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tumors. Given that other parkin—/— mice did not
develop HCC, the inconsistent phenotype observed by
different laboratories might be due to differences in the
genetic backgrounds of strains. Alternatively, the
discrepancy between our results and those of others
may have arisen from the timing of the analyses for the
liver phenotype. Our parkin—/— mice model showed no
evidence of hepatic tumors at 48 weeks. The majority of
tumors were detected at an age of 72 weeks or older,
whereas some of the previous analyses of parkin—/—
mice were carried out when the mice were less than 72
weeks of age (Goldberg et al., 2003; Palacino et al.,
2004). Further analyses are necessary to determine
whether parkin deficiency is always responsible for
enhanced hepatocyte proliferation and the development
of HCC in various parkin—/— mouse models. In
contrast to hepatomegaly, we found that the body
weight of the parkin—/— mice was significantly lower
than the wild-type mice by unknown reason. One
possibility is to assume that changes in the levels of
metabolism-related molecules were involved in the low
body weights of parkin—/— mice.

Importantly, we demonstrated that follistatin is
commonly upregulated in both nontumorous and
tumorous liver tissues of parkin—/— mice. Our findings
also showed that parkin expression resulted in the
decrease in the expression levels of follistatin transcripts
in vitro. The molecular mechanism responsible for
regulation of follistatin transcription by parkin is
unclear at present. However, it was shown that parkin
regulates the gene transcription of moncamine oxidase
in various cells (Jiang et al., 2006). It is of note that the
ability of parkin to suppress monoamine oxidase
expression does not appear to be dependent on its
ubiquitin ligase activity. Parc, a parkin-like ubiquitin
ligase, also has a RING-IBR-RING motif and acts as
a cytoplasmic anchor for the p53 protein, resulting
in suppression of p53 gene-dependent transcription
(Nikolaev et al., 2003). In the current study, reporter
plasmid assay revealed that parkin expression induced
the substantial decrease of promoter activity of follistatin
gene. Thus, it might be possible to assume that parkin is
involved in the transcriptional regulation of follistatin
gene expression, either independent of its E3 ligase
function or by the proteosomal degradation of the target
protein related to the transcriptional regulation of
follistatin. In addition to the possible transcriptional
regulation of follistatin by parkin, the activation of
B-catenin observed in the HCC tissues might be
attributable to enhanced expression of the follistatin
gene, because it has been demonstrated that activation
of P-catenin results in the induction of follistatin
expression in various cancer cells (Willert et al., 2002;
Germann et al., 2003).

Our data showed that parkin—/— hepatocytes were
significantly more resistant to cell death in association
with the upregulation of follistatin. Follistatin is
secreted, and is sometimes membrane associated, and
exerts its effects as the most potent endogenous inhibitor
of activin (Harrison et al., 2005). Accumulating evidence
suggests that the activin/follistatin system is involved in
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the regulation of hepatocyte proliferation and apoptotic
cell death (Chen et al., 2002; Harrison et al., 2005
Rodgarkia-Dara et al., 2006). Several animal models
and analyses of clinical specimens revealed that dereg-
ulation of activin signaling, mainly achieved by folli-
statin upregulation, contributes to pathologic conditions
such as hepatic inflammation, fibrosis and liver cancer
(Rossmanith et al., 2002; Grusch er al., 2006; Patella
et al., 2006). Overexpression of activins induces hepa-
tocyte apoptosis in vitro and in vive (Schwall et al., 1993;
Hully et al., 1994), whereas follistatin administration
decreased hepatocyte apoptosis in a hepatitis mouse
model (Patella er al., 2006). Furthermore, follistatin
administration by intraportal infusion or adenovirus-
mediated overexpression stimulates DNA synthesis and
liver growth in normal rat livers (Kogure et al., 2000;
Takabe er al, 2003). Experimentally induced rodent
liver tumors, as well as human HCCs, show upregulated
expression of follistatin (Grusch et al., 2006). These
findings suggest that deregulation of the balance
between the expression of activins and their antagonist,
follistatin, may contribute to the growth advantage of
hepatocytes and result in liver cancer. Therefore, it is
likely that upregulation of follistatin is associated with
the development of HCC in parkin—[— mice.

In conclusion, our findings demonstrate that parkin is
important in the regulation of hepatocyte proliferation
and apoptosis, and that the loss of parkin expression
might contribute to the overproliferation of hepatocytes,
leading to hepatocarcinogenesis. Because [-catenin
activation was specifically observed in the tumor, but
not in the nontumorous region of the parkin-deficient
livers, additional events for genetic changes might be
required in the parkin-deficient liver to develop the
HCC.

Materials and methods

Generation of parkin—|— mice

The mutant parkin allele lacking approximately 2kb of the
parkin exon 3 genomic sequence was generated in a mixed
129SV/C57BL6 (50/50) genetic background (Kitao er al.,
2007). Mice received humane care according to the Guide for
the Care and Use of Laboratory Animals prepared by the
National Academy of Sciences and published by the National
Institutes of Health (NIH publication 86-23).

Isolation and culture of mouse primary hepatocytes
Mouse primary hepatocytes were obtained from 10- to
11-week-old mice by the two-step collagenase perfusion
method (Seglen, 1976). In brief, hepatocyte suspensions were
obtained by passing collagenase type II (Gibco BRL, Life
Technologies Inc., Rockville, MD, USA) digested liver
through a 70pum cell strainer, followed by centrifugation to
collect the mature hepatocytes. After isolation, hepatocytes
were resuspended in Dulbecco’s modified Eagle's medium
(DMEM; Gibco-BRL) supplemented with 10% fetal bovine
serum and seeded on collagen type 1-coated dishes at a density
of 8 x 10* cells/cm®. The cells were maintained at 37°C in a
humidified atmosphere of 5% COa.

siRNA duplexes composed of 25 nucleotide sense and
antisense strands used for targeting follistatin were obtained




from Invitrogen (Carlsbad, CA, USA). siRNA (20 uM) in 60 pl
of Trans-IT-TKO reagent (Mirus Bio Corporation, Madison,
WI, USA) was incubated in serum-free Opti-MEM medium
(Qiagen, Valencia, CA, USA) for 10min, followed by the
addition of transfection mixture into the cells.

