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Substructure Mining of GPCR Ligands Reveals Activity-Class Specific Functional
Groups in an Unbiased Manner
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In this study, we conducted frequent substructure mining to identify structural features that discriminate
between ligands that do bind to G protein-coupled receptors (GPCRs) and those that do not. In most cases,
particular chemical representations resulted in the most significant substructures. Substructures found to be
characteristic for the background control set reflected reactions that may have been used to construct this
library, e.g. for the ChemBridge DIVERSet library employed these are ester and carboxamide moieties.
Alkane amine substructures were identified as most important for GPCR ligands, e.g. the butylamine
substructure, often linked to an aromatic system. Hierarchical analysis of targeted GPCRs revealed well-
known motives and new substructural features. One example 1s the imidazole-like substructure common for
the histamine binding receptor ligands. Another example is the planar ring system consisting of a fused
five- and six-membered ring (indole-like substucture) common for the serotonin receptor ligands.

INTRODUCTION

Chemical structure mining has a long tradition in the
prediction of molecular properties. Methods for analyzing
the structural features of molecules can be broadly divided
into two categories: methods that focus on predefined
structural parts (fragments) and methods that consider the
complete set of possible substructures of a molecule.™
Methods of the first category apply a set of fragmentation
rules 1o partition the molecular structure into discrete
fragments, which are then analyzed. Examples of such
fragments are ring systems, linkers, and side chains,'””
synthetic building blocks,®” or algorithmically defined mo-
lecular fingerprints.*? Analysis of fragment frequencies has
proven useful for the description and comparison of molec-
ular databases and for the identification of ‘chemical
clichés’.'®"" For instance, unexplored parts of chemical
space, with only a few fragments, become apparent as well
as the preferences of chemists for certain reaction types or
starting materials, yielding a more densely populated chemi-
cal space. Analyzing the co-occurrence of fragments may
further yield valuable information, i.e. on pairs that seem to
avoid each other or pairs that constitute a common template.
Analyzing fragment occurrences may also aid the design of
new ligands in (chemical) fragment-based drug discovery'?
and is a prerequisite for similarity searching.’” an approach
in which predefined structural parts are utilized to construct
molecular fingerprints. A fingerprint is a reduced representa-
tion of the molecule that holds information on the presence
or absence of certain features.'” Features included in the
fingerprint may be aforementioned (discrete) fragments, such
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as rings and functional groups (so-called structural keys, e.g.
MDL keys'"), but also algorithmically defined, such as
arbitrary structural elements of fixed size, of which the
circular fingerprint has gained some popularity.'” Since
predefined fragmentation rules are dependent on the choices
of the chemist, analyses and predictive models are inherently
biased.

Complementary to analyses using predefined structural
fragments as well as fingerprints are methods that consider
all possible substructures that are found in the 2D structure
of a molecule. These substructure-based methods thus avoid
the bias that is intrinsic to the use of predefined fragments.
However, they come at the price of computational expense.
In a simple structure as for the amino acid alanine without
explicit hydrogens, the number of substructures amounts to
20 already. Adding two methyl groups, i.e. the amino acid
valine without explicit hydrogens, will yield 39 substructures.
Because of the exponential growth of substructure count with
increasing molecule size, most substructure methods seek
ways to limit the number of substructures to be evaluated.
Batista et al. described a method that uses repeated random
fragmentation of molecules to generate profiles that served
as a measure of molecular similarity'® and later applied this
to database screening.'” Although this work represents
substructure analysis in an unbiased manner, the success of
the method depends on the choice of parameters (iterations,
number of bonds cut). Besides that, the set of evaluated
substructures is not complete, ie. the evaluation of a
substructure depends on chance and not on occurrence in
the molecules, Two other methods that are substructure-based
are maximal common substructure analysis and frequent
substructure mining. Maximal common substructure analysis
finds the largest connected substructure that a certain number
of molecules have in common,'®'? It is used for similarity
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and SAR analysis, for instance as implemented in com-
mercial tools such as Pipeline Pilot (Scitegic) and Class-
Pharmer {Simulations Plus ), A0t Frequent substructure min-
ing finds the most common substructures in one or more
sets of molecules by considering all substructures that occur
in the molecules. It uses a mimmum-frequency constraint
to control the amount of substructures that are evaluated. It
is an application of frequent subgraph mining, which finds
all frequently occurring connection patterns from a set of
graphs. Recent advances in graph-mining algorithms, together
with the steady growth of computing power. have made it
possible to mine data sets as large as 200,000 molecules on
a standard PC.”? Frequent substructure ‘miners’ have been
successfully applied for prediction of CNS activity, bioac-
tivity, and toxicity.”* > The SUBSTRUCT program devel-
oped by Engkvist et al. distinguished CNS active compounds
with approximately 80% accuracy.”* However, their approach
was bound to a maximum size of the generated substructures,
which was between 1 and 4 atoms by default. In contrast,
Borgelt et al.”* identified substructures that model the activity
classes for HIV-1 antiviral screening data. Similarly, Kazius
et al. applied the frequent subgraph miner Gaston®®?" 1o
mutagenic compounds and extracted a decision list of six
discriminative structural features associated with mutage-
nicity.*® For this, the authors adopted several different types
of chemical representation. So-called elaborate chemical
representation adds extra information to a molecule, for
instance by adding extra labels to atoms or by replacing
certain atoms with wildcards (abstractions). The authors
obtained the most significant results when elaborate chemical
representation was used. Similarly, others also reported
improved findings when using, for instance, abstractions for
rings and chains (reduced graphs).”>*°

In the context of GPCR (G Protein-Coupled Receptor)
ligands, the most important source of current medicines, only
methods that analyze discrete fragments have been described.
For instance, a property-based scoring scheme was con-
structed for the classification of GPCR ligands, intended for
the creation of focused libraries.*! Similarly, Schnur et al.
identified frameworks or substructure classes that are com-
mon for families of ligands. In the context of GPCR ligands,
these were defined as privileged structures albeit that these
frameworks were not selective for GPCRs.*

While previous studies were limited to analysis of
predefined fragments, in this study, we will use a complete
method (i.e., frequent substructure mining) to analyze the
structural features of GPCR ligands. This method represents
an unbiased as well as an exhaustive way to mine information
contained in chemical data sets of GPCR ligands. We build
upon the approach described by Kazius et al.®® to find
frequently occurning substructures that are discriminative for
GPCR ligands. This is accomplished by comparing the
ligands against a control group and analyzing the frequencies
of all possible substructures that occur in the sets. To include
additional chemical details, both normal and elaborate
chemical representations (atom and bond type abstractions
with atom labels) were used. However, abstractions for
molecular parts, such as special types for rings or chains,
were omitted since these depend on the choice of the chemist,
thereby introducing a bias. In addition, with reduced graph
representations, information such as bond distance or sub-
stituent positions is lost, which led us to believe that the
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choice of the current algorithm is appropriate for the work
performed here. To derive the significant features common
to specific groups of ligands, we conducted two additional
experiments on subsets of the original sets. For the first
experiment, subsets were based on the presence of the
previously found most-significant substructure. For the
second experiment, ligands were grouped into subsets
according to the hierarchical classification of their target
GPCRs. In addition to the work of Kazius et al..*® we also
analyzed which substructures are rarely found in the GPCR
ligands compared 1o the control group. This type of analysis
would be less useful for prediction of mutagenicity but has
added value for prediction of receptor binding. In the latter
case, there will be substructures that contribute not only to
binding but also to lowering this possibility (e.g., steric
hindrance, unfavorable pharmacophoric features). From this
analysis, we established a comprehensive list of favorable
and unfavorable features of this important ligand class.

MATERIALS AND METHODS

Data Sets. GPCR ligands were collected from two publicly
available online resources: the GPCR-ligand database (GPCR-
Ligand Database or GLIDA) from the University of Kyoto™
and a database for human GPCRs and their ligands (hGPCR-
lig).** The set from GLIDA consisted of 22,122 ligands for
human, mouse, and rat receptors, collected from various
public data sources, such as PubChem,* K; Database,® and
scientific literature. The 17,908 GPCR ligands from the
hGPCR-lig database are taken from the scientific literature
and the MDL Drug Data Reports (MDDR). Although the
sets partly overlap, the first one is more illustrative for
published research from academia, while the second is more
representative for patented drugs recently launched or under
development, i.e. commercial drugs, preclinical candidates,
etc. These two sets were compared against a control set,
denoted as the background set. For this, 15,993 compounds
from ChemBridge's DIVERSet screening collection were
used.”” This set was meant to provide a suitable contrast to
the GPCR ligands since we were interested in how GPCR
ligands differ from a diverse collection of small molecules.
In GLIDA, ligands are grouped according to the classification
of their targets. Targets follow the pharmacological clas-
sification of GPCRs as used by the International Union of
Pharmacology (IUPHAR).***? Targets are arranged into a
hierarchy of subfamilies, families, and classes, as used by
the GPCRDB information system.'” In GLIDA, some
receptor classes are missing due to the low number of known
ligands, ¢.g. trace amines in amine-binding GPCRs. Each
ligand-target pair is annotated with an activity type, namely
full agonist, partial agonist, agonist, antagonist, or inverse
agonist, Since the annotation of GLIDA is not entirely
completed yet, we only used ‘agonist” (for [ull, partial, and
agonist) and ‘antagonist’ (for inverse agonist and antagonist).
Classification of compounds as active depends on the origin
of the compounds. A reported affinity in one of the source
databases classified a compound as active, independent of
the reported binding affinity. The sets were cleaned and
standardized using Scitegic’s Pipeline Pilot 6.1.5.0 Student
Edition.? Salts, counter-ions, and other small fragments
associated with the molecules were removed, and zwitterions
were neutralized. Charge and stereochemical information was
discarded, and bonded hydrogen atoms were omitted from



