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Abstract

Central post-stroke pain (CPSP) is one of the most common types of intractable pain, We reported that repetitive transcranial
magnetic stimulation (rTMS) of primary motor cortex relieves pain for patients who were refractory to medical treatment. But the
mechanism is unclear. In the present study, we investigated relations between the charactenistics of CPSP and the results of fiber
trucking, which 1s the only noninvasive method of evaluating the anatomical connectivity of white matter pathways. Fiber tracking
of the corticospinal tract (CST) and thalamocortical tract (TCT) was investigated in 17 patients with CPSP. The stroke lesion was
located in a supratentorial region in all cases (corona radiata, one case; thalamus, seven cases; putamen, nine cases), Relations
between the delineation ratio (defined as the ratio of the cross section of the affected side to that of the unaflected side) of the
CST and of the TCT. manual muscle test score, pain score, region of pain, and efficacy of rTMS were evaluated. Fiber tracking
was successful in 13 patients with the stroke lesion involving the TCT. The rTMS-effective group had higher delineation ratio of
the CST (p = 0.02) and the TCT (p = 0.005) than the rTMS-ineffective group. Previous studies suggested that an intact CST allows
pain control but did not discuss the TCT. Our results suggest that the TCT also plays a role in pain reduction by rTMS of the pri-
mary motor cortex and that the efficacy of rTMS for patients with CPSP 15 predictable by fiber tracking.

@ 2008 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved,
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1. Introduction lesions of the spinothalamocortical pathways relaying
in the thalamic ventral posterolateral nucleus, whereas
Central post-stroke pain (CPSP). characterized by tactile and vibratory sensations are usually considered
constant or intermittent pain occurring after ischemic unrelated to CPSP [4].
or hemorrhagic stroke and associated with sensory Deaflerentation pain, including CPSP, is sometimes
abnormalities, is one of the most common types of difficult to control, and many cases of such pain are
intractable pain. Typical associated abnormalities are refractory to medical treatment. According to recent
decreased perception (hypoesthesia) and unusually high reports, repetitive transcranial magnetic stimulation
sensitivity (hyperesthesia), often accompanied by allo- (rTMS) successfully relieves pain. A majority of the
dynia and hyperalgesia [4]. These features indicate reports show that pain reliel is associated with rTMS
of the primary motor cortex [1.6,14.23].
* Corresponding author. Tel.: +81 6 6879 3652; fax- +81 6 6879 3659 Diffusion tensor imaging (DTI) 1s a magnetic reso-
E-mail address: neurosaitoh@mbk.nifty.com (Y. Saitoh), nance (MR) imaging technique that allows measurement
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of the restricted diffusion of water in tissue. The archi-
tecture of axons in parallel bundles facilitates the diffu-
sion of water molecules along the length of the fibers
[27]. Tt 1s possible to caleulate a tensor lor each voxel
that describes the three-dimensional shape of diffusion
and to display the results on such images as fractional
anisotropy (FA) mmages. three-dimensional anisotropy
contrast images. and apparent diffusion coefficient maps
[28.30].

Fiber tracking is a relatively new method that applies
DTI in vivo to reveal white matter pathways in three-
dimensional images, and it is often used to evaluate
the spatial relation between a lesion and a white matter
pathway [8,18] and the quantity ol tracked fibers [31].
Broad bundles such as the corticospinal tract (CST)
and the thalamocortical tract (TCT) can be delineated
clearly [20] and reproducibly [40], but it 15 difficult to
delineate the fibers separately through each thalamic
nuclei related to thermal, tactile, vibratory, and deep
sensation [41] and in accordance with the distribution
of motor [unction [40].

The mechanism underlying the efficacy of rTMS of
the primary motor cortex in pain relief is still under dis-
cussion. While motor cortex stimulation (MCS), electri-
cal stimulation of the brain surface with gnd electrodes,
has been reported to relieve pain, it provides unsatisfac-
tory pain relief’ for patients with severe paresis [17].
Although the mechanism of pain relief through rTMS
is not necessarily the same, participation of the CST in
the pain reliel is suspected, Participation of the TCT
i pain reliel is also suspected because impairment of
the TCT causes CPSP. However, there have been few
studies making use of fiber tracking to investigate the
relations between these tracts and CPSP [34]. In this
study. we evaluated the relations between fiber tracking
and CPSP. emphasizing not the detailed symptoms,
which cannot be represented by fiber tracking. but the
efficacy of rTMS which is suspected to relate to the
fibers. the CST and the TCT. delineated reproducibly
by fiber tracking.

