exons (Fig. le). suggesting that higher regulatory mechanisms
as well as the known ds-control elements regulated splicing.
We were unable to develop 1 strict set of rules to explamn the
observed exon skipping events.

The inducuon of the ribosomal read-through of nonsense
mugtions by gentamicin and other drugs has recently been
reported as a novel method to drive dystrophin expression
i DMD patients carrying nonsense mutations in the associ-
ated gene (Mankin & Liebman, 1999), Our results show that
alternative rescue transcripts anising from secondary splicing
alterations may be present in patients with nonsense muta-
tons. As these transcripts may have semi-functional expres-
s1on, it Is important to carry out pre-analysis of dystrophin
mRNA before treatment with drugs that induce ribosomal
read-throughs in order to obtain an accurate assessment of the
effects of the treatment

The transformation of out-of-frame mRNA transcripts
mnto in-frame messages through exon skipping leads to the
production of semi-functional mternally deleted dystrophin
protein. Such a technique is a promising approach ro the
treatment of DMD. Individual differences in splicing despite
identical mutations (Table 2) suggest that this type of treat-
ment may have unpredictable outcomes, The therapy, how-
ever, could be effective nonetheless. In 3 previous report, we
induced the skipping of exon 19 in s DMD patent carrying
a deletion in exon 20 using antisense oligonucleoudes against
an splicing enhancer sequence in exon 19; this treatment lead
to the production of an in-frame dystrophin mRNA and de-
tection of dystrophin-positive skeletal musele cells (Takeshima
etal, 2006). The optimal target exon sequences for this type
of therapy, however, remain unknown. Our current results
suggest that mutation sites that induce exon skipping may be
candidate target sites for antisense oligonucleotide treatment
of patients with DMD (Surono et al., 2004).
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Letter to the Editor

Wide ranges of serum myostatin concentrations in
Duchenne muscular dystrophy patients

Dear Editor,

Duchenne muscular dystrophy (DMD), a common inherited
myopathy that affects approximately 1 in 3500 males, is char-
acterized by progressive muscle wasting due to a deficiency in
muscle dystrophin. DMD progresses with a rather uniform
pattern of muscle weakness; i.e., DMD causes affected
individuals to lose their ability to walk by the age of 12 y, and
patienis succumb during their twenties due to either respiratory
or cardiac failure. The deficiency in dystrophin is caused by
translational reading frame shift or nonsense mutations in the
dystrophin gene [1]. However, the existence of a modifying gene
has been suggested by the identification of unusually mild DMD
phenotypes [2-4].

Although some phenotypic variability may arise due to
environmental factors, such as diet or exercise, genetic compo-
nents are likely to contribute to this variability. Myostatin, also
known as growth and differentiation factor & (GDFB), is a muscle-
specific secreted peptide that limits muscle growth [5,6].
However, genotyping of the myostatin gene failed to disclose
any nucleotide changes that behaved as a phenotypic modifier of
DMD [7]. Remarkably, blocking endogenous myostatin has been
shown to result in anatomic, biochemical, and physiologic im-
provements in the dystrophic phenotype of mdx mice, a mouse
model for DMD, including particularly prominent enlarged fiber
diameters and greatly reduced fatty fibrosis [8-10]. These results
suggest that blocking endogenous myostatin is a potential strategy
to treat DMD [11]. We examined the hypothesis that serum
myostatin is increased in DMD, thereby enabling treatment by
myostatin blockage,

Forty-one DMD patients followed at Kobe University
Hospital were enrolled in this study. All but 1 of the mutations
in the dystrophin gene were found to introduce premature stop
codons in the dystrophin mRNA: 24 cases with mutations that
induced a translational reading frame-shifl due to exon deletion
or duplication; 5 cases with nonsense mutations; 7 cases with
exon mulations involving one or a few nucleotides deleted or
inserted; 3 cases with intron mutations that induced splicing
errors; and one case with an abnormal chromosome (Table 1).
The subjects’ ages ranged from | to 22 y (average: 8.3 y).
Regular clinical checkups, including determination of serum
creatine kinase (CK) concentrations, were performed at the

0009-8981/8 - see front matter © 2008 Elsevier B.V. All rights reserved
doi: 10.1016/.cca. 2008.01.024

outpatient clinic. All protocols were approved by the ethics
committee of the Kobe University School of Medicine. Blood
samples were taken after written informed consent was obtained
from all patients, and serum was separated using a clinical
centrifuge.

Serum myostatin was measured using the Human Myostatin
ELISA (Prodomain Specific) kit purchased from BioVendor
Laboratory Medicine, Inc. (Bmo, Czech Republic). The upper
limit of determination was 50 ng/ml, and normal adults have
serum concentrations of 0.19 o 9.02 ng/ml (BioVendor
Laboratory Medicine, Inc.). The Pearson product-moment
coefficient was calculated to quantify the relationship.