350 J. Chem. Inf. Model., Vol. 49, No. 2, 2009

& .52

o
Nah'“.p' -HF
P |

Pl—p|

P

AN
P‘_r,‘@l - A h_ -

Figure 1. Example molecule in normal (I) and wo elaborate
chemical representations: one for aromatic bonds (II), one for
aromatic atoms and bonds (II1), and one for planar ring systems
(IV). In the normal representation (1), aromatic bonds are repre-
sented as altlernating single and double bonds, whereas in the first
eluborate representation (H), a special type for aromatic bonds is
used. In addition to this representation, the representation in (ITI)
adds a special type for aromatic atoms (A). Since this example
molecule has a planar ring system, all atoms that constitute the
system are denoted as ‘PI” in the planar representation (IV). In
both elaborate chemical representations, wildcards are used for
heteroatoms (“No’) and for halogens (*X') with a label attached
specifying the actual atom-type.
the representation. After that, ChemAxon’s standardizer®'
was used (for consistency with existing databases) to convert
the structures into a uniform representation and to filter out
duplicates. Only structures with molecular weight below
1000 Da were used. The final GPCR ligands sets consisted
of 21,619 compounds for GLIDA, 16,509 compounds for
hGPCR-lig, and 15,983 compounds for the background set.
In some cases, analysis of large data sets using elaborate
representation (see below) proved to be difficult since
physical limits of system resources (maximum file size) were
reached. In these cases, the experiment was continued using
a sampled set of 5k ligands. These ‘sampled sets” were
constructed using Pipeline Pilot's Random Percent Filter.*”
Chemical Representation. Molecular structures are rep-
resented as labeled graphs. Hydrogen atoms were excluded
from representation. Four types of chemical representation
were used: the initial chemical structure representation with
the atom and bond types unchanged and three ‘Elaborate’
Chemical Representations (ECRs).”® Figure 1 offers an
example that accompanies the following description of the
representations. Elaborate representation is a method to
include extra information about the molecule by using
abstractions, translations, and/or extra labels. The first
elaborate representation includes a special bond type for
aromatic bonds. In addition, the second one has a special
type for aromatic atoms. The third representation offers a
special type for planar ring systems, which has been
successfully applied previously to predict the mutagenicity
of compounds.”® In elaborate chemical representation, ali-
phatic Nitrogen, Oxygen, and Sulfur atoms were represented
as an aliphatic heteroatom by replacement with the symbol
No. An extra label was attached 1o N and O to indicate the
type and number of bound hydrogens, ‘Ze' (zero) for no
bonded hydrogens, “On’ for one bonded hydrogen, and “Tw*
for two bonded hydrogens. The halogen atoms, CI, Br, 1,
and F, were replaced by X, and an extra label was attached
o indicate their type. Note that the above-mentioned
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representation differs from Kazius et al.”® in that only one
heteroatom type was used and not two types for ‘small
heteroatom’ (No) and ‘large heteroatom® (Ps). In addition,
fluor (F) was included as part of the halogen abstraction,
Aromatic atoms and bonds were detected with basic aroma-
ticity, Figure 1 has an example of a molecular structure in
normal and chemical representation. The use of alternate
representations may cause the same graph to appear multiple
times. The aim of abstractions for atom and bond types is to
raise the occurrence of similar substructures above the
support threshold. Individually. these substructures might go
undetected; however, the occurrence of their common
representation sums the individual frequencies.

Frequent Substructure Mining, The frequent subgraph-
miner Gaston was used 1o find all frequently occurring
substructures in the data sets.”**’ Frequent subgraph miners
such as Gaston iterate over all molecules, extracting all
possible substructures per molecule. Current subgraph miners
utilize several approaches to keep the number of found
substructures to a minimum. One reason is that a larger
substructure can never occur more frequently than the smaller
substructures it consists of. This allows numerous substruc-
tures 10 be pruned before being considered. Compared 1o
other algorithms, Gaston is more efficient since computa-
tonally expensive operations take place in the last steps,
when a large number of possible substructures has already
been discarded. For a quantitative comparison of Gaston with
other frequent subgraph miners, see ref 22, The importance
of a substructure was determined by comparing its frequency
against the frequency of occurrence in the control set. The
most revealing substructures are those that oceur frequently
in one set and not in the other. As a measure of the
importance of a substructure, the significance of association
with one of the sets was determined by calculating the
p-value of the finding. The p-value as used in this study is
defined on page 3 of the Supporting Information of ref 42,
It is the probability to find a statstical association with one
of the two groups based on chance alone. On the assumption
of a binomial distribution, 1t was calculated based on the
number of ligands versus control group that were detected
using that substructure. While this measure makes assump-
tions such as to the underlying distribution of features in
each database, we still found it to be useful also in the
ranking scheme described here. Using the p-value, the lists
of frequently found substructures were ordered according to
significance with the most-discriminating substructures at the
top. The substructure with the lowest p-value was considered
the most significant finding. The p-values of substructures
are the same if they have the same absolute frequency. When
two substructures had the same p-value and one substructure
was a substructure of the other substructure, only the larger
substructure was kept. On average, this was the case in 25%
of all substructures. In case of substructures with equal
p-values that were not substructures of each other, the larger
substructures had preference over smaller ones in the list
ordering. For example, if alanine and valine would be
substructures with equal occurrences, and hence equal
p-values, only the valine substructure would be kept in the
list since alanine is a substructure of valine. In the case of
leucine instead of alanine, both substructures would be kept
since neither of the two is a substructure of the other. Another
important parameter in frequent subgraph mining is the
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minimum support value, which is the relative number of
molecules a substructure should occur in to be detected by
the algorithm. Lowering the minimum support will result in
finding an equal or higher number of substructures. A higher
number of substructures increases the chance of finding a
substructure that is more significant. However, there is a
balance between minimum support and p-value of the most
significant substructure. This will be illustrated with the
following example of two sets of 100 compounds each.
Presume that the most significant substructure found at a
support threshold of 30 compounds occurred in 60 active
and 20 control compounds. The p-value for this substructure
is 5.32¢-09, which is the chance of finding this substructure
based on chance alone. Lowering the minimum support from
30 to 20 means that a new set of substructures is added 1o
the already generated set. In theory, the most significant
substructure that could be added with the new set has an
occurrence of 29 active and 0 control compounds. The
p-value of this theoretical substructure is 1.73e-10, which is
more significant than the actual found substructure (with a
p-value of 5.32e-09). Therefore, the experiment should be
repeated at a lower minimum support of e.g., 20 10 examine
whether this theoretical substructure does actually exist. The
experiment is completed if it results in the same substructure
as found in the first run. This is because a more significant
substructure cannot be found by lowering the suppor, ie. the
best theoretical substructure (19 active, 0 control) has a p-value
of 7.42¢-07. When another, more significant substructure is
found at a lower support, the process is repeated until no
theoretical substructure can be found that is more significant.
Concluding, the minimum support value was chosen by
tteratively lowering it per run until no better (more significant)
substructures could be found, resulting in practice in support
values between 10% and 30% for the data sets used here.
Software. For translating the molecules into elaborate
representation, for partitioning the graph sets, and for the
p-value calculations simple awk and bash scripts were used.
These scripts and the substructure mining were run on
Scientific Linux. (Sub)structures were edited and visualized
using (MS Windows based applications) Pipeline Pilot
6.1.5.0 Student Edition and MDL. ISIS/Draw 2.5.%°**

RESULTS AND DISCUSSION

Mining of Characteristic Substructures of GPCR
Ligands. Frequent subgraph mining was first applied to each
individual set, both hGPCR-lig and GLIDA, for a broad
analysis of structural features in GPCR ligands. Analysis of
the substructure distributions revealed the best discriminating
substructure for each of the four elaborate representations
(see Materials and Methods). The substructure originating
from the ‘normal” representation performed best in discrimi-
nating GPCR ligands (both from hGPCR-lig and from
GLIDA) from background compounds, i.e. the ChemBridge
DIVERSet library. The statistics for all representations are
summarized in Table 1, demonstrating that within each of
the four representations highly significant substructures are
occurring. The largest substructure was found in the ‘aromatic
atoms and bonds’ representation and suggests a symmetrical
organization of lipophilicity (through aliphatic carbon atoms)
around a heteroatom, which was specified as mitrogen for
GLIDA. This chemistry implies that at physiological pH the
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Table 1. Best Discriminating Substructure for Each of the Four
Elaborate Representations of the GPCR Ligands in hGPCR-lig
(*Actve’ Column: Upper Line) and in the GLIDA Collection
(*Active’ Column; Lower Line)"