2. Materials and methods
2.1, Patients

We are conducting a clinical trial on efficacy of rTMS
for the patients with deaflerentation pain originating
from stroke, spinal cord injury, root avulsion, or periph-
eral nerve injury. The present study involved 17 consec-
utive patients with CPSP who participated in that
clinical trial (eight men and nine women: median age.
66 years: range. 44-73 years). Patients were recruited
from the outpatient clinic for neurosurgery at the Osaka
University Hospital between April 2004 and September
2007. Inclusion criteria were as follows: (1) the presence
ol central pain secondary to a supratentorial stroke

lesion confirmed by clinical and neuroradiological data:
(2) a causal relation between the lesion and the pain as
indicated by clinical characteristics, notably regional
pain distribution; (3) pain lasting more than 6 months;
(4) pain not attributable to causes other than central
causes (e.g.. peripheral inflammation, diabetes): and
(5) pain resistant to medication of various kinds (non-
steroidal anti-inflammatory drugs, anti-anxiety drugs,
anti-epileptic drugs. and antidepressants), and Lo physi-
cal and complementary medicine treatments. Exclusion
criteria were as follows: (1) contradictions for rTMS
(history of epilepsy. cardiac pacemaker. brain stimula-
tion system, or unruptured aneurysm): (2) two or more
stroke lesions; or (3) any other non-stroke lesion of
the brain, Patient characteristics are listed in Table 1.
Stroke originated from a thalamic lesion in seven cases.
putaminal lesion in nine cases. and corona radiate lesion
in one case. The mean pain duration was 5.1 vears
(range. 1.0-8.8 years). Written informed consent was
obtained from all patients in accordance with the
approval from the ethics committee of Osaka University
Hospital.

2.2 rTMS

All patients underwent rTMS, and post-treatment
pain rehief was assessed. Magnetic stimulation was
applied through a figure-eight coil (MC B-70, Medtronic
Functional Diagnostics A/S. Skovlunde, Denmark),
which provides for focal cortical stimulation. The coil
was connected to a MagPro magnetic stimulator (Med-
tronic Functional Diagnostics A/S). The resting motor
threshold of the affected muscles was determined by
stimulation of the corresponding motor cortex. the posi-
tion of which was confirmed by the use of the Brainsight
Frameless Navigation System (Rouge Research Inc..
Montreal, Quebec, Canada). We determined the resting
motor threshold from EMGs of the affected area. Mus-
cle twitches in painful areas were elicited when the
motor cortex was stimulated carefully according to the
cortical somatotopy. For the patients in whom muscle
twitches in the painful arcas were difficult to elicit owing
to severe damage ol the motor pathways, rTMS was
applied at an intensity of 100 A/ps. A potential equiva-
lent to 90% intensity of the resting motor threshold was
used for treatment. Ten trains of 10-s 5-Hz TMS pulses.
with 50-s intervals between trains, were applied to the
motor cortex.

2.3, Newrological evalwations

Clinical characteristics of sensation over the painful
areas were examined in all cases before rTMS with spe-
cial emphasis on the level of pain. Somatosensory deficit
was assessed by means of standard clinical methods:
testing for tactile hypoesthesia with blunted needles.

- 156 —




Table |

nt characteristics and results of fiber tracking

Pt

DRET

ANRS (%

VAS before  Duration

rT™MS

Painful area

MMT

Symplom topography

Lesion location

Sex

Age (vears)

Putient

TCT (%

| ycars|

Lower extremity

Upper extremity

i

4

2

M

48

WR

R
R

44
349

e

8.6

us

M

(iK1}

T
=

54
m
{14

N

30.0

2.8

T4
133

0.0
23

R

|
0.0

1210
|

LK)

0.0
3
N/
444
(K]

