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Pikachurin, a dystroglycan ligand, is essential for
photoreceptor ribbon synapse formation

Shigeru Sato'~3, Yoshihiro Omori!, Kimiko Katoh', Mineo Kondo®, Motoi Kanagawa®, Kentaro Miyata®,
Kazuo Funabiki®, Toshiyuki Koyasu®, Naoko Kajimura’, Tomomitsu Miyoshi®, Hajime Sawai®,
Kazuhiro Kobayashi®, Akiko Tani', Tatsushi Toda’, Jiro Usukura’, Yasuo Tano?, Takashi Fujikado®? &

Takahisa Furukawa'

Exquisitely precise synapse formation is crucial for the mammalian CNS to function correctly. Retinal photoreceptors transfer
information to bipolar and horizontal cells at a specialized synapse, the ribbon synapse, We identified pikachurin, an extracellular
matrix—like retinal protein, and observed that it localized to the synaptic cleft in the photoreceptor ribbon synapse. Pikachurin
null-mutant mice showed improper apposition of the bipolar cell dendritic tips to the photoreceptor ribbon synapses, resulting

in alterations in synaptic signal transmission and visual function. Pikachurin colocalized with both dystrophin and dystroglycan
at the ribbon synapses. Furthermore, we observed direct biochemical interactions between pikachurin and dystroglycan.
Together, our results identify pikachurin as a dystroglycan-interacting protein and demonstrate that it has an essential role

in the precise interactions between the photoreceptor ribbon synapse and the bipolar dendrites. This may also advance our
understanding of the molecular mechanisms underlying the retinal electrophysiological abnormalities observed in muscular

dystrophy patients.

The establishment of precise synaptic connections between neurons in
the developing and mature CNS is crucial for normal nervous system
functions, including perception, memory and cognition. Thus, eluci-
dating the mechanisms by which synapses develop and are modified isa
central aim in neurobiology. Over the past few decades, a large number
of protein components have been identified that are required for
synapse morphogenesis and neurotransmitter release' . However, the
molecules and mechanisms underlying specific synapse connections in
the vertebrate CNS are still poorly understood.

The neural retina is developmentally a part of the CNS and is where
the first stage of visual signal processing occurs, Visual information is
transmitted from photoreceptor cells to the ganglion cells via bipolar
interneurons. The photoreceptor axon terminal forms a specialized
structure, the ribbon synapse, which specifically connects photorecep-
tor synaptic terminals with bipolar and horizontal cell terminals in the
outer plexiform layer (OPL) of the retina. Although various presynaptic
factors that are required for synaptic ribbon structure, such as CtBp2/
RIBEYE, piccolo and bassoon, have been identified®*, the mechanism
of ribbon synapse apposition specific to bipolar and horizontal
terminals remains totally unknown.

Mutations in the dystrophin-glycoprotein complex (DGC) cause
various forms of muscular dystrophy®. Dystroglycan, a central compo-
nent of the DGC, functions as a cellular receptor that is expressed in a
variety of tissues, including the CNS®. Dystroglycan precursor protein
is cleaved into two subunits, a-dystroglycan and B-dystroglycan’.
u-dystroglycan is a heavily glycosylated extracellular protein and has
the potential to bind to several extracellular proteins containing the
laminin-G domain, including laminin-«1, laminin-o2, agrin, perlecan
and neurexins®!!. The DGC components are also expressed in the
retina'*!®_ Altered electroretinograms (ERGs) are frequently found in
individuals with Duchenne and Becker muscular dystrophy, indicating
that the DGC is necessary for normal retinal physiology'®~'%. However,
the functional role of DGC in the retina is elusive,

We isolated and characterized mouse pikachurin, a dystroglycan
ligand in the retina. To the best of our knowledge, pikachurin is
the first dystroglycan ligand to interact with the presynaptic dystro-
glycan. Our results demonstrate that pikachurin is critically involved
in both the normal photoreceptor ribbon synapse formation
and physiological functions of visual perception. This may also
shed light on the molecular mechanisms underlying the retinal
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Figure 1 Molecular analysis and expression of Pikachurin, (a) Domain structure of mouse
pikachurin. The percent amino acid identity (1) and similarity (S) between mouse and human,
mankey, cow, chick or zebrafish in each of the amino-terminus portions and carboxyl-terminus
portions are indicated. EGF_CA, calcium-binding EGF-like domain; LG, laminin G domain; S-5,
signal sequence, (b) Schematic Illustration of domain structures of mouse pikachurin, perlecan
and agrin. The carboxyl end of pikachurin has substantial homology with that of agrin and
perlecan. EGF Lam, laminin-type EGF-like domain; Ig V set, immunoglobulin V-set domain;
KAZAL_FS, Kazal-type serine protease inhibitors and follistatin-like domain; LamB, laminin