Reproseatation Substraciur Atve Contral P-Valee
5 - 12162 (74%) 7350707 |
Normal N 4081 (26%)
16,434 | T6%) J.4be-2138
K T 291811
Ar-Bonds e 4,065 (19%)
I8, 142 (T5%) } (de-2006
AN
BATT(32%) | 19TTI2%) | 1.06e-13%4
Ar-Atoms/ Bonds N
Y D66 (32% 1517 (%) |.50c- | 760
o~ -No._~- | (3%
|
| 13,050 {7V%) TA5c-1479
Planar P S 5,534 (15%)
17,739 (K2%) I 128~ 1959

“ For cach representation, the same substructure is found in both
databases, except for the “sromatic atoms and bonds™ representation.
Here, the substructures differ in the presence of an extra atom label.
The column labeled *Control’ refers 1o the background DIVERSet
compound library, See Materials and Methods for an explanation of
the p-value calculation,

nitrogen heteroatom is likely to be protonated and charged, in
line with the notion that many GPCR hgands interact with
biogenic amine receptors. Strader et al,* in one of the first
mutagenesis studies on GPCRs, identified a negatively charged
aspartic acid residue in transmembrane domain 3 of the
[i-adrenoceptor to form a salt bridge with the ligands’ protonated
amino group. A similar, though one atom smaller, substructure
is found in the ‘normal’ representation. Consequently, this
substructure is also at the top of the list of most significant
substructures of the normal representation (hGPCR-lig: Table
2) and it is found in 74% of GPCR ligands in hGPCR-lig
compared to only 26% of background compounds. Figure 2
shows some examples of GPCR ligands with this substructure
overlaid, in sometimes unanticipated ways. These types of
overlay also illustrate the completeness of coverage compared
to the chemical fragment approach discussed in the Introduction.
The other significant substructures in Table 2 are essentially
variations of the first; the only differences are in number and
length of carbon chains/moms attached 1o the nitrogen atom.
By scanning through the lists (e.g., Tables 1 and 2 and Tables
1 and 2 in the Supporting Information), a recurring theme
becomes apparent. The topmost significant substructures are
alkyl chains, some in combination with nitrogen, aromatic
bonds, or combinations of these. Note that these lists represent
substructures that occur often in GPCR ligands and not in the
background molecules, thus being the distinguishing features
that set these ligands apart from other organic compounds. In
the ‘normal’ representation, a recurring theme is the altemating
single/double bond feature, most likely being the substitute for
aromatic bonds. Furthermore, the top significant substructures
in this representation are alkylamines, chains of single-bonded
carbon atoms, or combinations of both. The amine-containing
substructures differ in number and length of bonded alkyl
substituents; similarly, the length of the carbon tail differs as
well as the position of the nitrogen within the tail. The
substructure profiles for hGPCR-lig and GLIDA ligands were
nearly identical, which implies that the method is stable for
either data set. For instance, there was only one difference in
the top 20 most significant substructures, and the ordenng was
virtually the same (compare Table 2 with Table | in the
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Table 2. List of the 20 Most Frequent Substructures Found in
GPCR Ligands (hGPCR-lig) Compared to the DIVERSet
Background Compounds (“Normal® Representation)”

| Occurrence
| Background
Nr Substructure GPCR ligands | compounds P-Yalue
VO ING AL~ 1262 a%) a8 6%) | 73561707
-\.:-!\_ - - J !
“N"‘\./\‘\.//‘ B30T (51%) 1,273 (8%) 4, e 1 696
3 TN 12,028 (73%) | 4,128 (26%) | 272c-1626
4 AN | a6 | 3790 (23%) | 261e-1551
SN~ 9298 (56%) | 2,096 (13%) | 2.620-1535
6 AN 14,900 (90%) | 7.844 (49%) | 6.02¢-1522
| S | |
I 7,847 (48%) 1,225 (8%) 1.3%-1520
B | N~ ~ [8669(53%) | 1.900(12%) | 1301411
9 AN | 7.443(45%) 1178 (7%) 3 46c-1405
10| N~~~ | 10355 (63%) | 3.152 (20%) 1.00e-1400
1| Ao [ 172447%) | 1.539(10%) | 2311282 |
12
M | HT0T(35%) 594 (4%) 4.60e-1218
3| ~N [s210050%) | 2039(13%) | 1121179
14 i -
10,433 (63%) | 3,761 (24%) | 1.75¢-1166
AN~ v it
& ! 5.4 Lt L
3 % 96e-1163
N | 5403 (33%) [ 534(3%) 5.96¢-1163
16 | A~ | 5,579 (34%) | 666 (4%) 7.50e-1120
17 P 1 = ]
J 5,532 (34%) [ 712 (4%) 3.68¢-1071
- |
i 1 [ =
AN | 6,386 (39%) | 1,147 (7%) 4.91e-1067
| ‘ 9,829 (60%) 3,550 (22%) 6.48e-1045
0 | i
i 4901 (30%) | 516(3%) 4.27¢-1011

? Substructures were sorted according to sigmficance. with the
most significant substructure at the top. Thus substructure 1 (in
bold) is found in 12,162 GPCR ligands (74%) compared to 4081
background compounds (26%). This finding 1s highly significant as
judged from the corresponding p-value (7.35¢-1707).

Supporting Information). This means that the most significant
substructures cover the same area of chemical space in both
the clinically promising candidates (hGPCR-lig) and compounds
originating from scientific and patent literature (GLIDA). The
topmost significant substructures are dominated by a few
substructural themes that are common to the group as a whole.
The hypothetical “parent” fragment from which all frequent
substructures derive would be an amine connected 10 an

a9
i

VAN DER HORST ET AL.

aromatic system through a carbon chain. This complies with
the most common substructure, as defined by Sheridan et al.,'®
which was found in 21% of the ligands in the GPCR set. Again,
the abundance of this substructure 1s probably due to the high
number of aminergic receptor ligands present in the database
(see also below). Even though the top sigmificant substructures
provide chemical insights found in the largest number of
compounds, they also might reflect an obvious bias. A very
simple one might be the commercial availability of reagents,
Also, the hGPCR-hg database is largely filled with drug
candidates that have reached the market or later-stage clinical
trials, Due 1o the high aurition rates in drug discovery and
development™ these advanced compounds must have additional
features for druglikeness that made them not fail beforehand,
reducing the ‘randomness’ of substructure occurrence.
Hierarchical Partitioning To Distinguish GPCR Ligands
from Other Ligands. For the first hierarchical analysis (the
hierarchical partitioning), we used the hGPCR-lig and
DIVERSet compounds. To find a new set of significant
features, the experiment was repeated on subsets of the
original sets: a subset in which all structures contained the
substructure and another set in which they did not. The most
significant substructure from the best performing representa-
tion was used to split the sets, and substructure mining was
then repeated for the two subsets. The results are represented
hierarchically as a tree (Figure 3). At the top of this hierarchy,
we find the butyl amine substructure (‘normal’ representa-
tion) which oceurs in 76% of GPCR ligands compared to
24% of background compounds. More than halt of the
molecules containing this aminergic tail also contain a
substructure consisting of a heteroatom substituted with a
methyl group and a propyl group. This substructure may
overlay the butyl amine group or may be located elsewhere
in the molecule. Molecules without the butyl amine sub-
structure have a six-alom aromatic containing as most
important structural feature. This aromatic chain 1s not closed
to form a six-membered ring, meaning that this substructure
is found not only in six-membered rings but also in aromatic
systems containing fused five-membered rings etc. Since the
‘normal’ representation does not discriminate  between
aliphatic and aromatic bonds, it may lead to substructure
contributions that are part of an aromatic ring system (Figure
2, e.g., compound IV). We therefore tested whether the use
of a special aromatic bond type was the more suitable
representation. Substructure occurrences for the aromatic
bonds representation are listed in Table 3. When comparing
the substructures of this representation with those of the
‘normal’ representation, a large overlap of the common motif
was observed. For both representations, the most important
moiety is the nitrogen substituted with one or more alkane
chains. From these data, a second hierarchy (Figure 4) was
constructed that did not consider the *normal’ representation.
This approach resulted in a different substructure set than
with the ‘normal’ representation. Compared to the amine
from the ‘normal’ representation, the best-discriminating
substructure now had a shorter tail attached to the nitrogen.
This carbon tail is probably shorter due to the absence of
contributing aromatic bonds that were represented as single
bonds in the ‘normal’ representation. The first substructure
with an aromatic bond was found at position 24 in the
substructure list in Table 3, whereas in the *aromatic atoms
and bonds’ representation the first aromatic substructure was
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Figure 2. Example overlays on GPCR ligands of the most discriminative substructure, ‘normal’ representation. For the first ligand (1), two
possible overlays are shown; multiple overlays are also possible for the ligands IT and I11. Note that the ‘normal’ representation uses Kekulé
structures for aromatic systems and not separate types for delocalized bonds and aromatic atoms, This results in some interesting examples
where the single bond of an aromatic ring is part of the aliphatic chain of the overlaid substructure, i.e. in structures | and IV,

ig: 16,509
bek: 15,983
1
W
Normal
N Y
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bek: 11,902 bek: 4,081
1
~giAs BT T,
1 il
A A
Ar-atoms/bonds
N }Y | lg,s iuuTz]
lig: 2,114 ! .233]
bok: 9.464| | bok: 2438