Quantitative real-time RT-PCR

RNA was extracted using Sepasol-RNA 1 Super (Nacalai
Tesque, Kyoto, Japan). For the RT reaction, total RNA was
reverse-transcribed into ¢cDNA using the Superscript IIT first
strand synthesis system and oligo-dT)2-ys primers (Invitrogen;
Matsumoto et al., 2006). PCR amplification was performed
using Takara Ex Taq DNA polymerase (Takara, Tokyo,
Japan). The oligonucleotide primers used in this study are
shown in Supplementary Table 4. Quantification of gene
expression was performed by quantitative real-time RT-PCR
using a 7300 Real-Time PCR system (PE Applied Biosystems,
Foster City, CA, USA) and Platinum SYBR Green qPCR
SuperMix UDG (Invitrogen) as described (Kou et al., 2006).
To assess the quantity of isolated RNA, as well as the
efficiency of cDNA synthesis, target cDNAs were normalized
to the endogenous mRNA levels of the housekeeping reference
gene, 185 rRNA (Matsumoto et al., 2006). For simplicity, the
expression levels of the target gene were expressed relative to
those of the control specimen. Human liver tissues for
RT-PCR analyses were obtained from biopsy specimens of
tumor tissues at the proximal edge of freshly resected
specimens and frozen immediately in liquid nitrogen.

RNA preparation and hybridization to the microarray

Total RNA was extracted from mice liver tissues using a RNA
assay mini kit (Qiagen). First-strand ¢cDNA was synthesized
from 500ng of total RNA in the presence of Cy5 or Cy3
dCTP, The Cy3- and Cy5-labeled samples derived from wild-
type and parkin—/— mice at 72 weeks of age were injected
simultaneously into the same spot of the whole mouse 60-mer
oligo microarray (Agilent Technologies, Palo Alto, CA, USA).
After hybridization at 65°C for 17h, the slides were washed
with 6x SSC containing 0.005% Triton X-102, and dried
using a nitrogen-filled air gun. Array image acquisition and
feature extraction was performed using an Agilent G2565AA
Microarray Scanner with feature extraction software (version
8.5.1.1; Agilent Technologies). Statistical evaluation was
performed using the algorithm developed by Agilent for the
array analysis. Genes that were upregulated or downregulated
in tumorous and nontumorous liver tissues by more than
fivefold compared to normal liver tissues and had P-values less
than 0.05 were considered.

Immunoblotting analysis

Protein samples were separated by SDS-polyacrylamide gel
electrophoresis (PAGE) 10% (w/v) polyacrylamide gels and
subjected to immunoblotting analysis as described previously
(Endo er al., 2007). The polyclonal antibodies against mouse
follistatin and a-tubulin were purchased from Santa
Cruz Biotechnology (Santa Cruz, CA, USA) and Calbiochem
(San Diego, CA, USA), respectively.

Immunohistochemical staining analysis

Immunohistochemical staining was carried out according to a
previously described protocol (Toda et al, 1999). The
polyclonal antibodies for PCNA, AFP and P-catenin were
purchased from Santa Cruz Biotechnology, Dako Cytomation
(Glostrup, Denmark) and Transduction Labs (Palo Alto, CA,
USA), respectively.
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Measurement of caspase activity and apoptosis assay

Liver tissues from the mice were prepared in buffer A
(1M KCl, 1M MgCl;, 1M 4-(2-hydroxyethyl)-1-piperazi-
neethanesulfonic acid, 0.5M EDTA and 10% CHAPS)
and normalized for total protein content. A 30pug sample of
protein was incubated with either 10ng of granzyme B
(Calbiochem) or 0.5 nmol of cytochrome ¢ (Sigma, St Louis,
MO, USA) and 1 mM dATP at 37°C for 30min as described
(Marusawa et al,, 2003). Then, Spl of reaction mixture
was incubated with caspase-3 substrate Ac-DEVD-pNA
(10mM), and caspase activity was assessed using a colorimetric
CaspACE assay system (Promega, Madison, WI, USA).
For the measurement of caspase-3 activity, the plates were
read at 405nm using microplate reader (Molecular Devices
Co., Tokyo, Japan). For the evaluation of cell death,
mice primary hepatocytes were cultured in DMEM on
collagen-coated dishes. After 24h of isolation, cells were
treated with either CDDP (200 uM), DOX (10 uM) or VP-16
(400 nM) for 48 h. Cell viability was determined by the trypan
blue exclusion test (Marusawa er al., 2003) or the Annexin-V-
Fluos apoptosis detection kit (Roche Applied Science,
Indianapolis, IN, USA) according to the manufacturer’s
instruction.

Flow cytometric analysis
A total of 1 x 10° cells were plated on 10 cm collagen-coated
dishes. Two days after treatment with HGF (PeproTech,
London, UK) at a concentration of 10ng/ml, BrdU (20 uM;
Roche, Basel, Switzerland) was added to the culture medium
for 12 h. The cells were then fixed in 70% ice-cold ethanol and
incubated at 4°C overnight. Fluorescence was determined by
using a FACScan flow cytometer (Becton Dickinson, Franklin
Lake, NJ, USA) after adding propidium iodide. Data were
acquired and analysed using CELLQuest soﬁwarc (Becton
Dickinson).