B domain; LDLa, low-density lipopratein receptor domain class A; SEA, Domain found In sea
urchin sperm protein, enterokinase and agrin; SPARC, secreted protein, acidic, and rich in
cysteines domain. (¢} Northern blot analysis of Pikachurin transcript in adult mouse tissues.
The size of the pikachurin transcript is approximately 4.7 kb. Lower, ethidium bromide staining
of RNA. Each lane contained appraximately 10 ug of total RNA. (d-g) /n situ hybridization
analysis of mouse Pikachurin in the developing and adult retina. The Pikachurin signal was
detected n the apical side of NBL at E14.5 (d) and E17.5 (e). P& (f) and adult (g) retina had the Pikachurin signal in the prospective photoreceptor layer and
the photoreceptor |ayer, respectively. GCL. ganglion cell layer; INL, inner nuclear layer; ONL, outer nuclear layer. Scale bar represents 50 ym.

electrophysiological abnormalities observed in individuals with
Duchenne and Becker muscular dystrophy.

RESULTS

Isolation of pikachurin

Otx2 is an important transcription factor for the cell fate determination
and development of retinal photoreceptor cells'**". We previously
reported that the cell fates of both rod and cone photoreceptors are
converted to that of amacrine-like cells in the Ome2 conditional
knockout (CKO) mouse line that was created by mating Opxafie/flex
mice with Crx-Cre transgenic mice, which express cre recombinase in
developing photoreceptors. We hypothesized that transcripts from
various genes, which are important for photoreceptor development,
maintenance and function, are relatively downregulated in the Otx2
CKO retina compared with those of the wild-type retina. To identify
genes that regulate photoreceptor development, we carried out a
microarray analysis comparing the retinal gene expression profiles of
wild-type and Otx2 CKO mouse retinas (data not shown). In this
screen, we identified Pikachurin, a gene that encoded a previously
unknown extracellular matrix (ECM)-like protein containing laminin
G and EGF-like domains (Fig. 1a).

To confirm whether or not Pikachurin transcription is regulated by
Owx2, we carried out an RT-PCR analysis. Pikachurin expression was
absent in the Ox2 CKO mice retina (Supplementary Fig. 1 online),
indicating that Pikachurin is actually regulated by Otx2. We isolated a
full-length cDNA and found that Pikachurin encodes a 1,017 amino
acid protein that contains an N-terminal signal sequence, two fibro-
nectin 3 (FN3), three laminin G and two EGF-like domains (Fig. 1a
and Supplementary Fig. 1). We found that pikachurin was highly
conserved in vertebrates, as indicated by the sequence similanty
between mouse and zebrafish in the N-terminal FN3-containing
domain (57%) and in the C-terminal laminin G repeats (84%)

{Fig. 1a and Supplementary Fig. 1). The C-terminal half of pikachurin
showed substantial similarity with agrin and perlecan (Fig. 1b).

Pikachurin is expressed in developing photoreceptors

To examine the tissue specificity of Pikachurin expression, we carried
out a northern blot analysis with adult mouse tissues. We observed a
single, strong 4.7-kb band in the mouse retina and faint bands in the
lung and ovary (Fig. lc). Although the Pikachurin transcript was not
detected in the brain by northern blot analysis, we observed a faint
Pikachurin band by RT-PCR analysis (Supplementary Fig. 1). We also
detected Pikachurin expression in the pineal gland by RT-PCR but not
in the inner ear at adult stage (Supplementary Fig. 1).