Figure 3. Hierarchical partitioning of GPCR ligands {hGPCR-th
lig) versus background compounds (DIVERSet - bek). Ligands
having the first substructure are taken out of the two sets (left path,
N for “No') or rather kept (right path, Y for *Yes'), and the process
of substructure mining is repeated. Numbers given are the absolute
numbers of molecules used. Most discriminative substructures in
any elaborate representation are shown. The name of the repre-
sentation that yielded this substructure is given at the bottom of
the box surrounding the substructures.

found much higher in the substructure list, i.e. at the third
position, Iterating over the substructures with the ‘aromatic
atoms and bonds’ representation leaves the impression that
an aromatic ring 1s forming (Supporting Information: sub-
structures 3 to 5 and 10 to 15 in Table 2). However, the
fully closed ring is found much further down the list. The
reason for this is that aromatic rings that differ in size
contribute the same open substructures to the frequency
tables. Since closed five-membered rings and closed six-
membered rings cannot be overlaid, the support for these
substructures is much lower. Note that even though the
‘normal’ representation may seem naive, it still yielded the
most significant substructure for GPCR ligands. Using this
representation, a significant enrichment of the source sets
can be accomplished, provided that bonds may be aliphatic
or aromatic (Figure 1). Complementary to the analysis of
typical substructures for the GPCR ligands was our analysis
of substructures occurring more frequently in the DIVERSet
background library. Thus, repeating the experiment for the
background compounds yielded structural features that have
low abundance in GPCR ligands. Table 4 gives an overview
of the most-significant substructures for each representation.
Similar as for the GPCR ligand analysis, a hierarchy was
constructed for the background compounds (Figure 5). The

3t

tree is the same for analysis with and without the results of
the ‘normal’ representation, since this representation did not
produce any of the most significant substructures. The
substructures that occurred often in the background set and
not in the ligands are those that should be avoided when
searching for GPCR ligands (since they seem to be related
to inactivity). A carboxamide substructure was the most
significant substructure found for the background (DIVER-
Set’”) set. For this set, the aromatic bonds representation
yielded the most significant finding (Table 4). Almost two-
third of the compounds (depending on definition) in this set
have a carboxamide or ester at the core of their scaffold,
cither linking two ring systems or linking a ring system with
an aliphatic group. The high number of carboxamide and
ester groups al the core of the molecules may reflect the
simple organic reactions between alcohols and acids that have
been used to construct the library. GPCR hgands differ not
only in lower number of occurrence but also in position of
these motifs, Where carboxamide and ester groups mainly
form the linking groups between fragments in DIVERSet
compounds, these motifs are also found as side-groups in
GPCR ligands. This possibly reflects efforts to make drugs
that are more soluble (for increased bioavailability) or to
create prodrugs. The substructures in the GPCR hierarchy
contained zero (Figure 4) or one heteroatom (Figure 3 and
Figure 4), whereas those for the background set contained
one, two, or three heteroatoms (Figure 5). This might reflect
the lower number of hydrogen bond donors/acceptors in
GPCR actives compared to inactives which was already
noticed by Balakin et al.*' Normally, as Feher and Schmidt
pointed out,*® the number of (small) heteroatoms is roughly
equal in drugs as well as compounds in combinatorial
libraries,

GPCR Subfamilies. We continued our analysis by focus-
ing on individual classes of GPCR ligands. For the subfamily
analysis, we continued with GLIDA and DIVERSet. For this
second analysis, we derived smaller, sampled sets next to
the two onginal full sets. The sampled sets, which were more
convenient to work with, had the same substructure profiles
as the full sets. For instance, the substructure lists of the
full (Table 1 in the Supporting Information) and sampled
set (Table 3 in the Supporting Information) of GLIDA are
nearly identical. Substructures have the same order, e.g. only
two shifts in positions occur in the 20 topmost structures
for the ‘normal’ representation. Ligands were grouped
hierarchically, based on the classification of the target
GPCRs. The hierarchical grouping and levels where sub-
structure analysis was performed are schematically presented
in Figure 6. Similar to the analysis of GPCR ligands against
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Table 3. Frequent Substructures for the GPCR Ligands
(hGPCR-lig) Found with the *Aromatic Bonds’™ Representation”

Oceurrence
Background
Nr Substructure | GPCR ligands | compounds P-Value
Vol o~ | 11926(75%) |4065(25%) | 7231610
2 “TNo >~ | 10,344 (65%) | 2,828(17%) | 2.11e-1552
3_ | /\.ND/\\_/

lli 9474 (59%) | 2257(14%) | 4591514
¢ P 14,928 (93%) | B.258(50%) | 6.72e-1383
5 N

SN 7,290 (46%) | 1,241(8%) | 5.53e-1311
|
6_ -_/"‘Nﬂ"“‘v/"-\ = B
N | 7,040 (44%) | 1168 (T%) | B.4Be-1271
T | (9,056 (57%) | 2444(15%) | B.58c-1268
8| SN [ 1587047%) | 1574 (10%) | 42261216
= |
il | 5,498 (34%) | 525 (3%) 1.45¢-1202
10 e oNE 12,898 (81%) | 6,091 (37%) 3,78e-1202
[~ 9.962(62%) | 3286(20%) | 3.25¢-1200
12 | M 5,626 (35%) | 606 (4%) 4.33e-1181
13 | o~ ~_-No [ 7202(45%) | 1,467 (9%) 1.76e-1154
14 | N
* 7,863 (49%) 1,868 (11%) | 2.25e-1151
ANo_~_
$ IN 5,774 (36% 736 (4%) 1.11e-1133
Mo~ & ° !
16 LI ]
/“‘alw SR 5441 (34%) | 590 (4%) 23e-1131
17 N
Mo~ | SIS9G2%) | 514(3%) 2.26e-1097
18|~ Moy 11,202 (70%) | 4916(30%) | 481e-097
19 | _No__~_~ |8039(56%) |2999(18%) |2.10e-985
20 | oMoy 15008 (38%) | 1,110(7%) 1.64¢-966
24
A Ne | 10819 (66%) | 4,728 (30%) | 2.04¢-937

“The first occurrence of an aromatic bond 15 found in the 24th
substructure, See for further explanation the legends of Tables | and 2.

a background set we now compared the ligands of a subgroup
against all other ligands in the entire group. A group within
a group 1s called a subgroup: the group that contains the
subgroup is denoted as the supergroup. Substructures that
have a significant preference for either the subgroup or the
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N ‘ Y N * Y
ig: 1,833 I lig: 2,750 [ lig: 5,583 Iag: 6,343
bek: 9,260 bek: 2.658 bek: 3,540 bok:

Figure 4. Hierarchical representation of the splits for GPCR ligands
(hGPCR-lig) compared to the DIVERSet background collection,
constructed without using the normal representation as in Figure
3. See the legend to Figure 3 for further explanation. As opposed
to Figure 3, we now see a butyl chain without the amine group at
the top of the hierarchy. Substructures containing the amine group
are found one level down in the hierarchy.

Table 4. Best Discriminating Substructure Per Elaborate
Representation for the DIVERSet Background Compounds
Compared to the hGPCR-lig Collection”

Hepresentation Background |
Substructure compounds GPCR ligands PValoc
o M O
Nermal -~ T 5247 (39%) 151119 | 903920
Li——
Arbosls oSSy 6,183 (39%) A (9%) | 265908
Ar-Atonns & Bunds o @ Ng~ 5,998 (4%4) 2140 13%) | 1-92e-46
0 s - L) =3 ]
Ka¥ ha P
Planar C B2IK (V%) 2001 | 439658
e
“Note that the substructures do not have a geometric

arrangement; the layout of double bonds and aromatic bonds is
arbitrary,

supergroup are denoted as either specific or awvoiding,
respectively. Substructures that are specific for the super-
group are denoted as generic. Specific substructures are those
that set ligands from one subgroup apart from ligands of the
neighboring subgroups, Avoiding substructures are those that
seem 1o avoid ligands of the subgroup but do occur in
neighboring subgroups. Generic substructures are those that
are common to a subgroup and the neighboring subgroups.
Substructure lists not provided in this article are available
as Supporting Information.

First, the differences between aminergic receptor ligands
and all other GPCR ligands in GLIDA were analyzed (Figure
7). The ‘planar ring" representation yielded the most sig-
nificant substructures, even though substructures with parts
of a planar ring were found at lower positions in the list.
The best-discriminating substructures were methyl- and ethyl-
substituted amines; the amine group of the endogenous
ligands (e.g.. dopamine. (norjepinephrine, acetylcholine, etc.)
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lig: 1,418 ig: 16

Figure 5. Hierarchical splits for the DIVERSet background
compounds compared to GPCR ligands (hGPCR-lig). See legend
to Figure 3 for further explanation. Here, it is particularly
remarkable that the substructures all contain a double bonded
heteroatom. The substructures at the top and right path match the
carboxyl and ester groups, which are abundant in the DIVERSet.