Cell culture, transfection and reporter plasmid assay

Human hepatoma-derived cell lines, Huh-7 and Hep3B were
maintained in DMEM containing 10% fetal bovine serum. For
plasmid transfection, we used Lipofectamine (Invitrogen) for
Huh-7 and Trans-IT 293 (Mirus Bio Corporation) for Hep3B.
To determine the promoter activity of the follistatin gene, the
reporter plasmids were generated by inserting the PCR-
amplified 196- and 361-bp §'-proximal promoter regions of
the follistatin gene (de Groot er al., 2000) into the pGL-3
luciferase vectors (Promega). The reporter construct and
pRL-TK (Promega) were then co-transfected with an
expression plasmid-encoding parkin or control vector into
NIH3T3 cells. The cell lysates were analysed for luciferase
activity using the Dual-Luciferase Reporter Assay System
(Promega; Tanaka ef al., 2006).
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Abstract

HtrA2/Omi is a mitochondrial serine protease that is released into
the cytosol and promotes apoptotic processes by binding to several
members of the inhibitors of apoptosis protein family. HtrA2/Omi
knockout mice show a parkinsonian phenotype, and mutations in the
gene encoding HirA2/Omi have been identified as susceptibility
factors for Parkinson disease (PD). These results suggest that HtrA2/
Omi may be involved in the pathogenesis of PD. We performed
immunohistochemical studies of HirA2/Omi on brains from patients
with a-synuclein-related disorders, including PD, dementia with
Lewy bodies (DLB), and multiple-system atrophy (MSA), patients
with other neurodegenerative diseases; and controls, HirA2/Omi is
expressed in normal brain tissue, and there was some anti-HtrA2/
Omi immunostaining of neurons in normal brains as well as those
with other neurodegenerative diseases. In PD and DLB brains, both
classic (i.e. bminstem-type) and cortical Lewy bodies were intensely
immunostained; pale bodies were also strongly immunopositive for
HtrA2/Omi. In MSA brains, numerous glial cytoplasmic inclusions,
neuronal cytoplasmic inclusions, and dystrophic neurites were also
intensely immunoreactive for HtrA2/Omi. These results suggest that
widespread accumulation of HtrA2/Omi may occur in pathologic
a-synuclein-containing inclusions in brains with PD, DLB, or MSA
and that HrA2/Omi may be associated with the pathogenesis of
a-synucleinopathies.
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INTRODUCTION

Missense mutations of the a-synuclein gene (PARKI)
(1-3) and multiplications of the a-synuclein gene (PARKY)
(4-6) have been reported to be implicated in autosomal
dominant familial forms of Parkinson disease (PD). Lewy
bodies (LBs) are neuronal inclusions characteristic for PD
and dementia with LBs (DLB) (7-9), and a-synuclein has
been confirmed to be a major constituent of LBs in PD and
DLB (10-12). Multiple-system atrophy (MSA) is a single
nosologic entity that encompasses olivopontocerebellar atro-
phy, striatonigral degeneration, and Shy-Drager syndrome
(13). Specific oligodendroglial cytoplasmic inclusions, re-
ferred to as glial cytoplasmic inclusions (GCls), are the major
pathologic features of brains with MSA (14, 15). a-Synuclein
is also a major component of GCIs (12, 16, 17). Therefore,
PD, DLB, and MSA are now collectively referred to as
a-synucleinopathies (18).

The inhibitor of apoptosis protein (IAPs) play an
important role in regulating apoptosis; some IAP family
proteins, such as X chromosome-linked IAP, have the ability
to bind to and directly inhibit selected caspases (19-21). HtrA2/
Omi was identified as a mitochondrial serine protease that
interacts with IAPs and contributes to the progression of
apoptosis (22-25). HtrA2/Omi is released from the mitochon-
drial intermembrane space into the cytosol upon receiving
various apoptotic stimuli, and this released HtrA2/Omi induces
apoptotic cell death by binding to IAPs, including X
chromosome-linked IAP, and blocking their caspase-inhibitory
activities (22-27). HtrA2/Omi also enhances caspase activity
by inducing permeabilization of the mitochondrial outer
membrane, which leads to the release ol'cytochmmc c (28).
Flmhmm, leAZ!Dml knockout mice were reported to
show a p! with selective neuronal loss
in the striatum (29). Together, these data suggest that, like
cytochrome ¢, HtrA2/Omi is important for cell survival within
the mitochondria and that, when it is released from the
mitochondria, HtrA2/Omi promotes apoptotic cell death.

Recently, a G399S mutation of the Hird2/Omi gene
was identified in some patients with PD, and an Al418
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polymorphism of the Hird2/Omi gene was also shown to be
associated with PD. These data suggest that HorA2/Omi is a
susceptible factor for PD (PARK13 locus) (30). The results
from the targeted disruption of HtrA2/Omi in mice and a
mutation screening for HtrA2/Omi in humans suggest that a
loss of the function of HrA2/Omi may be involved in the
pathogenesis of PD, but the relationship between HtrA2/Omi
and PD remains unclear. In the present study, we performed
immunohistochemical studies on HtrA2/Omi using autopsied
brains from patients with a-synucleinopathies, including PD.
We investigated the detailed neuroanatomic localization of
HtrA2/Omi in these diseased brains and found strong HtrA2/
Omi immunoreactivity in the a-synuclein-containing inclu-
sions in PD, DLB, and MSA.