Furthermore, we carried out in situ hybridization using developing
and adult mouse eye sections (Fig. 1d~g). Pikachurin expression was
first detected at embryonic day 14.5 (E14.5) in the outer part of the
neuroblastic layer (NBL), corresponding to the prospective photo-
receptor layer (Fig. 1d). At this stage, cone genesis has reached its peak
period and rod generation has been initiated?'. At E17.5, a steady signal
was observed (Fig. le). Dunng postnatal retinal development,
Pikachurin expression was observed in the photoreceptor layer
(Fig. 1f) at postnatal day 6 (P6). This decrease in pikachurin expression
in the later stages of photoreceptor development was confirmed by
northern blotting (Supplementary Fig. 1). The expression level of
pikachurin peaked at P6 and then decreased after this time point;
however, a detectable level of pikachurin expression was maintained in
the adult retina (Fig. 1g).

Pikachurin localizes in the vicinity of synaptic ribbon

To investigate the localization of pikachurin protein, we raised an
antibody to pikachurin. We immunostained sections of adult mouse
retina using this antibody. In the adult retina, pikachurin specifically
localized to the OPL (Fig. 2a) in 2 punciate pattern (Fig. 2b). In
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the retina (Fig. 6a-f). At 6 months, pikachurin stained in a grainy  a-dystroglycan via their LG domains'®, we investigated whether
pattern in the OPL of the retina (Fig. 6ad). Notably, both pikachurin LG domains bind to t-dystroglycan. To test this
B-dystroglycan and dystrophin were expressed in a similar grainy  binding, we prepared recombinant pikachurin LG domains (residues
pattern, overlapping with pikachurin signals (Fig. 6b,c,e.f). 391-1,017) as a His-tag protein (pikachurin-LG-His) and recombinant

As shown above (Fig. lab), structural anticipation suggests a-dystroglycan as an Fe-fusion protein (DG-Fc). Pikachurin-LG-His
that pikachurin LG domains have similarity with LG domains of was recovered in the NP-40-solubilized cell lysate, DG-Fe¢ and its
agrin and perlecan. Because both proteins are known to bind to  control Fc proteins were secreted into the cell culture media when

expressed in NIH 3T3 cells. We confirmed that
DG-Fe was recognized by a monoclonal anti-

a Scatopic ERGs b Seolopc ERG c Scotopic ERG body (IIH6) against glycosylated forms of -
b-wave ampitude b-wave implicit ima
Wikdtype  Pikachurin KO 1,000 250 dystroglycan (data not shown), We prepared
£ e :fmﬁn i & DG-Fe-protein A beads, which were then
5 80g A e mixed with the cell lysate that contained
2 a0 —K AR o e f pikachunin-1LG-His. The binding reaction
% 150 was carried out in the presence of Ca®* and
g 5 _\/\ 400 Mg?* or EDTA, as binding between %-dystro-
g i 260 ' 100 glycan and agrin or perlecan requires divalent
-‘g . i = cations'**>33, Western blotting analysis of the
@ 200wy gnvc; -50 -30 -10 10 [mi? 50 -30 —10 10 bnlllnd materials usu.u.t, npnhnd} o H1s
o B-Wave s Stimulus intensity (log od s m=)  Stimulus infensity (log od & m~2) revealed that the pikachurin LG domains
d T e Photopic ERG f Photopc ERG bind to DG-Fe (Fig. 6g). This binding was
————— b-wave amplifude Top, D-Wwave implicit time inhibited by EDTA (Fig. 6g), which indicates
T L) _jfi“:;_ Tt 200 _‘:_‘::::':E"m - N 1 tha'l lhm-.i.«?adivnlent cation-dependent inter-
. £ action, a is the case of laminin, agrin :I.I'I-d
E‘ o —r\\__ A— 10 sl 1. . perlecan®. We confirmed that pikachurin-
= 55 == -T LG-His did not bind to the Fc protein
£ os Af\_‘ n (Fig. 6g). In addition, the inhibitory effects
£ R i i H\*\* of I1H6 (Fig. 6h) suggest that the pikachurin
é T 200uV|_ = binding to a-dystroglycan is glycosylation-
7 S0 ms 0 e . ; 50 = " v ndent, as is reported to inhibit
“ e - M W95 © s 1o (m os 6 05 1o sie:;in nl’ f it 4 pul : j_‘.“m;’ i
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g Seotopic VEPs h Photapic VEPs —_— —
Figure 5 Electrophysiological and OKR analyses
of wild-type and Pikachurin null mice. (a-1) ERG
analysis of Pikachurin~'- mice. Scotopic (a) and
wr wi photopic (d) ERGs were elicited by four different
stimulus intensities from both wild-type and
Pikachurin™'~ (KO) mice (n = 4). Amplitude
(b} and implicit time (¢} of scotopic ERG b-waves
R wa = as a function of the stimulus intensity are shown.
Amplitude () and implicit time (f) of photopic
i\ et _ . ERG b-waves are shown. The bars indicate s.e.m
== Sl I Asterisks indicate that the differences are

] statistically significant (Mann-Whitney test,

P < (.05), (g,h) VEPs in the superior calliculus
of wild-type (WT) and Pikachurin™" (KO} mice.
(g) Under scotopic conditions, a brief 10-ms
stimulation was applied from the LED pane!