Background
| |
:

Figure 6. Schematic drawing of the subfamily hierarchy indicating
the levels at which substructure analysis was performed (denoted
by braces on the left side of the hierarchy). Boxes represent the
sets and use the following labels: *Background’ - the ChemBridge
DIVERSet. ‘All" - total set of GPCR ligands found in GLIDA,
*Aminergic’ - all aminergic receptor ligands, ‘a\ ' - adrenoceptors,
‘D" - dopamine receptors, ‘H' - histamine, ‘M’ - muscarinic
acetylcholine receptors, *5S-HT' - serotonin receptors, ‘a’ - o
adrenoceptors, ‘fi* - f-adrenoceptors, and *ff, .+' - fi-adrenoceptor
subtypes | to 3.

is the common motif that accounts for naming of this group
as biogenic amine receplors. The high occurrence of these
substructures reflects efforts to mimic endogenous ligands
by making analogs of these ligands (e.g., isoproterenol based
on epinephrine). The opposite analysis was also conducted,
yielding the structural features common to GPCR ligands
excluding the aminergic ligands. The first, most significant,
structural feature was a carbon atom connected to both a
single-bonded heteroatom and to a double-bonded hetero-
atom. In the following positions, this heteroatom was
specified as being a nitrogen atom, the second one as an
oxygen atom. This reflects the carboxamide motif, found in
peptide ligands (MW < 1000), which are part of other,
nonaminergic, classes in GLIDA. The second important
substructure consisted of two aromatic systems connected
by a methylene group or by a single bond.
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We continued by analyzing the five major aminergic
targets individually against the other four. These five are the
adrenoceptors (both alpha- and beta-), the dopamine recep-
tors, the histamine receptors, the muscarinic acetylcholine
receptors, and the serotonin receptors. Octopamine and trace
amine receptors were not included due to scarce ligand
information. For each analysis, the size of the aminergic
control group was different due to the removal of duphcate
entries, i1.e. compounds that bind to more than one class.
Although substructures found for the control group may be
common to multiple GPCR targets, these are different from
privileged substructures. Privileged substructures are discrete
fragments, often scaffolds. found in one or more ligands for
more than one target in the family A Our analysis considers
all possible substructures and yields only the most frequent
substructures among the targets.

Adrenoceptor Ligands. An important feature of the
adrenergic receptor ligands vs all other aminergic ligands is
a substructure consisting of two heteroatoms connected by
an ethyl group (Figure 8). The first heteroatom of this
substructure is an oxygen atom specified as a hydroxy group.
and the second is a nitrogen atom with a single hydrogen
atom attached, meaning that this nitrogen is secondary. This
chemical signature is representative for the motifs found in
both fi-adrenoceptor agonists and antagonists. An example
containing this substructure is metoprolol, a /#; antagonist
(beta-blocker) used 1o treat hyperiension. The second ex-
ample substructure for motif I in Figure 8 has no atom
specifiers for the heteroatoms, which means that this
substructure also overlaps with the 1,2 diaminoethane
substructure. A search for adrenoceptor (ant)agonists that
have this substructure and not the hydroxyethylamine
returned 58 hits, most of them specified as a-adrenocepior
ligands in the database (second example structure of motif
I). Note that both aforementioned substructures in the query
had heteroatoms with one explicit hydrogen atom. At lower
positions, the hydroxyethylamine motif reappears bonded 10
an aromatic system at the carbon atom that has the hydroxyl
group attached. This 1s an exclusive element in 3-adreno-
ceptor agonists. The substructures are essentially all part of
the example substructure given for motif I which 1s found
in 27% of the aminergic higands. An example drug that has
this motif is terbutaline, a f;-adrenoceptor agonist used n
the treatment of asthma. Substructures found less frequently
in adrenergic ligands compared to aminergic ligands con-
sisted of a nitrogen atom substituted at two or three positions,
some as part of a largely saturated five- or six-membered
ring, as found in e.g., apomorphine, a dopamine receptor
ligand.

Alpha- and Beta-Adrenoceptor Ligands. We further
examined the adrenergic receptor ligands, where we distin-
guished between a- and S-adrenoceptors. The most signifi-
cant features specific for the a-adrenoceptor ligands (Figure
9) consist of a nitrogen atom substituted at three positions
with methyl and ethyl groups (73% of ligands). One ethyl
group can be connected to an aromatic system (33%) or 1o
a heteroatom that is connected 10 an aromatic system (29%).
An example drug containing this substructure is phenoxy-
benzamine, an @,;-adrenoceptor antagonist used in the treat-
ment of hypertension. The most significant substructures
specific for fi-adrenoceptor ligands (Figure 10) were all based
on the I-(ethylamino)propan-2-ol moiety (86% of ligands).
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Figure 7. Common motif and example substructures for most significant substructures of aminergic ligands compared against all other
GPCR ligands (GLIDA, 5k sampled), in planar ring systems representation. The "Motif’ number (Roman number, in bold) indicates the
number of the found motif or structural theme. The motif number is followed by a short description, and one or more example substructures
are provided. Below each example substructure, the position, oceurrence in the active set (absolute and percentage), and occurrence in the
control set (absolute and percentage) are listed. See the Materials and Methods section for further explanation about the n.pn,smmu)n of
the substructures. For some motifs, an example molecule from the same class is provided, with the example substructure overlaid in bold.
Here, an example drug containing motif | is olanzapine, which is used to treat schizophrenia, acting on dopamine Dy, D,, and serotonin
S5-HT; receptors (taken from ref 51).
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Figure 8. Common motif and example substructures for most significant substructures of the adrenoceptors ligands, in aromatic atoms and
bonds representation. See the legend of Figure 7 for further explanation. The first example structure (for motif 1) is metoprolol. a 3,-
adrenoceptor antagonist (beta-blocker) used to treat hypertension (taken from ret' 51). The second example structure for motif | is 4-(4-
amlno-(: 7 -dimethoxyquinazolin-2-yl)-N-tert- hunylplperm:me -2-carboxamide, an a- adn.nmn.plur ligand and prazosin derivative found in
GLIDA.™ The example structure for motif 11 is terbutaline, a fJ;-adrenoceptor agonist used in the treatment of asthma,

An cxamplt. drug containing this substructure is propranolol,
a nonselective beta-blocker, used in the treatment of hyper-
tension. The most significant substructures specific for the
fh-adrenoceptor were all parts of a methylaminopropane
substructure (81% of ligands). Here it should be noted that
commercially available 5,-adrenoceptor ligands are agonist-
shaving a structure such as terbutaline (Figure 8, first example
motif 1), whereas 3,-adrenoceptor ligands are mostly antago-
nists such as metoprolol (Figure 8, first example motf I). The
most significant aveiding substructure for f3,-adrenoceptor
ligands (50% of ligands), which at the same time oceurs in /35
and fs-adrenoceptor ligands. consisted of an aromatic chain

linked by an ethyl group to nitrogen that was linked by an ethyl
group (0 an oxygen.

Dopamine Receptor Ligands. For the dopamine receptor
ligands, two types of specific substructures were identified
(Figure 11). The first substructure (in 30% of the ligands)
consists of a chain of 4 to 5 aromatic atoms, connected to a
nitrogen atom through a single carbon atom. This nitrogen
is tertiary, as it is substituted with either two ethyl groups
or one methyl and one ethyl group. The second substructure
(12% of the ligands) consists of two aromatic chains of five
or six atoms long that are linked through a heteroatom
connected to N-methylethyleneamine, ¢.g. an N-methyleth-
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Figure 9. Common motif and example substructures for most significant substructures of the a-adrenoceptors ligands versus f-adrenoceptor
ligands, in aromatic atoms and bonds representation. An example is phenoxybenzamine, a @,-receptor antagonist used to treat hypertension.
See the legend of Figure 7 for further explanation.
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Figure 10, Common motif and example substructures for most significant substructures of the S-adrenoceptor ligands versus a-adrenoceptors
ligands, in aromatic bonds representation, An example drug containing this substructure is propranolol, a nonselective f-adrenoceptor
antagonist (beta-blocker). See the legend of Figure 7 for further explanation.
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Figure 11. Common motif and example substructures for most significant substructures of the dopamine receptor ligands, in aromatic
atoms and bonds representation. An example drug that has motif  is clozapine, an antipsychotic agent used in the treatment of schizophrenia.*
Another example for motif I and also for motif 1 is compound 1-745,870, a selective dopamine D; receptor antagonist.** See the legend
of Figure 7 for further explanation.