0.1
N/A

-

[

R
3

3

”:

e
B B S B
= — rim T

Gty 1

o

LD

64.3

4

Putamen

M

bk

e

R

B

16

M

al F Pan 140 ¢ 20008 509-518 51

o

¢ of VAS score

L. lower extremities; AVAS

v of fiber tracking: C8

upper extremities; T, trunk;
delineation r

m; DRFT,

&

magnetic stimulation of

LIVE Lranscra

iy motor cortex to that before st

able,

N/A, no

tract;

I'hermal hypoesthesia was identified with the use of hot
(42 °C) and cold (10 °C) tubes. The presence ol abnor-
mally provoked pain was tested systematically belore
rTMS. Allodynia was defined as pain arising in response
to innoxious stmuli (1.e. sumuli that never caused pain
in normal control subjects) [26]. Whenever possible,
mechanical allodynia was tested by means of touch (sta-
tic) or light rubbing of the skin (dynamic). Hyperalgesia
was defined as abnormally enhanced pain sensations in
response to noxious stimuli [26] and was tested by means
of pinprick [38].

To assess motor weakness on the hemiplegic side, the
manual muscle test (MMT) system was applied to the
following: elbow flexion and extension. shoulder exten-
sion, knee flexion and extension, hip flexion. MMT
score ranks function on a scale of 0, indicating that no
contractile activity can be felt in a gravity-free position.
o 5, if the patient can hold the position against maxi-
mum resistance and through the complete range of
motion.

It is soon after rTMS that the most pain relief is
shown [14], Before and soon after rTMS, patients eval-
uated their own level of pain by visual analog scale
(VAS). rating from 0 (no pain) to 10 {maximum pain).
Stimulation was judged to be effective if’ the VAS score
after stimulation decreased more than 30% from that
before stimulation. Subjects were separated into two
groups, those in whom rTMS was effective and those
in whom rTMS was ineffective.

24..DTI

All diffusion tensor images were obtained with a 3.0-
T whole-body MR imager (Signa VH/i, GE Medical
Systems, Milwaukee, Wisconsin, USA). An acquisition
time of approximately 3 min was used. Images were
acquired by a single-shot echo-planar imaging technique
with TE = 80, TR = 10,000, Diffusion gradient encod-
ing in six directions with b = 1000 s/mm® and an addi-
tional measurement without diffusion gradient (h =05/
mm’) were performed. A parallel imaging technique
was used to record data with a 256 « 256 spatial resolu-
tion for a 260 x 260-mm field of view. A total of 50 sec-
tions were obtained. with a section thickness of 3.0 mm
and no intersection gap.

2.3, Fiber tracking

The diffusion tensors were calculated, and three-
dimensional fiber tracking of the CST and the TCT
was performed using Volume-One and dTV software
(free software by Masutani, URL: http://www.ut-radiol-
ogy.umin.jp/people/masutani/dTV.him). Interpolation
along the z-axis was applied to obtain isotropic data
(approximately 1.0156 x 1.0156 x 1,0156 mm). The dif-
fusion tensor clements at each voxel were determined
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by least-squares fitting and diagonalized to obtain three
cigenvalues and three eigenvectors. For fiber tracking,
two ROIs, seed and target, were manually placed on
the three-dimensional anisotropy contrast image, which
shows the diffusion direction in each voxel by color
(red for left-right, green for anterior-posterior, and blue
for ¢craniocaudal). The seed ROL, Irom which fiber track-
ing starts, was placed on the cerebral peduncle (Fig. 1A).
The target RO, at which fiber tracking ends, was placed
on the precentral gyrus for the CST and on the post-
central gyrus for the TCT on the basis of anatomical
knowledge (Fig. 1B). The thresholds of tracking termi-
nation were set at 1.8 for the FA value and 30° for the
angle between two contiguous eigenvectors (Fig. 1C).