(238 cd m~2) in the front of the left eye. (h) Under
photopic condition, 8 500-ms stimulation was
applied to examine both ON and OFF responses
The bottom trace indicates the onset and offset of
a light stimulus. Scale bar indicates 200 pV.

~a Pikachurin KO (i-k} OKR analysis of wild-type and Pikachurin~'-

10 mice. A schematic drawing of OKR recording (i),
(j) Screen velocity, scale bar represents 10° s-1,
5 WMM‘N\N@\‘ Examples of OKRs in wild-type (black) and
E Pikachurin~ (gray) mice with a 1.92-, 1.25-or
£ o5 — 0.91-deg screen. (k) OKR gain with four screens
of different stripe width. Bar indicates s.d. (gray
i) ol 10deg triangle, Pikachurim'~ mice; black circle,
—— e e | wild-type mice, n = 6). OKR of Pikachurim'=
6 ———— M mice with 1.25-deg screen was significantly
15 1.92 1.25 081 et weaker than that of wild-type mice (unpaired
Stripe width (deg) os ttest, P < 0.01).
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retinal [PL and hair cells in the inner ear. Pikachurin expression was not
detected in these sites, suggesting that pikachurin functions specifically
in photoreceptor-bipolar synaptic apposition.

The human PIKACHURIN gene is located on chromosome 5, region
p13.2-p13.1. Although human PIKACHURIN maps in the vicinity of
early-onset autosomal dominant macular dystrophy (MCDR3), which
was mapped to chromosome 5, region p13.1-p15.33 (RetNet, htp://
www.sph.uth.tme.edu/Retnet/), PIKACHURIN mutations do not seem
ta be responsible for this disease when the phenotypes of the Pikachurin
null mouse are taken into consideration. Notably, the Pikachurin null
mouse showed an impairment of visual function detected by OKR
(Fig. 5i-k}. Pikachurin null mice showed normal visual function for
large-angle stripes but significantly reduced visual function for small-
angle stripes (unpaired f test, P< 0.01). This may suggest that a
mutation of PIKACHURIN in humans leads not to an obvious clinical
manifestation of eye disease but rather to impairment of spatial
resolution in vision.

Functional interaction between pikachurin and dystroglycan

Our observations suggest the possibility of a functional interaction
berween pikachurin and dystroglycan (Supplementary Fig. 6 online).
We observed a reduction in the amplitude and delayed implicit time of
the ERG b-wave (Fig. 5a-f) in the Pikachurin='~ mouse, Both in
human and mouse, mutations of dystrophin, an intracellular compo-
nent of the DGC, are known to cause an abnormality in the ERG
b-wave. In humans, many individuals with DMD and BMD with
mutations in dystrophin show abnormal dark-adapted ERG
b-waves!”™%, Studies of individuals with DMD deletions have shown
that the location of the deleted sequence can affect the ERG pheno-
type?®. Mutations in the central or 3 region of the gene are associated
with severe reductions of amplitude and prolongation of the implicit
time in the b-wave, whereas mutations limited to the 5" end of the gene
appear to be associated with milder abnormalities and, in some cases,
normal ERGs®™. In mice, disruption of dystrophin (mdx“? and
mdy“™) causes prolongation of the implicit time of the b-wave'®.
Our results suggest that functional disruption of the interaction
between dystroglycan and pikachurin in the retina may produce
abnormal dark-adapted ERG b-waves in individuals with DMD and
BMD. In addition, lack of glycosylation of a-dystroglycan in glycosyl-
transferase-deficient mice (Large™ and Large™) also shows an ERG
phenotype that is similar to that of Pikachurin null mice®. The
similarity of unique abnormalities of ERGs observed in the Pikachurin
null, mdx?, mdx“, Large™ and Large"™ mutants strongly suggest
that there is a functional interaction between pikachurin and DGC
components in the retinal ribbon synapses.