MATERIALS AND METHODS

Tissue Preparation

Brains from autopsies of 8 control subjects without any
neurologic abnormalities (age range, 54-78 years; mean,
68.4 years; 6 men and 2 women), 10 patients with PD (age
range, 66-90 years; mean, 77.5 years; 6 and 4 women),
5 patients with DLB (age range, 6986 years; mean, 74.8 years;
4 men and 1 woman), 10 patients with MSA (age range,
52-78 years; mean, 69.] years; 4 men and 6 women), 5 patients
with Alzheimer disease (AD) (age range, 67-85 years; mean,
75.2 years; | man and 4 women), a patient with frontotem-
poral dementia with parkinsonism linked to chromosome 17
(54-year-old man), and a patient with frontotemporal lobar
degeneration with ubiquitin-positive inclusions (66-year-old
woman). These materials were selected from the brain banks at
the Neuropathology Laboratories of Kyoto University and
Medical University of Vienna. In 5 of 10 patients with MSA,
the MSA was classified as cerebellar variant, and in the other 5
patients, MSA of the parkinsonian variant. The clinical profiles
from all cases are summarized in Table 1. All brains were fixed
in 10% neutral formalin for about 2 weeks at room temper-
ature. Several paraffin-embedded tissue blocks, including the
frontal and temporal cortices, basal ganglia, brainstem, and
cerebellum, were prepared and cut into 6-pm-thick sections on
a microtome. Sections were deparaffinized in xylene, followed
by rehydration in a decreasing concentration of ethanol
solutions. For routine pathologic evaluation, the sections from
all cases were stained with hematoxylin and eosin (H&E),
Kliiver-Barrera, and modified Bielschowsky methods. No
histologic abnormalities were detected in the sections from
any of the control cases. A loss of dopaminergic neurons
associated with the presence of classic (brainstem-type) LBs
was observed in the substantia nigra from both PD and DLB
cases. In addition, many cortical LBs were found in the
cercbral cortical regions of the DLB cases, and diagnoses of
DLB cases were made according to revised criteria (31).
Numerous GCls were detected in the sections from all of the
MSA cases.

Immunohistochemistry

To examine the immunohistochemical localization of
HirA2/Omi, we used an anti-HtrA2/Omi anti-serum raised
by immunizing rabbits with Escherichia coli expressing the

© 2008 American Association of Neuropathologists, Inc.

C-terminal Hiss-tagged mature form of human HtrA2/Omi
protein (22). The deparaffinized sections were pretreated
with 0.3% hydrogen peroxide (Santoku, Tokyo, Japan) in

TABLE 1. Case Materials

Age, Duration of Neurologic
year/ Major Iliness, year/Postmortem

Case Sex Diagnosi Delay, hour
Control | 62M Pancreatic NAJ3O

carcinoma
Control 2 68M Rheumatoid NAS2.D

arthritis

Control 3 73 Hepatocellular NA/MS

carcinoma
Control 4 68/F Breast cancer NA2S
Control § 7™M Pulmonary NAO

emphysema
Control 6 69™M Lung cancer NAUD
Control 7 S4M Pneumania NA2.O
Control 8 T8F Chronic renal NA/9S

failure
FD1 SOF PD 92.0
PD2 76M PD 14725
PD3 T9F PD 13/1.5
PD 4 81/F PD 825
PD 5 74M PD 200UD
PD 6 66/M PD 1023
PD 7 76M FD 8/13
PD 8 88M PD 10/2.1
PD9 67M PD 177UD
PD 10 T8/F PD 11120
DLB 1 8I/M DLB uD/M.0
DLB 2 69M DLB 911.5
DLB 3 69/F DLB 211.0
DLB 4 69™M DLB s
DLB § 86M DLB 53
MSA 1 78M MSA-C /4.8
MSA 2 66/M MSA-C 435
MSA 3 ToF MSA-C 5.0
MSA 4 8M MSA-C 318
MSA § 677F MSA-C 2UD
MSA 6 S52F MSA-P ns
MSA 7 TIF MSA-P 5.4
MSA 8 69F MSA-P 6.1
MSA 9 T2F MSA-P 1212
MSA 10 60M MSA-P 63.5
oD | SOF AD uUD/uD
oD 2 85M AD 10UD
oD 3 67F AD 5/4.2
oD 4 TIF AD ¥4
oD 5 67/F AD 8/5.9
oD 6 54M FTDP-17 8/6.0
oD 7 66/F FTLD-U UD2.9
PD. Parkinson MSA, i

with parki llnhiln h lT FTI.D-IJ.

fi | lobar degs with ubiquitin-p NA, not
applicable; UD, undelermined.
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FIGURE 1. Characterization of anti-HTrA2/Omi anti-serum. (A) Western blot analysis of normal human brain homogenate.
Membranes were incubated with the anti-HtrA2/Omi anti-serum (a) or preimmune serum (b) (see Materials and Methods). The
molecular weights (in kilodaltons) are shown to the left. (B, €) Immunoreactivities in 20-um cryosections of frontal cortices of
wild-type control (B) and knockout (€) mice. Scale bars = 50 pm.

0.1 M phosphate-buffered saline (PBS) for 30 minutes at
room temperature to inhibit endogenous peroxidase activity.
After washing with 0.1 M PBS, the sections were blocked
with 0.1 M PBS with 3% skim milk for 2 hours at room
temperature. After rinsing with 0.1 M PBS, the anti-HtrA2/
Omi anti-serum diluted in 0.1 M PBS (1:200) was applied
onto the sections, and they were incubated at room temper-
ature overnight in a humidified chamber. After washing with
0.1 M PBS, the sections were reacted with a biotinylated anti-
rabbit immunoglobulin G (IgG; Vector Laboratories, Burlin-
game, CA) diluted in 0.1 M PBS (1:200) for 1 hour at room
temperature, followed by incubation with an avidin-biotin-
peroxidase complex (ABC) kit (Vector Laboratories) diluted
in 0.1 M PBS (1:400) for 1 hour at room temperature, After
rinsing with 0.1 M PBS and then 0.05 M Tris-HCI (pH 7.6),
the sections were developed in a colorizing solution contain-
ing 0.02% diaminobenzidine tetrahydrochloride (Dojin,
Kumamoto, Japan), 0.6% ammonium nickel (II) sulfate
(Wako, Osaka, Japan), and 0.005% hydrogen peroxide in
0.05 M Tris-HCI (pH 7.6) for 10 minutes at room temper-
ature. Some H&E-stained sections with classic or cortical
LBs were photographed, decolorized with 70% ethanol and
were then immunostained with the anti-HtrA2/Omi anti-
serum using the ABC method described above. As a negative
immunohistochemical control, some sections were incubated
with a preimmune rabbit serum; no specific staining was
detected in these control sections (data not shown).