After tracking the CST or the TCT, the three-dimen-
sional fiber tracking data were converted to grayscale
two-dimensional transverse images with the dTV soft-
ware. Normalization of these images to normal space
was performed with SPM2 software (Wellcome Depart-
ment of Imaging Neuroscience, London, UK). The non-
diffusion-weighted (b0) images were normalized to the
Montreal Neurological Institute echo-planar imaging
template supplied with the SPM2 software. The two-
dimensional fiber tracking images were spatially trans-
formed according to the normalized b0 images
(Fig. 1Dj. Normalized images were reformaltted into
69 slices with 2 x 2 x 2mm’ voxels. Corresponding
slices that included the posterior peduncle of the inter-
nal capsule were selected for all patients. and the num-
ber of voxels making up the CST and the TCT was
counted. The delineation ratio, Le. the ratio of the cross
section of the affected side to the cross section of the
unaffected side. was calculated for the CST and the
e

2.6, Sratistical analysis

Fiber tracking of the CST was successful in 12
patients, and tracking of the TCT was successful in 13
patients; data from these cases were analyzed. Correla-
tion was assessed between the level of paresis and the
delineation ratio of the CST and between the level of
pain before rTMS and the delineation ratio of the
TCT by means of Pearson’s correlation coefficient. Dif-
ference in the delineation ratio of the fiber tracts
between the rTMS-effective group and the rTMS-ineflec-
tive group was analyzed by Mann-Whitney U test.

3. Results
3.1 Fiber rracking

Fiber tracking of the CST was successful in 12
patients, and tracking of the TCT was successful in 13

patients. It was impossible to trace the tracts completely
from the cerebral peduncle to the precentral gyrus or to

the postcentral gyrus in some patients. The FA value
was decreased by ischemic changes in the white matter
of the corona radiata. resulting in an incomplete trace
of the CST in four patients and of the TCT in three
patients. and metal artifacts distorted the images, result-
ing in an incomplete trace of both the CST and TCT in
two patients.

3.2, Svmproms before rTMS and fiber tracking

3.2.1. Area of pain

All patients had unilateral pain, which was localized
on the nght side in |3 patents, and on the left side in
four patients. Pain involved the entire half of the body.
including the face, in eight patients, an upper and lower
extremity in four patients, upper extremity in one
patient, and lower extremity in four patients.

Post-stroke lesions shown by b0 images affected the
CST and the TCT delineated by fiber tracking. Conven-
tional MR imaging and color-coded DTI show the loca-
tions of putaminal and thalamic lesions (Fig. 2). In the
case of thalamic lesions, patients with a small lesion
tended to have pain in a limited area of the body
(Fig. 2A). whereas patients with a large lesion extending
to the medial side tended to have pain in the entire hall
of the body, including the face (Fig. 2B). In the case of
putaminal lesions, which damage the TCT from the lat-
eral side, patients with a small lesion limited o the lat-
eral side tended to have pain only in a lower extremity
(Fig. 2C), whereas patients with a large lesion that
extended to the wall of the lateral ventricle tended to
have pain in the entire half of the body. including the
face (Fig. 2D).

3.2.2. Intensity of pain

Before rTMS, the VAS score in the most painful area
was 10 for five patients, 9 for four patients, & for two
patients, 7 for three patients, and under 6 for three
patients. The VAS score before stimulation did not cor-
relate with the delineation ratio of the TCT (Fig. 3B).

3.2.3. Sensory abnormalities

Hyperesthesia in response to pinprick in the painful
area was found in seven patients, and hypoesthesia
was found in five patients. The kind of sensory distur-
bance was not related to the volume of fiber tracking
or the location of the stroke lesion.

3.2.4. Paresis

The MMT score was 5 for four patients, 4 for nine
patients, 3 for three patients, and 2 for one patient; that
is. the paresis tended to be mild. The MMT score corre-
lated with the CST delineation ratio (correlation coeffi-
cient 0.69, p<0.05 Fig. 3A), but there was no
apparent relation between the lesion location and the
region of the paresis.
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3.3, Efficacy of rTMS and fiber tracking

The effect of rTMS of the primary motor cortex and
its duration varied among the patients. For eight of the
17 patients, the VAS score after rTMS decreased by
more than 30% from that before stimulation, They
judged the stimulation to be effective. Eight patients
indicated less than 30% reduction in the VAS score after
stimulation, and only one patient reported that rTMS
made the pain worse. These nine patients judged the
stimulation to be ineffective

The symptoms (level of paresis, kind ol sensory
abnormality, and intensity of pain) before rTMS did
not affect efficacy of the stimulation. There was no sig-
nificant difference in MMT scores between the rTMS-
effective group and the rTMS-ineffective group.
although the motor weakness tended to be mild in the
rTMS-effective group (Fig. 4A). Neither was there a sig-
nificant difference between groups in VAS scores before

rTMS (Fig. 4B).