We also found a direct interaction of pikachurin with a-dystro-
glycan, an extracellular component of the DGC (Fig. 6). It has been
reported that a-dystroglycan binds to laminins and perlecan in a
glycosylation-dependent manner®®. The inhibitory effect of IIH6 and
divalent cation—dependent binding suggest that pikachurin binds to
=«-dystroglycan by a mechanism that is similar to other known ligands,
such as laminins and perlecan. Supporung this idea, pikachurin
colocalizes with [i-dystroglycan in photoreceptor synaptic terminals
(Fig. 6a—).

On the basis of these data, pikachurin probably functionally interacts
with DGC components to form proper synaptic connections between
photoreceptors and bipolar cells in the retinal ribbon synapses.

Molecular mechanism of pikachurin in synapse formation
In NM]Js, formation of the proper synaptic structure is regulated by
several dystroglycan ligands, such as agrin, laminins and perlecan.

These ligands interact with dystroglycan, localizing to the postsynaptic
surface of NMJ, and induce the differentiation and maturation of
postsynaptic structures through the clustering of appropriate post-
synaptic components (Supplementary Fig. 6)**%. In contrast to the
postsynaptic localization of dystroglycan in NMJs, dystroglycan in the
ribbon synapse localizes to the presynaptic membrane of photoreceptor
synaptic terminals around the bipolar cell dendritic processes'*. To
the best of our knowledge, pikachurin is the first dystroglycan ligand
that has been found to interact with the presynaptic dystroglycan
(Supplementary Fig. 6). How does pikachurin control invagination by
the bipolar dendritic tips of the photoreceptor presynaptic terminals?
On the basis of our data and previous findings, we hypothesize two
scenarios, The first scenario is that pikachurin is involved in forming
the proper structure of photoreceptor terminals for invagination by the
tips of bipolar dendrites. The interaction of pikachurin with dystro-
glycan on the surface of the presynapse may cause a structural change of
the photoreceptor presynaptic terminals, forming the proper connec-
tion with the postsynaptic terminals of bipolar dendrites. This scenario
leads to the hypothesis that fine structural conformation of the axon
terminus is crucial for the initial specific and precise synaptic apposi-
tion of a dendrite to the axon terminus. After this, adhesive molecules
function supportively for the successive development and maintenance
of synaptic connections,

The second scenario is that pikachurin is an attractant that induces
the bipolar dendritic tips into proximity with the photoreceptor ribbon
synapse through interaction with an unknown factor (represented as a
factor, X; Supplementary Fig. 6) on the postsynaptic terminals of
bipolar cell dendrites. Pikachurin released from photoreceptor synapses
may induce structural changes in bipolar dendritic tips, such as the
clustering of postsynaptic components, via an interaction with the
unknown factor expressed in the tips of the bipolar cell dendrites. This
may result in the attraction and insertion of the bipolar dendritic tips to
the invagination of photoreceptor synaptic terminals,

In this study, we demonstrated that a previously unknown dystro-
glycan-interacting protein, pikachurin, is important for the formation
of the ribbon synapse, a specialized synaptic structure in the CNS.
Dystroglycan is known to be expressed not only in muscular cells but
also in various CNS neurons*!. Our findings provide clues as to the
mechanisms of dystroglycan and ECM molecules in the formation of
fine CNS synaptic structures.

METHODS

Generation of Pikachurin mutant mouse. We obtained Pikachurin genomic
clones from a screen of the 129/SvEv mouse genomic DNA library (Stratagene).
We subcloned an B8.4-kb Swal-Scal fragment and an 8.1-kb EcoRV-Kpnl
fragment from the Pikachurin genomic clones into a modified pPNT vector®?,
and transfected the linearized targeting construct into TC1 embryonic stem cell
line*2, The culture, electroporation and selection of TC1 were carried out as
previously described®2. Embryonic stem cells that were heterozygous for the
targeted gene disruption were microinjected into C57BL/6 blastocysts to obtain
chimeric mice.

We carried out immunchistochemistry, northern blot analysis, RT-PCR
analysis, in situ hybridization, electron microscopy, ERG recordings, VEP
recording, OKR analysis and pull down binding assays as described in the
Supplementary Methods online.

Note: Supplementary informanon 5 available on the Nature Neuroscience website.
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