AQ: 14 tain more functionality,7 Finally, the use of cocktails could lead to FDA-approved mixtures that would successfully treat a large group of DMD patients with distinct but overlapping deletions. This might alleviate the problem of performing toxicology tests and FDA approvals for each individual antisense sequence; a formidable barrier to clinical application. Skipping of more than one exon could, theoretically, increase the applicability to some 90% of DMD patients^{7,8} while aiming to produce the most functionally favorable dystrophin variants.7 The canine X-linked muscular dystrophy (CXMD) harbors a point mutation within the acceptor splice site of exon 7, leading to exclusion of exon 7 from the mRNA transcript. We used the Beagle model here. the mutation of which originates from the Golden Retriever model, but which is less severely affected. At least two further exons (exons 6 and 8; Fig 1) must be skipped (multiexon skipping) to restore the open reading frame; therefore, it is more challenging to rescue dystrophic dogs with exon-skipping strategy. Previously, McClorey and colleagues in showed transfection with antisense oligo targeting exons 6 and 8 restored reading frame of mRNA in cultured myotubes from dystrophic dogs in vitro. Here, we identified a PMO cocktail that, using either intramuscular injection or systemic intravenous delivery, was not toxic, resulted in extensive dystrophin expression to therapeutic levels, and was associated with significant functional stabilization in dystrophic dogs in vivo. ### Subjects and Methods #### Animals CXMD-affected dogs and wild-type littermates from 2 months to 5 years old were used in this study¹¹ (see the Supplementary Table). Institutional animal care and use committee of National Center of Neurology and Psychiatry Japan approved all experiments using CXMD. # Antisense Sequences and Chemistries We designed four antisense sequences to target exons 6 and 8 of the dog dystrophin mRNA as follows: Ex6A (GTTGATTGTCGGACCCAGCTCAGG), Ex6B (AC-CTATGACTGTGGATGAGAGCGTT), Ex8A (CTTC-CTGGATGGCTTCAATGCTCAC), and Ex8B (ACCT-GTTGAGAATAGTGCATTTGAT). Sequences were designed to target exonic sites of exon 6 (Ex6A) and exon 8 (Ex8A), or exon/intron boundary between exon 6 and intron 6 (Ex6B), or exon 8 and intron 8 (Ex8B) (see Fig 1). Two donor-site sequences (Ex6B and Ex8B) were designed to target 23bp of exon and 2bp of intron. Sequences were synthesized using two different backbone chemistries: 2'O-MePs (Eurogentec), and morpholino (Gene-Tools, LLC). 12 We determined these sites based on the exonic splicing enhancer motifs, GC contents, and secondary structures. We also avoided self/heterodimers. U (uracil) was used instead of T (thymidine) for the synthesis of 2'O-MePs oligos. A discussion and figure showing the alternative chemistries can be found in Yokota and colleagues' article. 13 ## In Vitro Cell Transfections Primary myoblast cells from neonatal CXMD dogs were obtained by standard methods using preplating method. 14 Nor- Fig 1. Mutation in canine X-linked muscular dystrophy (CXMD) and strategy for exon-skipping treatment. The dystrophic dog harbors a point mutation at splice site in intron 6, which leads to lack of exon 7 in messenger RNA. Single-exon skipping of exon 6 or 8 leads to out-of-frame products. Exclusion of at least two further exons (exons 6 and 8) is required to restore reading frame. Vertical line means that the exons begin by the first nucleotide of a codon; arrows toward left mean that the exons begin with the second nucleotide of a codon; arrows toward right mean that the exon begin with the third nucleotide of a codon, DMD = Duchenne muscular dystrophy. mal control (wild-type) or dystrophic (CXMD) myoblasts (1.5 × 105 cells) were cultured in growth medium containing F-10 growth media containing 20% fetal calf serum, basic fibroblast growth factor (2.5ng/ml), penicillin (200U/ml), and streptomycin (200µg/ml) for 72 hours, followed by antisense oligonucleotide (2'O-MePs) administration (0.25-5µg/ml. 30-600nM) for 3 hours with lipofectin (Invitrogen, La Jolla, CA) following manufacturer's instructions (AOs/lipofectin ratio = 1:2). The cells were cultured in differentiation medium containing Dulbecco's minimum essential medium with HS (2%), penicillin (200U/ml), and streptomycin (200µg/ml) for 4 to 5 days before analyses for RNA and protein. Morpholino antisense oligonucleotides carry no charge and cannot be transfected into cells efficiently, so only 2'O-MePs chemistry was utilized for in vitro studies. # Intramuscular Injections AQ: 5 Animals were anesthetized with thiopental sodium induction and maintained by isoflurane for all intramuscular injections and muscle biopsies. Skin was excised over the site of injection, muscle exposed, and the injection site marked with a suture in the muscle. Antisense oligonucleotides were delivered as intramuscular injection using 1ml saline bolus into the tibialis anterior or extensor carpi ulnaris (ECU) muscles using a 27-gauge needle. Antisense oligonucleotides were delivered either singly or in mixtures. Both 2'O-MePs and morpholino chemistries were tested. Muscle biopsies were obtained at 2 weeks after antisense injection. #### Intravenous Systemic Delivery