Double Immunofluorescence Staining

To compare the anatomic distribution of a-synuclein-
immunopositive inclusions to that of HtrA2/Omi-
immunopositive inclusions in brains with a-synucleinopathies,
we performed double-labeling immunohistochemistry using a
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goat polyclonal anti-a-synuclein antibody (sc-7011; Santa
Cruz Biotechnology, Santa Cruz, CA) and the rabbit anti-
HtrA2/Omi anti-serum. Some sections from the PD, DLB, and
MSA cases were incubated with the combination of the anti-ce-
synuclein antibody (1:1000) plus the anti-HtrA2/Omi anti-
serum (1:200) in 0.1 M PBS at room temperature ovemight.
After washing with 0.01 M PBS, the sections were reacted with

FIGURE 2. Western blot analysis of human brain fractions
from control (C) and dementia with Lewy bodies (D) cases. All
lanes were incubated with the anti-HtrA2/Omi anti-serum. 51,
52, and 53 indicate phosphate-buffered saline-soluble, sodium
dodecyl sulfate-soluble, and formic acid-soluble fractions,

respectively.
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FIGURE 3. Substantia nigra sections stained with H&E and immunostained with the anti-HtrA2/Omi anti-serum. There is a similar
immunolabeling pattern in the melanin-containing neurons in the control case (A) and in the Parkinson disease (PD) case (B).
Classic Lewy bodies (LBs) (€, E) show ring-shaped HtrA2/Omi immunolabeling pattern (D, F). The classic LBs in (€) and (E) are
identical to those in (D) and (F), respectively. One remaining neuron in a PD case contained an immunopositive large LB (large
arrow) and an immunopositive small LB (small arrow) (G). A large, eosinophilic pale body (H) is also intensely immunopositive for
HtrAZ/Omi (1). The pale body in H was the same as the one in L. Cases illustrated: A: Control 3; B: PD 3; C, D: PD 6; E, F: PD 2; G:

PD 5; H, k: PD 7. Scale bars = (A, B) 50 pm; (€-1) 20 pm.

secondary antibodies consisting of a tetramethylthodamine-
conjugated swine anti-rabbit IgG (DakoCytomation, Glostrup,
Denmark) and a fluorescein isothiocyanate-conjugated swine
anti-goat IgG (Biosource, Camarillo, CA). After rinsing with
0.01 M PBS, the slides were coverslipped with Vectashield
(Vector Laboratories) and were then viewed with a fluorescence
microscope system (BZ-9000, Keyence, Osaka, Japan).

Semiquantitative Assessment of HtrA2/
Omi-Immunopositive LBs and GCls

To evaluate the proportions of HtrA2/Omi-
immunopositive classic LBs in the substantia nigra, locus
ceruleus, dorsal motor nucleus of the vagus, and basal nu-
cleus of Meynert, we prepared several kinds of sections double-
immunostained with a-synuclein and HrA2/Omi from all 10
PD cases. After counting the a-synuclein-immunopositive clas-
sic LBs in these areas, we counted the double-immunolabeled
classic LBs in the same areas, We then calculated the per-
centage of HirA2/Omi-immunopositive classic LBs in each
section and the average percentages of HtrA2/Omi-positive
classic LBs in the substantia nigra, locus ceruleus, dorsal
motor nucleus of the vagus, and basal nucleus of Meynert.

© 2008 American Association of Neuropathologists, Ine

To estimate the proportions of HtrA2/Omi-
immunopositive cortical LBs in DLB and GCIs in MSA, we
prepared double-immunostained sections with a-synuclein and
HtrA2/0Omi from all of the DLB and MSA cases, Using the
same counting method, we calculated the average percentages
of HtrA2/Omi-positive cortical LBs in the superior frontal,
cingulate, insular, and parahippocampal cortices and the av-
erage percentages of HirA2/Omi-positive GCls in the internal
capsule, putamen, middle cerebellar peduncle, and cerebellar
white matter.

Characterization of the Primary Anti-Serum

The specificity of the anti-HtrA2/Omi anti-serum was
confirmed by Westemn blotting using human brain homoge-
nates, Fresh brain tissues were obtained from the frontal cortex
of an autopsied normal subject (68-year-old man). These
materials were homogenized in 3 volumes of ice-cold 10 mM
PBS containing 1% Nonidet P-40 (Nacalai Tesque, Kyoto,
Japan), 0.5% sodium deoxycholate (Difco, Detroit, MI), 0.1%
sodium dodecyl sulfate (SDS; Nacalai Tesque), 0.01% phenyl-
methylsulfonyl fluoride (Nacalai Tesque), 3% aprotinin (Sigma,
St Louis, MO), and 1 mM sodium orthovanadate (Sigma). The
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homogenates were then centrifuged at 15,000 revolutions per
minute (r.p.m.) for 15 minutes at 4°C, and the supernatants were
then mixed with an equivalent volume of electrophoresis
sample buffer containing 10% glycerol (Nacalai Tesque), 2%
SDS, 5% 2-mercaptoethanol (Nacalai Tesque), and 0.00125%
bromophenol blue (Nacalai Tesque) in 62.5 mM Tris-HCI (pH
6.8). All samples were then heated for 3 minutes at 100°C and
then cooled to room temperature. A 10-pL aliquot of the
sample was loaded onto each lane of Mini-Protean II Ready
Gels J (Bio-Rad, Hercules, CA), electrophoresed at a constant
voltage of 200 V, and then transferred onto polyvinylidene
diflouride membranes (Bio-Rad) at a constant voltage of
100 V. After blocking the nonspecific reactions with 3% skim
milk plus normal goat serum in 25 mM Tris-buffered saline
(TBS), the membranes were incubated with the anti-HtrA2/
Omi serum (1:5000) or preimmune serum (1:5000) in 25 mM
TBS plus 3% skim milk for 4 hours at room temperature. After
washing with 25 mM TBS containing 0.1% Tween 20
(Bio-Rad), the membranes were reacted with an alkaline
phosphatase-labeled anti-rabbit IgG (Vector, 1:1000) in 25 mM
TBS with 3% skim milk for 1 hour at room temperature, After

rinsing with 25 mM TBS containing 0.1% Tween 20, the
primary antibodies were visualized using a 5-bromo-4-chloro-
3-indolyl-phosphate/nitroblue tetrazolium kit (Nacalai Tesque).