;ted side to the number of voxels on the unaffected side was caleulated and defined as the deln

ation ratio

The rTMS-effective group had higher delineation
ratio of the CST (p=0.02) and the TCT (p = 0.005)
than the rTMS-ineffective group (Fig. 4C and D). In
four of the eight patients in the rTMS-ineffective group,
fiber tracking of the TCT was completely impossible

owing to the |1n\l-\!:l'nkt_‘ lesions
4, Discussion

The present study investigated relations between the
characteristics of CPSP and the results of fiber track-
ing, which is the only noninvasive method of evaluat-
ing the anatomical connectivity of white matter
pathways. Stroke lesions often affect the CST, the
TCT, or both, causing motor weakness or sensory dis-
turbance. Although the mechanisms of both intracta-
ble pain generation and pain reduction through
rTMS remain unclear, previous studies have suggested
that the mechanisms are associated with the CST and
the TCTI
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All our patients had a lesion impinging on the TCT.
The location and size of such lesions affect the fiber
tracking delineation ratio. The patients who responded
to rTMS of the primary motor cortex had significantly
higher CST and TCT delineation ratios than the patients
who did not respond to rTMS. The TCT delineation
ratio was more significantly different between rTMS-
effective group and rTMS-ineffective group than the
CST delineation ratio. Our resulls suggest that the
TCT plays an important role in the mechanism of pain
relief through rTMS, whereas previous studies suggested
that pain control depends on an intact CST, and the
relation between the efficacy of rTMS and the TCT
was not emphasized.

Cerebral lesions that cause pain involve primarily the
nociceptive and temperature pathways [4,5]. Microsu-
mulation of the ventral posterior (VP) thalamus pro-
vokes pain and thermal sensations [25,29]. Craig et al,

0.02, Mann-Whitney U test), (D) Association between the TCT

[10] suggested a different region, outside the VP, as a
specific relay for pain and temperature, called the pos-
terior portion of the ventral medial nucleus (VMpo).
Anatomical and electrophysiological considerations
indicate that the VP or the VMpo is the spinothalamic
relay for pain and thermal sensations and that the path-
way through these nuclei projects to the posteentral
gyrus [3.9]. That is, a lesion of the spinothalamocortical
tract is a necessary condition for CPSP [34], and in all
our patients. lesions to the TCT were confirmed on
three-dimensional fiber tracking images. It is proposed
that spontancous pain is linked to hyperexcitability or
spontaneous discharge of thalamic or cortical neurons
that have lost some of their normal input [39].

In the present study, thermal and tactile abnormali-
ties were not quantitatively measured, and the fibers
could not be delineated separately in accordance with
the thalamic nuclei by the fiber tracking algorithm we

161 —




516 T. Goto et al | Pain 140 (2008) S09-518

used. Therefore, comparison between the sensory distur-
bance and tracked fibers was not adequate. Apparently,
it was difficult to evaluate the difference between Ad
fiber mediated cold and pinprick (sharpness) and C fiber
mediated warmth in the periphery [13] as far as these
tracked fibers were assessed.

MCS, electrical stimulation of the brain surface
with grid electrodes, has been reported to relieve pain
[1.14,16,24]. In positron emission tomography and
functional MR imaging studies, MCS changes the
activity not only of the thalamus but also of the ante-
rior cingulate cortex and the anterior insula, which are
related to emotional function [11,12]. MCS for treat-
ment of chronic deafferentation pain modulates pain
pathways related to emotion and mood, resulting in
pain relief. Although the mechanism of rTMS is not
necessarily the same as that of MCS, it may be that
rTMS also affects the emotional pain pathways.
Chronic neuropathic pain. however, is associated with
motor cortex disinhibition, suggesting that impaired
GABAergic neurotransmission is related to some
aspects of pain or to the underlying sensory or motor
disturbances caused by an impaired TCT. The analge-
sic effects produced by MCS could result, at least
partly, from restoration of defective intracortical
inhibitory processes [22]. In the present study. ineffec-
tiveness of rTMS was significantly associated with
poor delineation of the TCT. We suggest that the
cflectiveness of pain relief is less when delineation of
the TCT is poor because modulation of signals in
the pain pathway or cortex weakens, or because
hyperexcitability or spontancous discharges in tha-
lamic or cortical neurons enlarge so as to prevent
modulation as the degree of TCT impairment
increases. In previous studies of MCS, the success rate

tended to be lower in cases of CPSP than in cases of

pain of spinal cord or peripheral origin [33]. These
findings also support the idea that the existence of a
lesion of the thalamocortical pathway leads to the
ineflicacy of rTMS.