Three dogs were treated and all were given an equimolar mixture of morpholinos Ex6A, Ex6B, and Ex8A at 32mg/ml each. Between 26 to 62ml was injected into the right saphenous vein using a 22-gauge indwelling catheter, leading to a cumulative (combined) dose of 120 to 200mg/kg per injection. Morpholinos were injected 5 to 11 times at weekly or biweekly intervals (see the Supplementary Table). Tissues were examined at 2 weeks after the last injection. ## Reverse Transcriptase Polymerase Chain Reaction and Complementary DNA Sequencing Total RNA was extracted from myoblasts or frozen tissue sections using TRIzol (Invitrogen). Then reverse transcriptase polymerase chain reaction (RT-PCR) was performed on 200ng of total RNA for 35 cycles of amplification using One-Step RT-PCR kit (Qiagen, Chatsworth, CA) following manufacturer's instructions with 0.6mM of either an exon 5 (CTGACTCTTGGTTTGATTTGGA) or an exon 3/4 junction (GGCAAAAACTGCCAAAAGAA) forward primer. Reverse primers were either exon 10 (TGCTTCGGTC-TCTGTCAATG) or exon 13 (TTCATCGACTACCAC-CACCA). The resulting PCR bands were extracted by using Gel extraction kit (Qiagen). BigDye Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems) was used for complementary DNA sequencing with the same primers. #### Hematoxylin and Eosin and Immunostaining Eight micrometer cryosections were cut from flash-frozen muscle biopsies at an interval of every 200 µm, then placed on poly-t-lysine-coated slides and air-dried. Anti-dystrophin rod (DYS-1) or C-terminal monoclonal Ab (DYS-2) (Novocastra) were used as primary antibodies. Rabbit anti-neuronal nitric oxide synthase (anti-nNOS) (Zymed Laboratory, San Francisco, CA) was used for nNOS staining. Alexa 468 or 594 (Invitrogen) was used as secondary antibody, 4',6diamidino-2-phenylindole containing mounting agent (Invitrogen) was used for nuclear counterstaining (blue). The number of positive fibers for DYS-1 was counted and compared in sections where their biggest number of the positive fibers was as described previously.15 Hematoxylin and eosin staining was performed with Harris hematoxylin and eosin solutions. Images were analyzed and quantified by using Image] software. ### Western Blotting Analysis Muscle proteins from cryosections were extracted with lysis buffer containing 75mM Tris-HCl (pH 6.8), 10% sodium dodecyl sulfate, 10mM EDTA, and 5% 2-mercaptoethanol. Four to 40µg proteins were loaded onto precase 5% resolving sodium dodecyl sulfate polyacrylamide gel electrophoresis gels following manufacturer's instructions. The gels were transferred by semidry blotting (Bio-Rad) at 240mA for 2 hours. DYS-2 (Novocastra) antibody against dystrophin, rabbit polyclonal antibody against α-sarcoglycan, and rabbit polyclonal antibody desmin were used as primary antibodies.17 Horseradish peroxidase-conjugated anti-mouse or anti-rabbit goat immunoglobulin (Cedarlane Laboratories. Hornby, Ontario, Canada) was used as secondary antibodies. Enzyme chemiluminescence kit (GE) was used for the detection. Blots were analyzed by Image] software. ## Blood Tests Creatine phosphokinase activity, blood counts, serum biochemistry, and toxicology test in canine serum were assayed with the Fuji Drychem system and Sysmex F-820 according to manufacturer's instruction. ## Magnetic Resonance Imaging For imaging studies, animals were anesthetized with thiopental sodium and maintained by isoflurane. We used a superconducting 3.0-Tesla magnetic resonance imaging (MRI) de-(MAGNETOM Trio; Siemens-Asahi Technologies, Japan) with an 18cm diameter/18cm length human extremity coil. The acquisition parameters for T2weighted imaging were TR/TE = 4,000/85 milliseconds, slice thickness = 6mm, slice gap = 0mm, field of view 18 × 18cm, matrix size = 256 × 256, and number of acquisitions = 3 during fast spin echo. ### Functional Testing Clinical evaluation of dogs was performed as described in our previous report. 18 Grading of clinical signs in CXMD dogs was as follows: gait disturbance: grade 1 = none, grade 2 = sitting with hind legs extended, grade 3 = bunny hops with hind legs, grade 4 = shuffling walk, and grade 5 = unable to walk; mobility disturbance: grade 1 = none, grade 2 = lying down more than normal, grade 3 = cannot jump on hind legs; grade 4 = increasing difficulty moving around, and grade 5 = unable to get up and move around; limb or temporal muscle atrophy: grade 1 = none, grade 2 = sus- AQ: 9 pect hardness, grade 3 = can feel hardness or apparently thin, grade 4 = between grades 3 and 5, and grade 5 = extremely thin or hard; drooling: grade 1 = none, grade 2 = occasionally dribbles saliva when sitting, grade 3 = some drool when eating and drinking, grade 4 = strings of drool when eating or drinking, and grade 5 = continuous drool; macroglossia: grade 1 = none, grade 2 = slightly enlarged, grade 3 = extended outside dentition, grade 4 = enlarged and slightly thickened, and grade 5 = enlarged and thickened: dysphagia: grade 1 = none; grade 2 = takes time and effort in taking food, grade 3 = difficulty in taking food from plate, grade 4 = difficulty in chewing, swallowing, or drinking, and grade 5 = unable to eat. For timed running tests, each dog was encouraged to run down a hallway (15m), and elapsed time