We also performed immunohistochemical studies on
HtrA2/Omi using HtrA2/0Omi knockout mouse brain sections
as a negative control. Brain tissues of knockout and wild-type
control mice (both of which have been previously described
[29]) were fixed in 10% neutral formalin, stored in 20%
sucrose in 0.1 M phosphate buffer, and then cut into 20-pm-
thick sections on a freezing microtome. Free-floating sections
were immunostained with the anti-HtrA2/Omi serum
(1:5000) using the ABC method described above.

Brain Tissue Fractionation

Human brain homogenates were divided into 3 frac-
tions based on their solubility in PBS, SDS, and formic acid.
Fresh frontal cortical tissue samples from a control subject
(68-year-old man) and a patient with DLB (77-year-old man)
were homogenized in 3 volumes of ice-cold 10 mM PBS
containing 1% Nonidet P-40, 0.5% sodium deoxycholate,
0.1% SDS, 0.01% phenylmethylsulfonyl fluoride, 3%

FIGURE 4. Cerebral cortical sections stained with H&E and immunostained with the anti-HtrA2/Omi anti-serum. In the
hippocampus from normal controls, there was mild to moderate immunoreactivity in the pyramidal neurons, some of which had
densely immunostained perinuclear regions (A, arrows). In the hippocampus from patients with dementia with Lewy bodies
(DLB), there was strong HtrA2/Omi immunoreactivity in some pyramidal neurons (B) and in a few Lewy neurites (C). Cortical
Lewy bodies (LBs) consisting of poorly defined, easinophilic structures with no clear cores and halos (D, F, H) showed HtrA2/Omi
immunoreactivity (E, G, I). The cortical LBs (arrows) in (D, F) and (H) are the same as those in (E, G) and (J), respectively. Cases
illustrated: A: Control 4; B, €, F, G: DLB 1; D, E: DLB 2; H, k: DLB 5. Scale bars = 20 pm.
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aprotinin, and | mM sodium orthovanadate. Each homoge-
nate was centrifuged at 2,500 r.p.m. for 10 minutes at 4°C,
and the supernatant was subsequently centrifuged at 55,000
r.p.m. for 1 hour at 4°C, yielding the supernatant (S1, PBS-
soluble fraction) and pellet (P1). After washing with 10 mM
PBS containing same additives (Buffer A), the P1 pellet was
extracted with Buffer A containing 2% SDS and then cen-
trifuged at 55,000 r.p.m. for 1 hour at 4°C, yielding the
supernatant (S2, SDS-soluble fraction) and pellet (P2). After
rinsing with Buffer A, the P2 pellet was extracted 70% for-
mic acid and then centrifuged at 55,000 r.p.m. for 1 hour at
4°C. The formic acid extract was dried, and the residue was
dissolved in Buffer A (83, formic acid-soluble fraction), All
fractions were analyzed using Western blotting with the anti-
HtrA2/Omi anti-serum as described above.

RESULTS

Western Blot Analysis
In normal human brain homogenates, the anti-HtrA2/
Omi anti-serum immunostained a single band at a molecular

weight of approximately 36 kd (Fig. 1A). This corresponds to
the molecular weight of the mature form of human HtrA2/
Omi and indicates that the anti-serum recognizes HrA2/Omi
in human brain tissues. No specific immunopositive bands
were detected in the membrane incubated with the preim-
mune serum (Fig. 1A). HrA2/Omi immunoreactivity was
detected in the S1 and S2 fractions from control and DLB
brains, but the 53 fractions from both showed no HirA2/Omi
immunoreactivity on Western blot (Fig. 2).

HtrA2/Omi Immunoreactivities in Normal and
Knockout Mice Brains

HtrA2/Omi immunoreactivity was observed in several
types of neurons in the wild-type control mouse brain sec-
tions (Fig. 1B), but no specific immunopositive staining was
found in the knockout mouse brain sections (Fig. 1C).

HtrA2/0mi Immunoreactivities in Normal and
PD Brains

In the substantia nigra of control subjects, melanin-
containing neurons generally showed mild to moder-
ate HrA2/Omi immunoreactivity (Fig. 3A). A similar

FIGURE 5. HtrA2/Omiimmunoreactivity in normal (A) and multiple-system atrophy (MSA) (B-1) cases. Immunolabeling patterns
of the Purkinje cells were similar in the control (A) and MSA cases (B). Several torpedoes were also strongly immunopaositive for
HtrA2/Omi (€). Numerous immunopositive glial cytoplasmic inclusions (GCls) were found in the pontine nucleus (D), cerebellar
white matter (E), and putamen (F). In addition to the GCls, neuronal cytoplasmic inclusions in the pontine base (G arrow, H
arrow) and swollen neurites in the thalamus (I) were also immunoreactive for HtrA2/Omi. Cases illustrated: A: Control 1; B, C, E:
MSA 3; D, G, I: MSA 2; F: MSA 6; H: MSA 7. Scale bars = (A-C) 50 pwm; (D-1) 20 um.

© 2008 American Association of Neuropathologists, Inc.

989

Copyright @ 2008 by the American Association of Neuropathologists, Inc. Unauthorized reproduction of this article is prohibited



Kawamoto et al

| Neuropathol Exp Neurol = Volume 67, Number 10, October 2008

immunolabeling pattern was observed in the remaining neu-
rons of the substantia nigra from patients with PD (Fig. 3B).

Classic LBs, which generally consist of an eosino-
philic core plus a surrounding pale halo (Figs. 3C, E), had a
ring-shaped HtrA2/Omi immunostaining pattern; dense accu-
mulations of immunoreactive products were also found in the
halos of these LBs (Figs. 3D, F), Some remaining neurons
contained 2 or more HtrA2/Omi-immunopositive LBs
(Fig. 3G). Pale bodies, which are well-defined, less eosino-
philic structures (Fig. 3H), were also heterogeneously
immunolabeled (Fig. 3I) and had abundant granular HirA2/

Omi immunoreactivity in their peripheries (Fig. 3I). HtrA2/
Omi-immunopositive classic LBs were also found in neurons
of the locus ceruleus, dorsal motor nucleus of the vagus, and
nucleus basalis of Meynert (not shown).