Patients with poor delineation of the CST were likely
to be unsatisfactory candidates for rTMS. Katayama
et al. [17] reported that pain control following MCS
tended to be unsatisfactory in patients who displayed
moderate or severe motor weakness, and that the pain
control afforded by MCS requires intact CST neurons
originating from the motor cortex. In the present study,
patients with poor delineation of the CST tended not to
respond to rTMS, even though our patients did not dis-
play severe motor weakness, This resull is consistent
with the suggestion that intact CST neurons are required
for effective pain treatment. Some correlation was also
shown between the MMT score and the volume of the
CST delineated by fiber tracking, which indicates that
poor delineation of the CST reflects the degree of paresis
as well as damage to the CST.

Yamada et al. [41] reported somatotopic organiza-
tion of the TCT using a different fiber tracking algo-
rithm. In our study, conventional MR imaging and
color-coded DTI showed patients with putaminal
lesions limited laterally to where the lower extremity
fiber is in the fiber tracking data of Yamada et al.
[41], have pain in the lower extremity, and that patients
with lesions that extend to the medial portion, where
the upper extremity and face fibers are, have upper
extremity and facial pain. This finding shows that pain
occurs in accordance with the somatotopic organization
of the impaired TCT, As for the CST, although an
association has been found between the position of
lacunar infarctions and clinical symptoms by fiber
tracking [21], we did not find a relation between the
location of the lesion and the region of paresis, proba-
bly because our patients did not have severe paresis but
mainly an impaired TCT.

Reproducibility of fiber tracking in normal subjects is
high and asymmetry is not shown, whereas the standard
deviation on a quantity of tracked fibers between sub-
jects is relatively large [40]. The absolute volume of
tracked fibers could not be compared between patients
because of individual differences originating from age,
sex, and other factors [35,36]. In our study, the ratio
of the cross section of the affected side to that of the
unaffected side, the delineation ratio, was calculated
for the CST and the TCT, but we could not exclude
the possibility that the stroke lesion affected the contra-
lateral fibers.

Our study was limited by several factors. Fiber track-
ing is a relatively new and still developing method.
Methodological issues remain, and results must be inter-
preted carefully. For example, it is difficult to discern
white matter pathways in regions where fibers cross
and branch. In such areas, the diffusion anisotropy is
low, owing to the partial volume effect. Solutions to
these problems can be found by applying such tech-
niques as multiple tensor field regularization [19,37],
mutual information image registration procedures
[15,32], guided tensor restored anatomical connectivity
tractography [7], and probabilistic fiber tracking [2]. In
popular streamline tract tracing algorithms, such as
the one used in this study. tracking can only progress
when there is a high certainty of the fiber direction. This
means it 1s difficult to accurately trace the pathway from
a nucleus such as the thalamus, and the streamline rep-
resented may be a complex of parts of the various tracts.
In addition, because fiber delineation is attenuated by
the low FA value of edema, transformation by pressure
from the lesion. and artifacts due to hemosiderin depo-
sitions, fiber tracking data do not always represent an
actual nerve bundle [18]. Therefore, we excluded sub-
jects with two or more stroke lesions. and the effects
from the lesion were decreased because more than 6
months had passed from the onset of stroke.
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In conclusion, the present study relates the character-
istics of CPSP and the efficacy of rTMS to the results of
fiber tracking. Previous studies suggested that pain con-
trol requires an intact CST, but the relation between the
efficacy of rTMS and the TCT was not emphasized. In
our study, the efficacy of rTMS was more strongly asso-
ciated with lesions of the TCT than with lesions of the
CST. The efficacy of rTMS for CPSP can be predicted
by means of fiber tracking, and severe impairment of
thalamic nuclei and the TCT may affect hyperexcitabil-
ity in the thalamus and cortex or the rTMS pain relief
pathway.
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