was recorded. Single tests were done because of easy tiring of dystrophic dogs. #### Results In Vitro Screening of Antisense Oligonucleotides in Dog Primary Myoblasts The CXMD dog harbors a splice-site mutation of exon 7, leading to an out-of-frame mRNA transcript fusing exons 6 to 8 (see Fig 1). Both exons 6 and 8 must be excluded (skipped) from the mRNA to restore the reading frame. Four antisense oligonucleotides were designed against exons 6 and 8. Ex6A and Ex8A were designed to bind exonic splicing enhancers, and Ex6B and Ex8B were directed against the 5' splice boundaries of each exon (see Fig 1). The four AOs were transfected as 2'O-MePs either singly or in mixture (cocktails; 5µg/ml each or 600nM each) into cultures of primary myoblasts isolated from the skeletal muscle of neonatal CXMD dogs. Four days after differentiation into myotubes, RNA was isolated and tested for specific exon skipping by RT-PCR. A cocktail of all 4 AOs produced a single 101bp band with 100% of RT-PCR product corresponding to a desired in-frame splice product of exons 5 to 10 (Fig 2A). It is of interest that exon 9, known to be an alternatively spliced exon in the dystrophin mRNA, was consistently skipped, although no antisense oligonucleotide was used against this exon (see Fig 2; see Supplemental Fig 1).10 Each of the four sequences was also transfected individually, and either Ex6A or Ex6B successfully induced skipping as a single AO (100% in-frame product) (see Fig 2A). The precise skipping of exons was confirmed by complementary DNA sequencing (see Fig 2B). We found a dose-response relation where use of 30 and 60nM of either Ex6A or Ex6B induced multiexon skipping of exons 5 to 10, although with less efficiency and more intermediate out-of-frame products (see Supplemental Fig 1A). In contrast, the Ex8A AO alone induced skipping of mainly exons 8 and 9, an out-of-frame transcript, whereas the Ex8B AO induced no detectable exon skipping (see Fig 2A). Dystrophin protein production from in-frame mRNA was con- Fig 2. In vitro screening of antisense oligonucleotides and recovery of dystrophin expression by single antisense oligos in dog primary myoblasts. (A) Detection of exons 6 to 9 skipped inframe products (101bp) using reverse transcriptase polymerase chain reaction (RT-PCR) at 4 days after the transduction of 5µg (600nM) each AOs of single (Ex6A or Ex6B) or cocktail AOs (Ex6A, Ex6B, Ex8A, and Ex8B) as indicated. The faint 585bp out-of-frame band is detected in Ex8B-treated myotubes. Nontreated myotubes (NT) show little RT-PCR product, likely because of nonsense-mediated decay. (B) Complementary DNA (cDNA) sequencing after antisense oligonucleotide treatment at 4 days after the transduction of Ex6A alone, showing the desired in-frame exons 5 to 10 skip. (C) Immunocytochemistry with dystrophin C-terminal antibody (Dys-2; red) and nuclear counterstaining (blue) for primary myotubes from canine X-linked muscular dystrophy (CXMD) cells at 4 days after transfection with cocktail or single antisense 2' O-methylated phosphorothioate (2' O-MePs) targeting exons 6 and 8 (5µg each/ml, or 600nM), nontreated wildtype (WT) cells, and CXMD cells. Scale bar = 50 µm. firmed by immunocytochemistry using either the foursequence cocktail or Ex6A alone (see Fig 2C). We tested the same sequences in normal (wild-type) control beagle cells (see Supplemental Fig 1B). When transfected into wild-type beagle myoblasts, exon 9 was again routinely removed from the transcripts. The antiexon 8 AO pair excised exon 8, similar to dystrophic cells, whereas the exon 6-specific AO pair excised exon 6, as well as exon 9, but left exons 7 and 8 in place. Efficient Skipping In Vivo Requires a Three-AO Cocktail Given that Ex8B appeared ineffective by all in vitro assays, we did not continue with this sequence. Intramuscular injections were done using Ex6A alone, and equimolar mixtures of Ex6A, Ex6B, and Ex8A. Intramuscular injections into the tibialis anterior or ECU muscles of 0.5- to 5-year-old CXMD dogs were done for both 2'O-MePs and morpholino chemistries, at a dose of 0.12 to 1.2mg of each sequence (Fig 3; see Supplemental Fig 2). Biopsies were performed 2 weeks later at injection sites, marked by suture threads. Dystrophin-positive fibers were concentrated around the injection site, and the absolute number of dystrophin-positive fibers was counted in cross section. In contrast with the skipping patterns observed with in vitro cell transfections, injection of Ex6A alone induced skipping of only exon 6 in experiments using either morpholinos or 2'O-MePs chemistries (see Fig. 3; see Supplemental Fig 2). By contrast, the cocktail of Ex6A, Ex6B, and Ex8A induced robust dystrophin expression in a highly dose-dependent manner), with 1.2mg per each morpholino showing areas of complete dystrophin rescue, and high levels of dystrophin by immunohistochemical analysis and immunoblot (see Figs 3A, B, D; see Supplemental Fig 2). Intramuscular injections using the same cocktail with 2'O-MePs chemistry showed similar results, with greater dystrophin rescue using the three AO cocktail compared with Ex6A alone (see Fig 3C). Two pairwise combinations of Ex8A with either Ex6A or Ex6B were tested with morpholino chemistry, and neither