ylenediamine linker. The terminal nitrogen of this linker may
be substituted with an ethyl group. In both example
molecules in Figure 11, the substructures overlap with the
piperazine ring. The fact that the most significant substruc-
tures do not ‘use’ the entire piperazine moiety suggests that

our carbons long. In case NH

vu.n:alifms on lhc pipcrztzine _Ihgmn: are pns.-iihl.c wht:n fapmopyl itis g 1. 257 (42%)/ 562 (6%)
designing dopaminergic drugs. Similarly, the aromatic chains 2 ]
in motifs T and IT overlap with several types of aromatic Figure 12, Common motif and example substructures for most
systems, e.g. five-membered or six-membered rings, contain- significant substructures of the histamine receptor ligands, in
ing either carbon or heteroatoms. This implies that aroma- aromatic atoms and bonds representation. Histamine is provided
ticity is the important feature and not so much the type of as an example molecule containing this motif. See the legend of
ring system that is used. Again, this finding offers further Figure 7 for further explanation.
options for drug design. the other neighboring aromatic atoms has an ethyl group
Histamine Receptor Ligands. The most common motif attached. The majority of the significant substructures are
(almost 50%) specific for histamine receptors is a chain of chains, and actual ring closures, forming e.g. the imidazole
five aromatic atoms (Figure 12), where one or two aromatic ring as in histamine, are scarce. This seems counterintuitive
atoms are specified as nitrogen atoms, These nitrogen atoms at first sight, since the five-membered aromatic heterocycles

are separaled by one aromatic atom; in some cases, one of are among the most obvious features when visually inspect-
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Figure 13. Common motif and example substructures for most
significant substructures of the muscarinic acetylcholine receptor
ligands, in aromatic bonds representation. An example molecule
containing the guinuclidine ring is cevimeling, 1 muscarinic My
receptor agonist, See the legend of Figure 7 for further explanation,

ing the set. Although a common theme, the heterocycles in
histamine receptor ligands all differ in size, ring-fusions, and
heteroatoms. By considering substructures instead of com-
plete ring fragments, it was thus possible to find structural
similarities that have a much higher support among the
ligands. This causes the high occurrence of the ‘aromatic
chains’, since it is the most common feature among the
diverse heterocycles.

Muscarinic Acetylcholine Receptor Ligands. Substruc-
tures of derivatives of the quinuchidine ring are the most
common substructures for the muscarinic acetylcholine
receptor ligands (Figure 13). It occurs in 19% of ligands for
this class compared to 0% in other aminergic ligands. A
second heteroatom may be attached, separated by two carbon
atoms from the nirogen. A typical example is civemeline, a
muscarinic My receptor agonist (Figure 13, first example).
In this case, the second heteroatom would be the oxygen
atom.

Serotonin Receptor Ligands. For the serotonin receptor
ligands (Figure 14), the most specific substructure resembles
the shape of the 2-ethylindole moiety (31% of ligands) that
forms the core of serotonin, although a label specifying the
nitrogen atom is missing. This is because this substructure
covers the largest set of serotonin ligands (without becoming
too general). In some cases, the ethyl group is attached to
C3 rather than N1 of the core, which means that either the
ethyl group or the atom specifier is not part of the
substructure. The nitrogen atom can also be replaced by other
heteroatoms or be absent in scaffolds that consist only of
carbons, forming a planar ring system. This ring system
consists of one aromatic ring instead of two. In fact, examples
of all three cases were found among the ligands. At lower
positions in the lists (position 22 in Table 16, Supporting
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Information) the same substructure (25% of hgands) is found
with the nitrogen atom specifier. Examples contaiming this
substructure are the endogenous ligand serotonin and the
iriptan antimigraine drugs such as sumatriptan (Figure 14).

Aminergic Receptor Ligands. When comparing the
aminergic subgroups against all other aminergic ligands, the
most significant features of the aminergic supergroup always
have a low occurrence. This low occurrence is probably
because these features are actually the features of one of the
other subgroups of this class. For instance, the avoiding
substructures for the serotonin receptor ligands are, among
others, motif 1 from the adrenoceptor ligands (Figure B).
Therefore, these features can be considered substructures to
avoid since they indicate possible side effects on other
aminergic receptors. This is a more generalized way of a
so-called antitarget analysis, to avoid GPCR-mediated side
effects.”® For dopamine, histamine, and serotonin receptor
ligands, the most significant substructures of the other
aminergic ligands (the avoiding substructures) are dominated
by a motif of two heteroatoms connected by an ethyl linker.
Since this resembles the substructures found for the (/)
adrenoceptors (Figure 8), in both frequency and shape. this
class probably dominates the avoiding substructure lists of
the other four classes.

General Observations. In the following, we will discuss
the representations and substructure selection criteria em-
ployed and their likely influence on the results obtained. First,
the extraction of substructures discards any geometric
information such as bond orientation. This loss of information
may be appreciated, however, as it is beneficial for extracting
more ‘abstract’ features in molecules. For instance, opposite
cis—trans isomers may contribute to the same double bond
in a substructure. Similarly, a chain of aromatic bonds may
be part of one or multiple fused ring systems. Chirality is
also lost in our approach, an issue that holds for all
substructure search methods., Inclusion of 3D-conformational
aspects in substructure searching is an open area for further
research. Second, the p-value was used to sort the substruc-
tures according to significance. However, this value is very
small for the top findings, and the differences in significance
of the substructures are small, Therefore, choosing the most
significant substructure 1o split the set is arbitrary; all
substructures at the top of the occurrence lists would be a
very good choice. Not only the significance of the finding is
important but also what the finding predicts. It might
therefore be better to focus less on the p-value and more on
the ratio of retrieval of GPCR ligands and background
compounds. In the end, a scientist might be more interested
in the percentage of GPCR ligands that can be identified

Figure 14. Common motif and example substructures for most significant substructures of the serotonin ligands, in planar ring systems
representation. An example substructure is the endogenous ligand serotonin (above), or the antimigraine drug sumatriptan (below). See the

legend of Figure 7 for further explanation.
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from a set of molecules. Moreover, our approach focuses
on selective substructures only; substructures that occur
frequently in both sets are discarded. Although not selective,
these substructures are still common structural features for
GPCR ligands. Therefore, for the design of GPCR screening
libraries, we also analyzed the features common in GPCR
ligands in general, which were selected based on a minimum
number of atoms/bonds (to remove trivial fragments) and
frequency. A list of frequent, nonselective substructures is
provided in Table 22, Supporting Information, This table lists
all frequent (= 60% of molecules) substructures of more than
six atoms that are found in GLIDA (5k sampled, normal
representation). Some of the substructures (such as no. 23)
can be associated easily with ligands of the aminergic
receplor class, while other substructures (such as no. 1) seem
to describe a more generic pattern of GPCR ligands. While
this table will not be analyzed further by us at the current
stage, fragments of the above type should be beneficial to
be included in the design of GPCR libraries of any of the
subtypes discussed in this work. As a final point, almost all
significant findings were found when we used elaborate
chemical representations, mainly with *aromatic atom and
bond types’. This suggests that this representation might be
best for the application domain (i.e., GPCR activity predic-
tion). Apparently, elaborate chemical representations add
substantial value when searching for structural features
typical for active compounds. Suggestions for further re-
search would therefore be to extend the types of representa-
tions used, for instance by encoding the electronic properties
of a molecule (for example, see ref 49).

CONCLUSION

In this study, we analyzed frequently occurring substruc-
tures in GPCR ligands by comparing these with various
control groups of compounds. Our analysis is complementary
to employing privileged structures in ligand design,* in that
it is not restricted 1o existing scaffold structures, It therefore
offers further opportunities for introducing novelty in new
chemical entities. We used different chemical representations
for the molecules under consideration. As a result, we derived
generalized substructural features for both ligands and control
groups. The substructures found in the background set reflect
the use of simple reactions that may have been employed to
construct the library, for instance, the ester and carboxamide
groups. In the GPCR ligand group, we found common as
well as ‘novel’ substructures. First of all, our analysis
identified well-known motifs (e.g., the side chain in f-a-
drenoceptor antagonists), which we considered a validation
of our approach. In fact, the butylamine substructure (often
linked to an aromatic moiety) occurred in 74% of the GPCR
ligands compared to 26% of the background control group.
Second, new structural patterns were also found, which may
help medicinal chemists in their design efforts. As a typical
example, we found fused 5:6 bicyclic ring systems in
serotonergic ligands. These were identified in the so-called
planar representation, indicating that aromaticity 15 not
essential for both rings and that the precise location and
nature of a heteroatom in the bicyclic core is not fixed.
Indeed, the use of elaborate chemical representation gave
the best, i.e. the most significant, description of the structural
features that are important for a (sub)class of GPCR ligands.
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Abstract

Background: Mast cells (MCs) play pivotal roles in allergy and innate immunity and consist of heterogenous
subclasses. However, the molecular basis determining the different characteristics of these multiple MC
subclasses remains unclear.

Results: To approach this, we developed a method of RNA extraction/amplification for intact in vive MCs pooled
from frozen tissue sections, which enabled us to obtain the global gene expression pattern of pooled MCs
belonging to the same subclass. MCs were isolated from the submucosa (sMCs) and mucosa (mMCs) of mouse
stomach sections, respectively, |5 cells were pooled, and their RNA was extracted, amplified and subjected to
microarray analysis. Known marker genes specific for mMCs and sMCs showed expected expression trends,
indicating accuracy of the analysis.

