately classified by mRNA expression profiles (10).
These results show the possibility that miRNAs have
clinical benefits as not only therapeutic targets but also
a tool for cancer diagnosis.

Drug discovery

miRNAs are expected to be potential targets of
therapeutic strategies applied to drug discovery for a
number of reasons. Firstly, in addition to the initiation
and progression of tumor, miRNAs play critical roles in
various biological pathways such as differentiation of
adipocyte and insulin secretion and diseases such as
diabetes and hepatitis. Therefore, the possibility that
various human discases are caused by abnormalities in
miRNAs is indicated. Actually, miR-15 and miR-16
have been deleted or decreased in most cases of B-CLL
and are identified as tumor suppressor genes (6, 7).
Secondly, miRNA expression profiles are correlated
with clinical severity of cancer malignancy, and because
of this, miRNAs are expected to be powerful tools for
cancer diagnosis (10). Thirdly, miRNAs are applicable
in gene therapy. The expression of miRNAs can be
introduced in vivo by using viral vectors and chemical
modifications. Finally, antisense oligonucleotides are
potent inhibitors of miRNA, and they can be applied to
gene therapy. Actually, it was reported that introduction
of 2'-O-methoxyethyl phosphorothioate antisense oligo-
nucleotide of miR-122, which is abundant in the liver
and regulates cholesterol and fatty-acid metabolism,
decreases plasma cholesterol levels and improves liver
steatosis in mice with diet-induced obesity (30). These
findings indicate that miRNAs and the antisense oligo-
nucleotides are potential targets for drug discovery.




Perspective

It has been established that miRNAs play critical
roles in cell differentiation, proliferation, and apoptosis,
and the abnormalities of specific miRNA expression
contribute to the initiation and progression of tumor.
However, identification of target mRNAs negatively
regulated by miRNAs remain largely to be explored,
Although up to hundreds of target genes toward a single
miRNA were predicted by bioinformatics approaches
(4), there i1s no comprehensive assay to biologically
validate the prediction algorithm. Therefore, establish-
ment of a method to comprehensively and rapidly
identify target mRNAs for the miRNA is necessary for

understanding biological and functional mechanisms of

miRNA.
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ABSTRACT

G-protein coupled receptors (GPCRs) represent one
of the most important families of drug targets in phar-
maceutical development. GPCR-Ligand DAtabase
(GLIDA) is a novel public GPCR-related chemical
genomic database that is primarily focused on the
correlation of information between GPCRs and their
ligands. It provides correlation data between GPCRs
and their ligands, along with chemical information on
the ligands, as well as access information to the vari-
ous web databases regarding GPCRs. These data are
connected with each other in a relational database,
allowing users in the field of GPCR-related drug
discovery to easily retrieve such information from
either biological or chemical starting points. GLIDA
includes structure similarity search functions for the
GPCRs and for their ligands. Thus, GLIDA can provide
correlation maps linking the searched homologous
GPCRs (or ligands) with their ligands (or GPCRs). By
analyzing the correlation patterns between GPCRs
and ligands, we can gain more detailed knowledge
about their interactions and improve drug design
efforts by focusing on inferred candidates for GPCR-
specific drugs. GLIDA is publicly available at http:/
gdds.pharm.kyoto-u.ac.jp:8081/glida. We hope that it
will prove very useful for chemical genomic research
and GPCR-related drug discovery.

INTRODUCTION

The superfamily of G-protein coupled receptors (GPCRs)
forms the largest class of cell surface receptors. These
molecules regulate various cellular functions responsible for
physiological responses (1). GPCRs represent one of the most
important families of drug targets in pharmaceutical develop-
ment (2). A large majority of human-derived GPCRs still

remain ‘orphans’ with no identified natural ligands or func-
tions, and thus a key goal of GPCR research related to drug
design is to identify new ligands for such orphan GPCRs.

With the unprecedented accumulation of the genomic
information, databases and bioinformatics have become essen-
tial tools to guide GPCR research. The GPCRDB (hup://www,
gper.org/Ttm/) (2) and TUPHAR (http:/fiuphar-db.org/iuphar-
rd/index.html) (3) receptor databases are representatives of
widely used public databases covering GPCRs. These data-
bases, which provide substantial data on the GPCR proteins
and pharmacological information on receptor proteins contain-
ing GPCRs, are mainly focused on biological aspects of the
gene products or proteins. In spite of the significance of ligand
compounds as drug leads, the relationships between GPCRs
and their ligands and/or chemical information on the ligands
themselves are not yet fully covered.

On the other hand, there is increasing interest in collecting
and applying chemical information in the post-genome era.
This new trend is called ‘chemical genomics’, in which bio-
logical information and chemical information are integrated
on the genome scale (4,5). PubChem (htip://pubchem.ncbi.
nlm.nih.gov/) (6), KEGG/LIGAND (http://www.genome.jp/
kegg/ligand.html) (7) and ChEBI (hitp://www.cbi.ac.uk/
chebi/) (8) have been developed as databases related to chem-
ical genomics. KEGG/LIGAND and ChEBI contain primarily
biochemical information on reported enzymatic reactions.
Recently, NIH (the National Institutes of Health) opened Pub-
Chem, a public database providing information on the chem-
ical structures of small molecules. However, one cannot
retrieve direct information relating these chemical structures
to gene or protein entries. Although chemical genomic
approaches have thrown new light on relationships between
receptor sequences and compounds that interact with particu-
lar receptors, the GPCR-ligand information is not well
represented in these large-scale databases for chemical
genomics,

There are still very few publicly available databases or tools
for GPCR-specialized drug discovery from the viewpoint of
chemical genomics. Herein, we have developed a novel
relational database, GLIDA (GPCR-Llgand DAtabase) (9).
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