combination proved as efficient as the three-sequence cocktail (see Fig 3B). RT-PCR analyses of injected muscles showed the Ex6A/Ex6B/Ex8A morpholino cocktail to drive efficient skipping of exons 6 to 10 skipped products, with between 61 and 83% of RT-PCR products showing the desired in-frame product in the three muscles tested (see Fig 3D). Additional out-of-frame products were observed with Ex6A alone, and as a minority of products in the cocktail-treated muscles (see Fig 3D). Histological analyses of the muscle injected with the three-morpholino cocktail (1.2mg/each) showed significant histological improvement of the dystrophy, relative to uninjected muscle, using (see Fig 3A; bottom panels). By immunoblotting, intramuscular injection of the optimal cocktail dystrophin induced dystrophin to 50% normal levels in a 2-year-old dog but only to 25% in a more clinically severe 5-year-old dog (see Supplemental Fig 2A). This result implies that the muscle quality influences the amount of dystrophin that can be produced. Intravenous Systemic Delivery of a Morpholino Cocktail Induces Body-Wide Dystrophin Expression AOs must be deliverable systemically to be of therapeutic value. Accordingly, we undertook intravenous infusion of the three morpholino-cocktail showing the most success in the intramuscular experiments (Ex6A, Ex6B, and Ex8A). Three CXMD dogs were studied using intravenous doses similar to that used in mdx mouse studies (30-40mg/kg per injection), with weekly or biweekly dosing. The first dog received 120mg/kg morpholinos (40mg/kg per each sequence) in weekly intravenous injections, with five doses per kilogram over 5 weeks. The second dog was given the same dose 11 times at 2-week intervals over the course of 5.5 months. The third dog received a greater dose: 200mg/kg (66mg/kg of each morpholino) seven times at weekly intervals (see the Supplementary Table). All dogs were killed 2 weeks after the last injection, and multiple muscles were examined. All skeletal muscles of each treated dog showed evidence of de novo dystrophin expression by immunofluorescence of cryosections, although the degree of rescue was variable (Fig 4A). Histopathology was markedly improved in regions showing high dystrophin expression (see Fig 4A). Immunoblotting confirmed expression up to approximately 50% of normal levels, but some muscles expressed only trace amounts (see Figs 4C, D). Dystrophin expression was also detected in cardiac muscles but, as in the *mdx* mouse, ¹⁹ less than in skeletal muscles and concentrated in small patches (see Fig 4A). Of the three dogs, the average dystrophin protein expression level was greatest in the dog given seven weekly doses of 200mg/kg PMO, with an average of 26% dystrophin levels. Selected muscles were studied for quantitative rescue of histopathology and for biochemical rescue of dystrophin-interacting proteins (dystrophin-associated glycoproteins and nNOS). A commonly utilized quantitative marker for muscle pathology is central nucleation of myofibers, where increased central nucleation is reflective of increased degeneration and regeneration. Quantitation of central nucleation in treated dogs compared with untreated littermates showed that intravenous antisense treatment reduced central nucleation in all five muscle groups examined (see Fig 4B). Both nNOS and α -sarcoglycan are dystrophinassociated proteins that colocalize with dystrophin in normal muscle and are reduced in DMD muscle. nNOS immunofluorescence and α -sarcoglycan immunoblotting were done on a series of muscles from treated and control dogs. By immunoblot, α -sarcoglycan was seen to be increased in all muscles examined (Fig 5B). Likewise, nNOS was seen to relo- AQ: 11 AQ: 4 173 Fig 3. Recovery of dystrophin expression by in vivo intramuscular injection of a three-AO cocktail but not Ex6A alone. (A) Restoration of dystrophin expression in tibialis anterior (TA) at 14 days after single injection with 1.2mg Ex6A only, or cocktail containing 0.12mg each, 0.6mg each, or 1.2mg each of antisense morpholino Ex6A, Ex6B, and Ex8A are shown. Agematched nontreated (NT) canine X-linked muscular dystrophy (CXMD) and wild-type (WT) dogs are shown as control animals. Hematoxylin and eosin (HE) staining at 14 days after 1.2mg each of the cocktail injection and age-matched nontreated control (NT) with consecutive cryosection stained with dystrophin (DYS-1) and 4'.6-diamidino-2-phenylindole show histological correction of the dystrophy. Bar = 100 µm. (B, C) The number of DYS-1-positive fibers in TA or extensor carpi ulnaris (ECU) at 14 days after a single injection with cocktail (Ex6A+Ex6B+Ex8A), or indicated combinations, at 1.2mg each (morpholino; B), or 120µg each 2'O-methylated phosphorothioate (2' O-MePs) (C). Values are mean ± standard error of the mean. (D) RT-PCR analysis at 2 weeks after intramuscular injection of cocktail or Ex6A morpholino at 1.2mg each. The percentage of the in-frame exon 5 to 10 skip is shown under the gel image for treated muscle; normal control (WT) muscle shows the normal full-length in-frame transcript at the expected 100%. calize to the membrane in dystrophin-positive regions in systemically treated dogs (see Fig 5A). Muscle Imaging and Clinical Grading Scores