HtrA2/Omi Immunoreactivities in Normal and
DLB Brains

Neurons and glial cells, including oligodendrocytes, of
the neocortices and hippocampus in normal controls showed
mild to moderate HtrA2/Omi immunoreactivity, and some
neurons had strong perinuclear immunoreactivity (Fig. 4A).

FIGURE 6. Double immunofluorescence staining for HtrA2/Omi (A, D, G, J) and «-synuclein (B, E, H, K) in the substantia nigra
from a patient with Parkinson disease (PD) (A-C: PD 2), cingulate gyrus from a patient with dementia with Lewy bodies (DLB)
(D-F: DLB 4) and basis pontis from a patient with multiple system atrophy (MSA) (G-L: MSA 2). The merged images showed that
HtrA2/Omi and a-synuclein were colocalized in classic Lewy bodies (LBs) (), cortical LBs (F), glial cytoplasmic inclusions (I) and
neuronal cytoplasmic inclusions (L). The large and small arrows in D to F indicate the same cortical LBs, respectively. Scale bars =
(€, also for A, B; F, also for D, E; |, also for G, H; L, also for ), K) 20 pm,
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TABLE 2. Summary of HtrA2/Omi-Immunopositive Inclusions

Type of Inclusions No. Cases Analyzed Anatomic Localization Evaluated Average Percentage (%)*
Classic LBs 10 PD Substantia nigra 68.9
Classic LBs 10 PD Locus ceruleus 65.5
Classic LBs 10FD Dorsal motor nucleus of the vagus 54.9
Classic LBs 10 PD Basal nucleus of Meynert 62.1
Cortical LBs 5 DLB Superior frontal cortex 51.1
Cortical LBs 5 DLB Cingulate cortex 55.8
Cortical LBs 5 DLB Insular cortex 62.9
Cortical LBS 5 DLB Parahippocampal cortex 65.7
GCls 10 MSA Intemnal capsule 78.2
GCls 10 MSA Putamen 76.9
GCls 10 MSA Middle cerebellar peduncle 86.3
GCls 10 MBA Cerebellar white matter 79.9

*See Materials and Methods.

LBs, Lewy bodies; GCls, glial I inel ; PD, Parki disease; DLB, dementia with Lewy bodies; MSA, multiple-system strophy.

A similar immunolabeling pattern was observed in these
regions in DLB patients, immunoreactivity was distributed
densely throughout the somata of some remaining neurons
(Fig. 4B). Only a few Lewy neurites were immunopositive
for HeA2/Omi (Fig. 4C).

Cortical LBs (i.e. ill-defined, eosinophilic inclusions
without a conspicuous core and a clear halo [Figs. 4D, F, H])
were immunopositive for HtrA2/Omi (Figs. 4E, G, I). Some
cortical LBs were immunostained diffusely (Fig. 4E), whereas
others had partial immunostaining and strongly stained
marginal zones (Fig. 4G) or central portions (Fig. 41). These
immunopositive cortical LBs were found throughout the
cerebral cortical areas but were more numerous in cingulate,
insular, and parahippocampal cortices. As in PD patients, the
halos of classic LBs were intensely immunolabeled in DLB
patients (not shown).

HtrA2/Omi Immunoreactivities in Normal
and MSA Brains

Cerebellar Purkinje cells were mildly to moderately
immunostained both in normal subjects (Fig. 5A) and in
patients with MSA (Fig. 5B). The torpedoes, which were
observed more often in the MSA cases, were also strongly
immunopositive for HtrA2/Omi (Fig. 5C). Neuronal labeling

patterns in substantia nigra, pontine nuclei, inferior olivary
nucleus, and striatum in MSA patients were similar to those
in the normal controls.

Glial cytoplasmic inclusions in the basis pontis (Fig, 5D),
middle cerebellar peduncle, cerebellar white matter (Fig. 5E),
putamen (Fig. 5F), and internal capsule were immunopositive
in MSA patients. Strongly immunopositive neuronal cytoplas-
mic inclusions (NClIs) were found in some remaining neurons
of the pons (Figs. 5G, H) and inferior olivary nucleus; a few
dystrophic neurites were also densely immunopositive for
HtrA2/Omi in various areas, including the basis pontis and
thalamus (Fig. 5I). There were no significant differences in the
immunolabeling patterns between the cases with MSA of
cerebellar variant and of parkinsonian variant.

Double-Labeling Immunohistochemistry for
HtrA2/0Omi and a-Synuclein

Double-immunostained sections demonstrated HtrA2/
Omi and a-synuclein colocalization in many classic LBs (Figs.
6A-C), cortical LBs (Figs. 6D-F), and GCls (Figs. 6G-I). The
colocalization of HtrA2/Omi and w«-synuclein was also
observed in some NCIs (Figs. 6]-L). Semiquantitative data
on percentages of HirA2/Omi-immunopositive LBs and GCls
are summarized in Table 2.

FIGURE 7. HtrA2/Omi immunoreactivity in the parahippocampal cortical areas from patients with Alzheimer disease (A: OD 2;
B: OD 3). Some neurofibrillary tangles (A) and dystrophic neurites of senile plaques (B, arrows) are immunopositive for HtrA2/

Omi. Scale bars = (A, B) 20 um,
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HtrA2/Omi Immunoreactivities in Brains With
Other Diseases

HitrA2/Omi immunoreactivity was also observed in some
neurofibrillary tangles (Fig. 7A) and dystrophic neurites of
senile plaques (Fig. 7B) in the brains of patients with AD. By
contrast, neuronal and glial inclusions in the case with fronto-
temporal dementia with parkinsonism linked to chromosome
17 and the case with frontotemporal lobar degeneration with
ubiquitin-positive inclusions were immunonegative for
HtrA2/Omi.