We identified 1,272 genes showing significantly different expression levels between sMCs and mMCs, and
classified them into clusters on the basis of similarity of their expression profiles compared with bone marrow-
derived MCs, which are the cultured MCs with so-called 'immature’ properties. Among them, we found that
several key genes such as Notch4 had sMC-biased expression and Ptgr]l had mMC-biased expression.
Furthermore, there is a difference in the expression of several genes including extracellular matrix protein
components, adhesion molecules, and cytoskeletal proteins between the two MC subclasses, which may reflect
functional adaptation of each MC to the mucosal or submucosal environment in the stomach.

Conclusion: By using the method of RNA amplification from pooled intact MCs, we characterized the distinct
gene expression profiles of sMCs and mMCs in the mouse stomach, Our findings offer insight into possible
unidentified properties specific for each MC subclass.
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Background

Mast cells (MCs) are derived from hematopoietic stem
cells and play important roles in allergic responses, innate
immunity and defense against parasite infection. Linlike
other blood cells, MCs migrate into peripheral tissues as
immature progenitors and differentiate into mature mast
cells. One of the unique features of MCs is that they show
a variety of phenotypes depending on the different tissue
microenvironment of their maturation [1]. In MCs, vari-
ous MC-specific serine proteases are stored in the secre-
tory granules, and their gene and protein expressions are
dramatically altered when their cell environment is
altered. For example, Reynolds et al. have shown that at
least six distinct members of mouse MC-specific serine
proteases are expressed in different combinations in dif-
ferent mast cell populations |2]. In addition, recent stud-
ies have shown that mature MCs vary in terms of what
surface receptors and lipid mediators they express [3,4].
Because each mast cell population in vivo must play a spe-
cific role in the body, it is important to determine the
character of each population of MCs.

Comprehensive gene expression analysis is a powerful
approach to understand the characterization of various
MC subpopulations, To date, several studies on microar-
ray analysis of MCs have been conducted |5-7], but most
of them dealt with MCs cultured in vitro. Alternatively,
gene expression profiles of MCs isolated from skin and
lung have been analyzed [3,8-10]. However, the numbers
of MCs analyzed as one sample were relatively high and
they were exposed to physical forces, enzymes and the
anti-Kit antibody for purification, during which the origi-
nal properties of the MCs may have been affected.

In the gastrointestinal tract, there are MCs that are mainly
classified into two subclasses; mucosal MCs (mMCs) and
submucosal MCs (sMCs) on the basis of their location,
morphology (size and shape) and granule contents
[11,12]. mMCs are mainly found in the mucosa of the gas-
trointestinal system, having chondroitin sulfate-contain-
ing granules, which are stained with toluidine blue but
not safranin, and their activation occurs during parasite
infection | 13], while sMCs are localized in the submucosa
of the gastrointestinal tract and their granules are rich in
heparin and stained with both toluidine blue and safranin
[1.11]. However, the molecular basis determining the dif-
ferences in biochemical properties of these two MC sub-
classes remains uncertain, partially due to the difficulty of
their isolation.

To overcome these problems, here we established a
method of RNA amplification from intact MCs isolated
from frozen tissue sections, which enables us to conven-
iently obtain the global gene expression pattern of MCs in
various tissues. To validate this method, we first deter-

hitp://www biomedcentral.com/1471-2164/10/35

mined the minimum cell number required to achieve
reproducible RNA amplification. We then compared the
gene expression profiles obtained from small numbers of
mMCs and sMCs in the mouse stomach, and found sev-
eral key genes 1o be specifically expressed in one subclass
of MCs, which may reflect some aspects of the distinct
properties between the two MC subclasses in the gastroin-
testinal tract.

Results and discussion

Development of an RNA amplification protocol to obtain
gene expression profiles from a small amount of RNA

To gain insight into the functional differences between the
different subclasses of MCs, we employed three rounds of
the T7-based RNA amplification method. Based on the
preliminary experiments using peritoneal MCs and bone
marrow-derived MCs (BMMCs), we estimated that a sin-
gle MC yields 2 pg of RNA. Before we performed compar-
ative analysis of MCs from different tissues, we first
evaluated the accuracy and reproducibility of three rounds
of the T7-based RNA amplification method, starting with
the amount of RNA that can be obtained from a single
MC. To assess this, we first compared the microarray
results obtained from 5 pug of BMMC RNA prepared by the
standard protocol with those obtained from the same
RNA diluted 10°- or 10%-fold (30 pg, 10 pg and 2 pg) and
subjected to three rounds of 17-based amplification (Fig-
ure la-c). Although three rounds of amplification yielded
enough quantity of RNA for microarray analysis (>20 ug)
even in the case of 2 pg RNA, scatter plot analysis revealed
that the qualities of the obtained results were quite differ-
ent between the samples from 5 pg and 2 pg RNA. The
genes judged as 'Presence’ in both 30 pg and 5 pg of RNA
were 8,149 genes, which corresponded to 72% of genes
judged as 'Presence’ in the 5 pug of RNA (11,344 genes; Fig-
ure 1a), while only 4,116 genes were judged as 'Presence’
in both 2 pg and 5 pg of RNA, which corresponded to only
36% of genes judged as 'Presence’ in the 5 pg RNA (Figure
1¢). The decrease in the number of genes judged as 'Pres-
ence' in the diluted samples (30 pg, 10 pg and 2 pg) may
be due to the loss of low copy number RNA species during
amplification.

We next examined the reproducibility of the microarray
results obtained from two sets of 30 pg BMMC RNA sam-
ples (30 pg-1 and 30 pg-2) or two sets of 2 pg samples (2
pg-1 and 2 pg-2) (Figure 1d and le). In the 30 pg RNA
samples, 7,537 (30 pg-1) and 8,777 (30 pg-2) genes were
judged as 'Presence’. However, only 4,324 (2 pg-1) and
4,460 (2 pg-2) genes were judged as 'Presence’ in each 2
pg RNA sample, again suggesting the loss of low copy
number RNAs during amplification from a small amount
of RNA. As to the reproducibility, 86% of the 'Presence’
genes in the 30 pg-1 and 74% of 'Presence’ genes in the 30
pe-2 sample were judged as 'Presence’ in both 30 pg RNA
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Comparisons of three round-amplified products starting with very small quantities of RNA. (a-c) Amplification
biases in the products starting from a small quantity of RNA. Scatter plots of signal intensity obrtained from 5 g of BMMC RNA
prepared by the standard protocol and from 30 pg (a). 10 pg (b) and 2 pg (c) of BMMC RNA prepared by three rounds of
amplification are shown. (d, e) Reproducibility of the three-round amplification of a small quantity of RNA, Scatter plots of sig-
nal intensity between two independent products from 30 pg of BMMC RNA (BMMC 30 pg-| and BMMC 30 pg-2) (d) or from
2 pg of BMMC RNA (BMMC 2 pg-| and BMMC 2 pg-2) (e), are shown. Red dots show probe sets judged as "Presence”, and
yellow dots represent probe sets judged as "Absence” in both arrays. Blue dots show probe sets judged as "Presence” only in
either array. The correlation coefficients (r) are presented. The same, four-fold induction and suppression thresholds are indi-
cated as diagonal lines. Genes judged as "Presence"” are placed in groups corresponding to pairwise overlaps shown in the
accompanying Venn diagrams.

samples, while only 57% of 'Presence’ genes in the 2 pg-1
and 55% of 'Presence’ genes in the 2 pg-2 sample were
judged as 'Presence’ in both 2 pg RNA samples. These
results suggested that the amplified products from the
RNA from a single MC (about 2 pg) by the current method
may include considerable amplification artifacts causing

problems in accuracy and reproducibility. On the other
hand, because of the higher reproducibility (>74%), we
concluded that amplification from 30 pg RNA collected
from 15 MCs would be suitable for the practical analysis
of tissue MCs. Based on these results, we set our goal in
this study to acquire gene expression profiles of MCs
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pooled from different regions. To minimize the influence
of cell-to-cell variations within the same class and poten-
tial amplification artifacts, we prepared three sets of 15
MCs for each region and compared genes with signifi-
cantly different expression between MCs from the differ-
ent regions (Figure 2b). We chose stomach as the source
organ, since we can isolate two kinds of MCs from the
mucosa (mMC) and the submucosa (sMC) regions of the
same sections, and mMCs and sMCs have been suspected
to be different in several MC properties such as protease
expression profile and sensitivity to safranin staining
[1,11].