Are Improved by Systemic Antisense A global improvement in muscle pathology was further supported by the T2-weighted MRI examination (Fig 6). The high-intensity T2 signal, indicative of inflammation and increased water content, was diminished in PMO-treated dogs compared with pretreated and untreated control dogs in most muscles (see Fig 6). Functional improvement of treated dogs was also assessed by a 15m timed running test and by a combined clinical grading score, as we have previously published. ¹⁸ Three dogs treated with intravenous morpholinos were compared with three untreated, at the ages of both 2 or 5 months (pretreatment) and 4 or 7 months (posttreatment) (Figs 7B, C). The untreated littermates became slower over the treatment time, whereas all treated dogs ran faster after treatment. The single dog treated at an older age with more advanced symptoms showed greater improvement relative to untreated littermates (see Fig 7B). The combined clinical grading score similarly showed improvement or stabilization of disease progression after antisense treatment, relative to natural history controls (see Fig 7A). Videos documenting running ability of treated dogs and untreated littermates are available as supplemental data (see Supplemental Movies 1–5). Serum creatine kinase was assessed before and after intravenous treatment, and compared with natural history controls (see Supplemental Fig 3). Although serum creatine kinase was variable, posttreatment creatine kinase levels were consistently less than natural history controls. Intravenous High-Dose Morpholino Cocktail Shows No Evidence of Toxicity No local inflammatory reactions or organ dysfunctions were recorded in the morpholino-treated dogs. Twice-weekly serum toxicology screens of the three systemically treated dogs showed no evidence of liver or kidney dysfunction (see Supplemental Fig 4). Levels of urea nitrogen, α -glutamyl transpeptidase, and creatinine all remained within the reference ranges. In addition, no significant changes were observed in amylase, total protein, total bilirubin, C-reactive protein, sodium, potassium, or chloride. Growth of body weight was also within reference range in all treated dogs (data not shown). # Discussion This is the first report of widespread induction of dystrophin expression to therapeutic levels in the dog model of DMD. Overall, our findings provide a promising message for DMD patients. Specifically, we show that intravenous morpholino antisense (PMOs) can generate body-wide production of functional dystrophin in a model clinically more severe than DMD, resulting in stabilization or improvement of the clinical disease. Beneficial effects were documented by histology, MRI, and functional tests (running and combined clinical grading scores). We encountered some unexpected findings that raise important questions as to how to pursue this promising approach into human clinical trials. Clearly, the choice of specific antisense sequences is a crucial determinant of the ultimate success of targeted exon skipping. To date, specific AO sequences have been assessed for efficiency of exon skipping using cell-based experimental (in vitro) systems, with the optimal sequences then used for in vivo experiments. In studies presented here, antisense oligonucleotides directed against exon 6 were able to efficiently induce the desired exon 5 to 10 splicing in vitro but not in vivo. Our observations of discrepant outcomes for ex vivo and in vivo in the dystrophic dog tell us that we do not currently possess a reliable means of screening for sequences that induce efficient skipping of a particular exon in a particular mutational context. Data obtained from application of sequences as 2'O-MePs in primary myogenic cells or as PMOs incubated ex vivo with muscle fragments failed to predict the effects when PMO sequences were tested in vivo. The high percentage of in-frame products here might be related to nonsense-mediated decay of out-offrame products or quality of RNA from cell culture; however, the in vitro experiments were consistent using three different concentrations (600, 60, and 30nM) with two different sequences (Ex6A and Ex6B). The results were confirmed by RT-PCR, immunohistochemistry, and complementary DNA sequences (see Fig 2; see Supplemental Fig 1). The in vitro effect of the exon 6-specific sequence was, in addition, context dependent. For when transfected into wild-type beagle myoblasts, the exon 8 AO pair again excised exons 8 and 9, whereas the exon 6-specific AO pair excised exons 6 and 9, leaving exons 7 and 8 in place (see Supplemental Fig 1). Thus, excision of exon 8 by the exon 6-specific sequences occurs only in the context of Fig 4. Widespread dystrophin expression and improved histology by intravenous systemic delivery of cocktail morpholinos in canine X-linked muscular dystrophy (CXMD) dogs. (A) Dystrophin (DYS-1) staining and histology in bilateral tibialis anterior muscles (TA), diaphragm (DIA), sternocleidomastoid (SCM), and heart at 2 weeks after final injection after five weekly intravenous injections of 120mg/kg cocktail morpholinos containing Ex6A. Ex6B, and Ex8A (2001MA). Comparisons were made with TA from normal control animal (wild type (WT)) and from