Serum myostatin concentrations in DMD patients ranged
from 1.1 to >50 ng/dl (Table 1). Remarkably, 13 samples were
>50 ng/ml, and the lowest concentration was 1.1 ng/ml
(Table 1). Though age differences were examined in 2 conditions
either including or deleting 13 samples with =350 ng/ml, no
significant correlationship between age and serum myostatin
concentration was found (Fig. 1). We next examined whether
concentrations of myostatin were related to the type or location
of mutations in the dystrophin gene. Though serum myostatin
concentrations were compared based on their mutation types
(exon deletion/duplication or others), no clear difference
between two groups was revealed (Fig. 1). There found no
significant difference in serum myostatin concentration between
patients with mutation in the 5" and 3" regions of the dystrophin
gene (Table ).

Considering that myostatin is an inhibitor of muscle growth,
cases with high serum myostatin concentrations were predicted
to present rather severe phenotypes. Transgenic overexpression
of myostatin in mice was shown to result in cachexia [12],
However, the ages when DMD patients with high myostatin
concentrations became wheelchair-bound were not different
from those of patients with low myostatin concentrations, and
signs of muscle weakness appearcd mostly between ages 4 and
5. Furthermore, serum CK concentrations were not significantly
lower in DMD cases with high myostatin concentrations than in
those with low concentrations (Table 1), This indicates that
serum myostatin did not modify the DMD phenotype even
though blocking endogenous myostatin has been shown to
result in improvements in the dystrophic phenotype of mdx
mice [8-10]. In this study, we measured myostatin that reacted
with a monoclonal antibody recognizing the prodomain of
myostatin. Considering that myostatin is secreted as an inactive
propeptide and is cleaved to produce the active form, further
studies would be required to measure active or latent myostatin
individually,
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Expression of the myostatin gene has been examined
previously in skeletal muscle by measuring mRNA and protein
concentrations [13]. Serum myostatin concentration has been
determined by the Western blot analysis in a patient with a
mutation in the myostatin gene, disclosing an absence of
myostatin [14]. Furthermore the Western blot analysis disclosed
that serum myostatin concentration was lower than that of rat
[14]. But no further study has been conducted on serum
myostatin concentrations. Our results disclosed a wide range in
serum myostatin concentrations in DMD patients. Though
myostatin blockage is attracting attention as a novel target for
increasing muscle growth in cases of DMD [11], our results

Table 1
List of DMD patients

Case  Age  Mutation CK (IU/L)  Myostatin (ng/ml)
749 2] ex45-50del 603 =50
643 14 ex5TGRA60A 3296 >50)
765 13 ex51del 2219 =50
225 " exd1C5899T 2848 =50
300 8 ex2dup 11.560 =50
761 7 ex63 ¢.9262delA 10,300 = 11]
144 6 exd6-49dup 20,008 >30
394 5 ex53-54del 22,680 =50
579 4 ox27 3613delG 27,160 =50
767 3 ex51del 10,492 >50
764 2 ex36 5071-2insA 25,040 >50
715 2 c.8669-1G>C 32,700 =50
581 2 ex46-51del 26,488 =50
735 I exd6-52del 18,640 49.2
434 6 ex25 AGAAIIAT-50del 20,527 47.8
651 2 exd1CSEOIT 9860 46.7
736 4 ex2-Tdup 8259 358
294 [ mtl7 2168G+1C 27,718 302
502 6 ex|7del 15,500 0
763 2 ex44del 27,647 282
1z 12 ex48-50del 2221 259
343 8 cxd6-49dup 6119 24
570 3 ex46-53del 6389 225
481 6 46Y,inv(X)(p21 2 q28) 12,635 204
427 10 ox46-48del 8954 8.5
536 7 ? 11,760 17.9
414 4 ex38 5434-TdelTTCA 224 16.7
145 18 exS6dup 1209 154
401 10 ex70 CIDITIT 2528 14.1
13 14 ex2dup 3g28 1.6
67 I ex45-52del 2804 99
58 13 ex$ G354A 4669 98
453 22 ex 10-44del 2899 7
453 22 ex 10-44del 3345 6.6
436 9 ex39 TS561del 9160 6.6
641 2 intd + 3insGT 16,165 6.3
T88 13 exd6-52de| 1726 62
759 4 ex45-48dup 13,402 14
689 2 ex8-24del 25,920 32
HH 6 ex48-50del 1436 23
701 10 mnt4s 6641+ 1G> A T2l 1.9
107 10 ex5]~54del 4497 Il

DMD patients are listed according to their scrum myostatin concentrations.
Detail mutation of the dystrophin gene is described in addition to their age and
serum CK concentration. One question mark indicates sn unrevealed mutation
(case 536) and one has an abnormal chromosome (case 481)

(ngdan
>0 ooldo éne o o ¢4 *

Age

Fig. 1. Seeum myostatin concentrations and patients’ ages. Serum concentrations
of myostaun (vertical axis) are plotted versus paticnt age (horizontal axis) Open
circles and black di is rep exon deletion/duplication and other
miutations, respectively

suggest that myostatin blockage therapy would only be effective
in DMD cases involving high serum myostatin concentrations.
Therefore, myostatin blockage therapy should be applied care-
fully as a treatment for DMD.
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