DISCUSSION

We demonstrate the widespread accumulation of
HtrA2/Omi in a-synuclein-containing inclusions in the brains
of patients with several types of a-synucleinopathies. To the
best of our knowledge, this is the first detailed distribution of
HtrA2/Omi immunoreactivity in the brains of these patients.
In their study of mutations in the Hir42/Omi gene, Strauss
and colleagues (30) referred to the immunohistochemical lo-
calization of HtrA2/Omi in classic LBs. We also observed
HtrA2/Omi immunoreactivity in the halos of classic LBs and
demonstrated HrA2/Omi immunoreactivity in cortical LBs
and pale bodies in patients with PD and DLB, and in GCls
and NCls in patients with MSA.

Both pale bodies and classic LBs are found in the
pigmented neurons of the substantia nigra in patients with PD.
Because pale bodies are generally considered to be precursors
of classic LBs (9, 32), and both are immunopositive for o-
synuclein (9, 12), the presence of HrA2/Omi as well as of a-
synuclein suggests that both may be involved in the formation
of classic LBs in the early stages. The immunostaining of pale
bodies was heterogeneous, but immunoreaction product was
predominantly distributed at their margins. Because the halos of
the classic LBs were densely immunopositive, these observa-
tions suggest that HtrA2/Omi may accumulate toward the
marginal zones of the pale bodies and subsequently form the
halos of classic LBs.

Cortical LBs were also immunopositive for HrA2/
Omi, but unlike classic LBs, most cortical LBs did not
exhibit a ring-shaped labeling pattern. Some cortical LBs
were immunostained diffusely, but HtrA2/Omi immunoreac-
tivity was located mainly at their margins or central portions.
Cortical LBs are usually poorly defined eosinophilic struc-
tures, and the central cores and peripheral halos usually
observed in classic LBs are not evident (8, 9), These dif-
ferences in structure may contribute to the different HtrA2/
Omi-immunostaining patterns.

Since the discovery that 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine could cause PD-like symptoms in humans
(33), several studies have shown that mitochondrial dysfunc-
tion plays an important role in the pathogenesis of PD (34).
For example, the gene encoding PTEN-induced putative
kinase 1 (PINK1) is responsible for PARK 6-associated auto-
somal recessive juvenile parkinsonism (35), and PINK1 has
been reported to be localized in the mitochondnia (36, 37).
Although the immunohistochemical localization of PINK1 in
GCls is controversial (37, 38), PINK|1 immunoreactivity has
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also been found in LBs (37, 38). Recently, HrA2/Omi was
reported to be phosphorylated in a PINK1-dependent man-
ner (39). Because in the present study, we demonstrate the
mitochondria-related protein HtrA2/Omi in LBs, interactions
between PINK1 and HtrA2/Omi may occur in LBs, and
together they may be involved in LB formation.

Mitochondrial dysfunction can lead to apoptotic cell
death. There is both neuronal apoptosis in the substantia
nigra of patients with PD (40) and oligodendrocyte apoptosis
in oligodendrocytes in the brains of patients with MSA (41).
Some surviving dopaminergic neurons contain classic LBs in
PD (8, 9), and many surviving oligodendrocytes harbor GCls
in MSA (14, 15). Whether these cytoplasmic inclusions
induce apoptotic cell death or are protective of these cells
from the toxic effects of misfolded proteins remains contro-
versial, but several lines of evidence support the hypothesis
that the formation of a-synuclein-containing inclusions may
be cytoprotective (42, 43). In the present study, we found that
both LBs and GCls contained dense immunoreactivity for
HtrA2/0Omi, which in the cytosol might promote apoptosis.
Based on these data, we suggest that these inclusions may
trap HtrA2/Omi that has been released from the mitochondria
and thus protect the dopaminergic neurons in PD and the
oligodendrocytes in MSA from HtrA2/Omi-related apoptotic
cell death,

A widespread distribution of GCIs in the central
nervous system is the main pathologic feature of patients
with MSA (14, 15, 44), and a-synuclein is a major com-
ponent of GCls (12, 16, 17), but the primary cause of MSA is
still undetermined. The intense HrA2/Omi immunoreactivity
observed in GCls as well as in NCIs and dystrophic neurites
in the brains of patients with MSA in the present study sug-
gests that HrA2/Omi accumulates widely in MSA and that
it may be one of the key proteins involved in MSA patho-
genesis. Multiple-system atrophy is generally considered to
be a sporadic disease, and although familial MSA cases have
been identified (45), the genetic factors responsible for MSA
remain unclear. Recently, null mutations in the Hird2/Omi
gene in mice were shown to lead to parkinsonism accompa-
nied by striatal degeneration (29), a characteristic feature of
MSA. Taken together, these results support the possibility
that mutations of the gene encoding HtrA2/Omi could be
involved in the pathogenesis of MSA. Further genetic ana-
lyses on HirA2/Omi in patients with MSA are necessary.

In conclusion, we found that HtrA2/Omi immunoreac-
tivity accumulated abﬂlmdmﬂy in brains with «-synucleinopa-
thies, particularly in several types of inclusions contam.mg
insoluble a-synuclein, suggesting that HirA2/0Omi may be in-
volved in the aggregation of a-synuclein. Several recent stu-
dies have shown that HtrA2/Omi plays an important role in the
pathogenesis of AD by regulating B-amyloid precursor protein
metabolism (46-48). We also observed the localization of
HtrA2/Omi immunoreactivity in some inclusions in brains
from patients with AD. These data suggest that HtrA2/Omi
may be associated with the pathogenesis of a wide spectrum
of neurodegenerative disorders, and further research on the
interactions of HtrA2/Omi with a-synuclein will provide
new insights into the pathologic mechanisms responsible for
a-synucleinopathies.

© 2008 American Association of Neuropathologists, Inc.
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