nontreated CXMD littermate (NT) tibialis anterior (TA) and heart, Intravenous morpholino treatment resulted in extensive, though variable, dystrophin production in multiple muscles, but with only limited evidence of rescue in heart (isolated cardiocytes). Paired dystrophin immunostaining and histology from treated dog (TA, bottom panels) showed improved histopathology relative to untreated littermate (NT TA) histology. Bars = 200 µm, except for higher magnification picture of DIA and hearts (100 µm). (B) Quantitation of centrally nucleated fibers (CNFs) in TA, intercostal (IC), quadriceps (QUA), diaphragm (DIA), and sternocleidomastoid (SCM) in treated dog (blue bars; 2001MA) and untreated dog (red bars; 2008MA). (C) Western blotting analysis for detection of dystrophin at 2 weeks after final injection after 5 × weekly intravenous injections of 120mg/kg cocktail morpholinos containing Ex6A, Ex6B, and Ex8A (2001MA). Dystrophin rescue is variable with high expression in right extensor earpi ulnaris [ECU(R)] and left biceps femoris [BF(L)]. and less in posterior [ESO(P)] or anterior esophagus [ESO(A)] and sternocleidomastoid (SCM). (D) Immunoblot analysis of dystrophin in intravenous morpholino-treated dog (2703MA; 7 × weekly dosing) and control animals (normal control [WT], nontreated [NT]). Desmin immunoblot is shown as a loading control. Dystrophin shows high levels (>25% control levels) in triceps brachii (TB), DIA, and masseter (MAS). ADD = adductor; BB = biceps brachii; EDL = extensor digitorum longus; MAS = masseter, Fig 5. Recovery of localization and expression of dystrophinassociated proteins after systemic delivery of cocktail morpholinos to canine X-linked muscular dystrophy (CXMD) dogs. Neuronal nitric oxide synthase (nNOS) (A) and \u03b1-sarcoglycan (B) expression at 2 weeks after 5 × weekly 120mg/kg cocktail (2001MA) or 7 × weekly 200mg/kg cocktail morpholina injections (2703MA) to CXMD dogs. Recovery of nNOS expression at sarcolemma was observed by double immunofluorescence against dystrophin (DYS-1) and nNOS. Scale bar = 50μm. By immunoblot (B), α-sarcoglycan levels are increased in treated dog muscles, compared with untreated dystrophic controls (NT). Myosin heavy chain (MyHC) shown as a loading control. WT = wild-type normal control animals; WT(1/ 10) = wild-type (1/10 diluted samples, ie, 4µg loaded); NT = nontreated CXMD muscles (tibialis anterior); ECU = extensor carpi ulnaris; SCM = sternocleidomastoid; BF = biceps femoris; TA = tibialis anterior; QUA = quadriceps; SAR = sartorius: GAS = gastrocnemius; DIA = diaphragm; L = lefi side; R = right side. the mutant exon 7 splice site. Together, the differences between patterns of skipping in vivo versus in vitro and between wild-type versus mutant genotypes tell us that efficiency of skipping during transcription is dominated by variables other than the availability or otherwise of specific local sequence. Thus, it is prudent to consider testing of selected sequences in multiple systems with human dystrophin mRNA as the target before committing to a specific sequence for clinic trials. We observed efficient skipping of exon 9, even though no antisense sequence targeted its removal in both wild-type and CXMD (see Figs 2 and 3), which is known as alternative splice site.20 AOs targeting exon 8 have been reported to induce skipping of both exon 8 and 9 in human and in dog studies (see Figs 2 and 3).10,21 It appears likely that the small size of intron 8 compared with intron 7 (1.1 vs 110Kb) predisposes to splicing of exon 8 to exon 9 before splicing to exon 7. In the systemically treated dogs, we found widespread expression of dystrophin in all muscles analyzed but with considerable variation (see Fig 4). No difference in dystrophin expression between fiber types was evident (data not shown). Even contralateral muscles differed from one another, suggesting that variation in efficacy of dystrophin production is a reflection of transient sporadic events such as myopathic episodes or changes in vascularization or circulation rather than any intrinsic muscle-specific properties. Pathological stages of degeneration/regeneration may also be in- Fig 6. Amelioration of pathology and reduced inflammation signal in magnetic resonance imaging (MRI). T2-weighted MRI of hind legs at 1 week before initial injection (pre-inj) and at 2 weeks after final injection (post-inj) of 7 × weekly intravenous (IV) injection of 200mg/kg cocktail morpholinos (2703MA) or 5 × weekly IV injection of 120mg/kg cocktail morpholinos (2001MA). Age-matched untreated dogs (wild type [WT; normal control] and nontreated dystrophic control [NT]) are shown for comparison. (B) Changes of T2 value examined by MRI at 2 weeks after 7 × weekly 200mg/kg cocktail morpholino injections. Changes of T2 values in hind legs at 1 week before initial injection and at 2 weeks after final injection are shown. Intravenous morpholino treatment resulted in decreased T2 signal in all muscles examined. TA = tibialis anterior; GAS = gastrocnemius; ADD = adductor; VI. = vastus lateralis. Dotted lines represent normal beagle; dashed lines represent nontreated canine X-linked muscular dystrophy (CXMD); solid lines represent treated Fig 7. Stabilization of clinical