Gene expression profiles of submucosal and mucosal MCs
from the stomach

To visualize wwo kinds of MCs in the stomach without
causing RNA degradation, the sections were fixed with car-
noy's fixative and metachromatically stained with toluid-
ine blue for a few seconds. sMCs and mMCs were
microdissected using a patch pipette (Figure 2a and 2b).
We prepared three sets of 15 MCs for each region,
extracted their RNA and individually amplified them
(sMC,, sMC,, sMC,, and mMC,;, mMC,, mMC,). To
improve the recovery of the extraction of as little as 30 pg
of RNA, we used 'poly G’ as a carrier, which does not inter-
fere with the following RNA amplification or hybridiza-
tion of the amplified product to the array (data not
shown). To examine the effects of nonspecifically ampli-
fied artifact products, we performed the RNA extraction/
amplification procedure without adding microdissected
cells ("no cell”) as a negative control (described in “Mate-
rials and methods"). The amplified RNAs of sMCs, mMCs
and the "no cell” control were separately hybridized to a
murine microarray. The signal values in the "no cell” sam-
ple were low in general and similar to the background lev-
els (Figure 2c). The scatter plots of the samples
independently prepared within the same group (e.g. sMC,
vs SMC, ) showed a similar expression pattern; the average
correlation coefficient for all probe-sets was 0.945 + 0.004
and 0.893 £ 0.019 in sMCs and mMCs, respectively (n =
3). In contrast, the average correlation coefficient between
sMCs and mMCs was 0.752 + 0.034 (n = 3), which was
much lower than those within the same group, suggesting
that their gene expression patterns are different.

We further evaluated the accuracy and reproducibility of
our method by other comprehensive analyses (hierarchi-
cal clustering analysis and principal component analysis
[PCA]) using all probe sets. Microarray data obtained
from sMCs, mMCs, skin-derived MCs, peritoneal MCs,
BMMCs and non-MCs (macrophages and fibroblasts)
were applied to these analyses. We first checked whether
the amplification process in our method affects the global
expression profile due to non-linear amplification. The
results from the BMMC samples using RNA prepared by
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the standard protocol (BMMC-std) or the amplification
method (BMMC-amp) were subjected to these analyses.
Both hierarchical clustering analysis and PCA revealed
that microarray data from BMMC-std and BMMC-amp
were clustered in the same group (Figure 3a and 3b), sug-
gesting that the global similarity in gene expression pro-
files is maintained during the amplification process. We
next examined the similarity of expression patterns in
three independent sMC or mMC samples. Upon cluster-
ing analysis and PCA, sMC, ;and mMC, , were clustered
in the same group, respectively. PCA also showed that the
expression profiles of sMCs, mMCs and BMMCs are
mutually different (Figure 3b).

We then compared the stomach-derived MCs (sMCs and
mMCs) with skin-derived MCs, peritoneal MCs, BMMCs
and non-MCs (macrophages and fibroblasts) by cluster-
ing analysis. The tissue-derived MCs (stomach MCs and
skin MCs) were clustered separately from peritoneal MCs
and BMMCs, These results may reflect different properties
between tissue-derived MCs with firm adhesion to the
neighboring cells and floating MCs without a tight con-
tact. As to the similarity of MCs with fibroblasts and mac-
rophages, it is reasonable that fibroblasts are most distant
from MCs and macrophages are closer to MCs as a leuko-
cyte family.

Validation of microarray results by real time RT-PCR
analysis

We next investigated whether the hybridization signals of
known marker genes specific for sMCs and mMCs showed
the expected expression trends [12,14]. The mMC-specific
genes, mast cell protease 1 (Mcptl) and 2 (Mept2) showed
higher values in mMCs, while the sMC-specific marker
genes, mast cell protease 4 (Mcptd) and chymase 2
(Cma2), showed higher signal values in sMCs (Table 1
and Figure 4a) [15-29]. On the other hand, MC-common
markers such as kit oncogene (Kit) and Fce receptor
(Feerla) showed significant signal values with no bias
between mMCs and sMCs. To further evaluate the results,
we measured the expression levels of these marker genes
by real-time RT-PCR using RNA from the independently
isolated MCs (Figure 4b). Moreover, we randomly
selected three genes showing 'mMC-biased’ expression
and another three genes showing 'sMC-biased’ expression;
expression of these genes in MCs has not been reported
previously (Figure 4a). There were no significant differ-
ences in the expression levels of Kit and Feerla between
mMCs and sMCs. In contrast, the mMC-specific markers
Mept]l and Mcpt2 and the 'mMC-biased’ genes, Anxal0,
Ctse, and Fos showed higher expression in mMCs, and the
sMC-specific markers Meptd and Cma2 and the 'sMC-
biased' genes, Cnnl, Ces3, and Cpe showed higher expres-
sion in sMCs. These results indicate that the microarray
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Figure 2

Gene expression profiles of sMCs and mMCs from stomach tissue. (a) Isolation of toluidine blue-stained MCs in the
submucosa (sMC; upper panels) and the mucosa (mMC; lower panels) of stomach sections. A sMC (arrow) and mMC (arrowhead)
that was metachromatically stained with toluidine blue before microdissection (left panels) disappeared after microdissection
with a patch pipette (right panels). Bars, 10 um. (b) Outline of the experimental strategy. (c) Labeled and fragmented antisense
RNAs of three individual sMC samples, three individual mMC samples and the 'no cell' samples were hybridized to a Murine
Array. Scatter plots for 'no cell’ (x axis) and sMC, (y axis) (upper left), 'no cell' (x axis) and mMC, (y axis) (lower left), sMC, (x
axis) and sMC, (y axis) (upper center), mMC, (x axis) and mMC, (y axis) (lower center), sSMC, (x axis) and mMC, (y axis) (upper
right) are shown. The correlation coefficients (r) for comparison within sSMC,_;, within mMC,_; and between sMCs and mMCs
are presented as means + 5.D. Red dots show probe sets judged as "Presence”, and yellow dots represent probe sets judged as
"Absence" in both arrays. Blue dots show probe sets judged as "Presence” only in either array. The same, two-fold induction
and suppression thresholds are indicated as diagonal lines.
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Global gene expression analysis of sSMC,_; and mMC,_;. (a) Hierarchical clustering of global gene expression of various
preparations of MCs and non-MCs. Three-round amplified products of sMC,_;, mMC,_;, skin MCs and BMMCs, and the stand-
ard products of BMMCs, peritoneal MCs, macrophages and fibroblasts were analyzed. (b) The principal compaonent analysis
(PCA) reveals different gene expression profiles of sMC|_3, mMC,_;, and two preparations of BMMCs, The blue dotted square
indicates mMCs, the red dotted square indicates sMCs, and the black dotted square indicates BMMCs.

results are reliable and reflect the gene expression profiles
of intact sMCs and mMCs in the stomach.

Clustering analysis of the gene expression profiles and
functional categorization between sMCs and mMCs

Of the ~12,000 genes represented on the oligonucleotide
array, we selected 1,272 genes whose expression levels
between sMC, , and mMC, , were significantly different
(p < 0,05, Limma'’s t test). The expression level of each
gene was normalized by its level in BMMCs, which are cul-
tured MCs with so-called 'immature’ properties, and the
selected genes were classified into seven clusters using the
k-means clustering algorithm (CL1-7; Figure 5a and Addi-
tional file 1). We also classified the genes into functional
categories, and the representative genes are listed (Figure
5b). Among them, 666 genes (52.4%) showed sMC-
biased expression (CL1-3); in 78% (519 genes) of sMC-
rich genes, the expression levels were relatively low in
BMMCs and augmented in sMC (CL1&2). For example,
the expression level of Mept4 was relatively low in
BMMCs, and if the expression profile of BMMCs reflects
the immature properties of MC progenitors, Mcpt4 can be
concluded to be induced during the final maturation into
sMCs, Interestingly, the sMC marker genes Mcpt5 and

Mcptt were classified into CL2/3, suggesting that these
genes were expressed to some extent in ‘immature’
BMMCs, but their expression was suppressed during mat-
uration into mMCs. On the other hand, 606 genes
(47.6%) showed mMC-biased expression (CL4-7); in
51% (334 genes) of mMC-rich genes, their expression lev-
els in BMMCs were low but were augmented in mMCs
(CL4&5). For example, expression of Mcptl was low in
‘immature’ BMMCs but was drastically induced during
maturation into mMCs.

Protein expression of Notch4 in sMCs and Ptgrl in mMCs
in stomach tissue

Among the genes showing differential expression (Figure
5b), we further focused on the expression of Notch4 in
sMCs and Ptgr] in mMCs, both of which have never been
previously characterized in MCs. The Notch4 gene product
is a member of the Notch family, consisting of transmem-
brane receptors which are activated by cell surface ligands
on adjacent cells. Recent studies have suggested that
Notch signaling is involved in lymphocyte and mast cell
differentiation [30,31]. We first confirmed that Notchd
expression is significantly higher in the separately pooled
sMCs than mMCs by real-time RT-PCR (data not shown).
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Validation of the differentially expressed genes between sMCs and mMCs. (a) sMC-specific (Cma2, Mcpt4), mMC-
specific (Mcptl, Mcpt2) and MC-common markers (Fcer/a and Kit) (left panel) and six randomly selected genes (Ces3, Cnn/,
Cpe, Anxa 0, Ctse and Fos) (right panel) are indicated in the representative scatter correlation graphs between sMC, and mMC,.
The same, two-fold induction and suppression thresholds are indicated as a yellow, blue and red line, respectively. (b) The
expression levels of the genes in (a) were verified by real-time RT-PCR. The values represent the ratio of relative expression
levels of mMCs to sMCs, and are shown as mean + S.D. (n = 3). The specificity of the PCR product was confirmed by gel elec-
trophoresis and analysis of the melting temperature. The expression level of each gene was normalized to 28S ribosomal RNA.
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