symptoms by systemic morpholino treatment. (A) Combined clinical grading scores before (black lines) and after starting treatment (red lines) of the three treated dogs. Clinical grades of gait disturbance, mobility disturbance, limb or temporal muscle atrophy, drooling, macroglossia, and dysphagia are scored as described in Materials and Methods. A series of untreated dogs (n = 6-13) was studied for comparison (dashed line, standard error bars). (B, C) Fifteen-meter timed running tests in treated dogs and untreated littermates. A canine X-linked muscular dystrophy (CXMD) dog treated from 5 to 7 months (2001MA) of age showed decreased timed 15m run after treatment, whereas untreated littermates showed slowed running ability (B). Similarly, two littermate dogs treated at 2 to 4 months of age (2703MA; 2702FA) showed quicker 15m times after treatment compared with nontreated littermate (C). volved. Overall, most studies to date suggest that 10 to 20% normal dystrophin levels are needed to improve muscle function, 22.23 and the data on systemic morpholino-induced exon skipping presented here imply that some, but not all, muscle groups reached this therapeutic level. Systemic delivery of morpholinos in CXMD dogs as in mdx mice induced only modest dystrophin production in the heart (see Fig 4).19 The reason is not clear, but it has been suggested that dystrophic skeletal muscle fibers may give greater access to AOs because they have more "leaky" membranes than the smaller cardiac cells and because the syncytial structure of myofibers may permit wider diffusion of PMO molecules from each site of entry.24 Cardiac ischemia, as indicated by abnormal Q-waves in CXMD,25 may also limit access of AOs to cardiomyocytes. Some improvement in delivery has been reported with cell-penetrating peptidetagged morpholinos, or use of microbubbles and ultrasound that may enhance uptake efficiency in the heart by facilitating penetration of cell membranes, although toxicity of these strategies is not clear.26,27 Considerable evidence for functional and histological improvement was seen in the three systemically treated dogs (see Figs 4-7). All were stabilized compared with their untreated littermates in motor function tests, general clinical condition, and serum creatine kinase levels. MRI images also showed reduction of T2-weighted signal, interpreted as a sign of diminished inflammation, after morpholino delivery (see Fig 6). However, longerterm experiments are required to investigate whether AOs can reduce infiltration by fibrofatty tissue and to what extent functional loss can be recovered. Many DMD patients require two or more exons to be skipped to restore the reading frame. The data reported here are the first demonstrations of efficient skipping of multiple exons systemically through intravenous delivery. The dog model required skipping of two to three exons to restore the reading frame, and we were able to show efficient skipping of three exons by both intramuscular and intravenous delivery methods. Multiexon skipping has also been shown in in vitro cell cultures and in mdx mice by intramuscular injections. 8,28-30 Multiexon skipping increases the range of potentially treatable DMD patients and also raises the prospect of selecting the most functionally favorable inframe dystrophins,7 although skipping larger stretches of exons has yet not been achieved and currently may not be feasible. Specific morpholino cocktails able to treat a large proportion of DMD patients with optimized quasi-dystrophin production might be submitted for regulatory approval as a single "drug." For example, a cocktail of AOs targeting exons 45 to 55 would be applicable in up to 63% of patients with dystrophin deletions, and this specific deletion is associated with asymptomatic or mild BMD clinical phenotypes. 31,32 This work was supported by the Foundation to Eradicate Duchenne, the Department of Defense CDMRP program, the Jain Foundation, the Crystal Ball of Virginia Beach (Muscular Dystrophy Association USA), the National Center for Medical Rehabilitation Research, the NIH Wellstone Muscular Dystrophy Research Centers, and the Ministry of Health, Labor, and Welfare of Japan (Research on Nervous and Mental Disorders, 16B-2, 19A-7; Health and Labor Sciences, Research Grants for Translation Research, H19-translational research-003, Health Sciences Research Grants for Research on Psychiatry and Neurological Disease and Mental Health, H18-kokoro-019), We thank Drs S. Duguez, J. Nazarian, H. Gordish-Dressman, Y. Aoki, T. Saito, K. Yuasa, N. Yugeta, S. Ohshima, Z.-H. Shin, M. Wada, K. Fukushima, S. Masuda, K. Kinoshita, H. Kita, S. Ichikawa, Y. Yahata, T. Nakayama, A. Rabinowitz, and J. Beauchamp for discussions and technical assistance. #### References - 1. Hoffman EP, Brown RH Jr, Kunkel LM. Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell 1987;51:919-928. - 2. Matsumura K. Campbell KP. Dystrophin-glycoprotein complex: its role in the molecular pathogenesis of muscular dystrophies. Muscle Nerve 1994:17:2-15. - 3. Koenig M, Beggs AH, Moyer M, et al. The molecular basis for Duchenne versus Becker muscular dystrophy: correlation of severity with type of deletion. Am J Hum Genet 1989;45: - 4. England SB. Nicholson LV, Johnson MA, et al. Very mild muscular dystrophy associated with the deletion of 46% of dystrophin. Nature 1990;343:180-182. - 5. Dunckley MG, Manoharan M, Villier P, et al. Modification of splicing in the dystrophin gene in cultured Mdx muscle cells by antisense oligoribonucleotides. Hum Mol Genet 1998;7: - 6. van Deutekom JC, Janson AA, Ginjaar IB, et al. Local dystrophin restoration with antisense oligonucleotide PRO051. N Engl J Med 2007;357:2677-2686. - 7. Yokota T, Duddy W, Partridge T. Optimizing exon skipping therapies for DMD. Acta Myol 2007;26:179-184. - 8. Aartsma-Rus A, Janson AA, Kaman WE, et al. Antisenseinduced multiexon skipping for Duchenne muscular dystrophy makes more sense. Am J Hum Genet 2004;74:83-92. - 9. Sharp NJ, Kornegay JN, Van Camp SD, et al. An error in dystrophin mRNA processing in golden retriever muscular dystrophy, an animal homologue of Duchenne muscular dystrophy. Genomics 1992;13:115-121. - 10. McClorey G, Moulton HM, Iversen PL, et al. Antisense oligonucleotide-induced exon skipping restores dystrophin expression in vitro in a canine model of DMD. Gene Ther 2006; 13:1373-1381. - 11. Shimatsu Y, Katagiri K, Furuta T, et al. Canine X-linked muscular dystrophy in Japan (CXMDJ), Exp Anim 2003;52:93-97. - 12. Summerton J, Weller D. Morpholino antisense oligomers: design, preparation, and properties. Antisense Nucleic Acid Drug Dev 1997;7:187-195. - 13. Yokota T, Takeda S, Lu QL, et al. A renaissance for anti-sense oligonucleotide drugs in neurology: exon-skipping breaks new ground. Arch Neurol (in press). - 14. Jankowski RJ, Haluszczak C, Trucco M, Huard J. Flow cytometric characterization of myogenic cell populations obtained via the preplate technique: potential for rapid isolation of muscle-derived stem cells. Hum Gene Ther 2001;12:619-628. - 15. Yokota T, Lu QL, Morgan JE, et al. Expansion of revertant fibers in dystrophic mdx muscles reflects activity of muscle precursor cells and serves as an index of muscle regeneration. J Cell Sci 2006;119:2679-2687. - 16. Abramoff MD, Magelhaes PJ, Ram SJ, Image processing with ImageJ. Biophotonics Int 2004;11:36-42. - 17. Araíshi K, Sasaoka T, Imamura M, et al. Loss of the sarcoglycan complex and sarcospan leads to muscular dystrophy in beta-sarcoglycan-deficient mice. Hum Mol Genet 1999:8: 1589-1598 - 18. Shimatsu Y, Yoshimura M, Yuasa K, et al. Major clinical and histopathological characteristics of canine X-linked muscular dystrophy in Japan, CXMDJ. Acta Myol 2005;24:145-154. - 19. Alter J. Lou F. Rabinowitz A, et al. Systemic delivery of morpholino oligonucleotide restores dystrophin expression bodywide and improves dystrophic pathology. Nat Med 2006;12: 175 - 177 - 20. Reiss J. Rininsland F. An explanation for the constitutive exon 9 cassette splicing of the DMD gene. Hum Mol Genet 1994; 3:295-298. - 21. Aartsma-Rus A. De Winter CL, Janson AA, et al. Functional analysis of 114 exon-internal AONs for targeted DMD exon skipping; indication for steric hindrance of SR protein binding sites. Oligonucleotides 2005;15:284-297. - 22. Yoshimura M, Sakamoto M, Ikemoto M, et al. AAV vectormediated microdystrophin expression in a relatively small percentage of mdx myofibers improved the mdx phenotype. Mol Ther 2004:10:821-828. - 23. Liang KW, Nishikawa M, Liu F, et al. Restoration of dystrophin expression in mdx mice by intravascular injection of naked DNA containing full-length dystrophin cDNA. Gene Ther 2004:11:901-908. - 24. Yokota T. Pistilli E. Duddy W. Nagaraju K. Potential of oligonucleotide-mediated exon-skipping therapy for Duchenne muscular dystrophy. Exp Opin Biol Ther 2007;7:831-842. - 25. Yugeta N UN, Fujii Y, Yoshimura M, et al. Cardiac involvement in Beagle-based canine X-linked muscular dystrophy in Japan (CXMDJ): electrocardiographic, echocardiographic, and morphologic studies. BMC Cardiovasc Disord 2006:6:47. - 26. Jearawiriyapaisarn N. Moulton HM. Buckley B, et al. Sustained dystrophin expression induced by peptide-conjugated morpholino oligomers in the muscles of mdx mice. Mol Ther 2008;16: 1624-1629. - 27. Vannan M, McCreery T, Li P, et al. Ultrasound-mediated transfection of canine myocardium by intravenous administration of cationic microbubble-linked plasmid DNA. J Am Soc Echocardiogr 2002;15:214-218. - 28. Fall AM, Johnsen R, Honeyman K, et al. Induction of revertant fibres in the mdx mouse using antisense oligonucleotides. Genet Vaccines Ther 2006;4:3. - 29. Aartsma-Rus A. Janson AA, van Ommen GJ, van Deutekom JC. Antisense-induced exon skipping for duplications in Duchenne muscular dystrophy. BMC Med Genet 2007:8:43. - 30. Aartsma-Rus A, Kaman WE, Weij R, et al. Exploring the frontiers of therapeutic exon skipping for Duchenne muscular dystrophy by double targeting within one or multiple exons. Mol Ther 2006;14:401-407. - 31. Nakamura A, Yoshida K, Fukushima K, et al. Follow-up of three patients with a large in-frame deletion of exons 45-55 in the Duchenne muscular dystrophy (DMD) gene. J Clin Neurosci 2008:15:757-763. - 32. Beroud C, Tuffery-Giraud S, Massuo M, et al. Multiexon skipping leading to an artificial DMD protein lacking amino acids from exons 45 through 55 could rescue up to 63% of patients with Duchenne muscular dystrophy. Hum Mutat 2007;28: AQ: 13