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Other used for

and were as follows
polyclonal and monoclonal anti- ph:cnn snuhod) ilHu:lma et al., 2003) clone TAS;
Sigma-Aldrich], lonal and polyclonal anti- a-d ibody [Clone 23;
BD Transduction Laboratones ['rmhlda et al = 200(2}! maonoclonal anti-pan-actin

il

cunjng:ued with me

L
hemistry,

temperature. Actin fi with bound proteins were sed d by centnifugation
for 1 hourat 100,000 g and 20°C, and corresponding amounts of pellet snd supematant
were analyzed by SDS-PAGE

Blot overlay assay

antibody (C4; Novus Biol I, Inc.), le (- and ) actin Plectin PleN1 fi (1 pg) were I on mitrocellull b

antibody (Cosmo Bio F 0. Lid.), manocional anti- integrin Bld antibody (clone 281 which were blocked in TBS cantaining 5% BSA and 0.2% Tween-20 for S bours at
Chemicon | lonal anti-ce-acti ic EA-53; 45C q were d and incubated with 3 uM actin or |
Sigma-Aldnich), polyclonal and Jonal anti-desmin antib ‘, (Progen Biatechnil M e vin or | pM or the mixture of the three proteins in 120

GmbH, DE-U-10; Sigma-Aldrich), monoclonal anti-Mye antibody (clone 9E10;
Roche), monoclonal anti-vinculin antibody (clone hVin-1; Sigma-Aldrich),
monoclonal anti-vimentin antibody (clone VIM13.2; Slgma Ak.lndu pu!yt!uml anti-
utrophin antibody (Imamura and Ozawa, 1998), anti-dy
(clone Dy8/6CS; Novocastra, clone mandy8; Sigma-Aldrich), monoclonal anti-
developmental myosin heavy-chain antibody (clone RNMy2/9D2; Novocastra)
The secondary antibodies used in the present study were s follows: Alexa Fluor
488 goat anti-mouse lgG(H+L] Alexa Fluor 488 or Alexa Fluor 594 goat anti-rabbit
1gG(H+L) {Invitrogen), | igaved goat anti-mouse IgG(H+L), goat ann-
rabbit IgG(H+L) {lee]. and rabbit mn-:hl:km IgY antibody (Ptmn:-gn:‘ goat .mh

ul omls! buffer (20 mM HEPES pH 7.5, 150 mM NaCl, 2 mM MgCly, | mM DTT.
and 3,5% BSA) overnight at 4°C. Hound proteins were detected by using the protein-
specific antibody, HRP-conjug: y antibody and ECL system (GE
Healthcare)

Densitometric analyses of overlay blots and immunoblots

Blot membranes treated with ECL solutions were scanned and evaluated using
luminescent image analyzer LAS-3000 and Multi Gauge software (Fugi film). The
mean value of spot intensities measured in the overlay with a single protein was
calculated, and then each spot intensity was represented relative 1o this mean value

rabbit IgG(H+L) conjugated to 5-nm gold paricles (BioCell R hl
Cell culture and transfection
C2C12 cells (2.0 10° cells) were cultured on coll ted Aclar coverslips within

35-mm dishes in growth medium (DMEM containing 20% FCS, 100 U/ml penicillin
G and 100 pg/ml streptomycm). Plasmid DNA was prepared by subcloning exon 1
tEx 1 r.calpolun homology domains (CHDe), plakin domain (PID-M) cDNA fragments

2 Mye into veetor (kindly provided by James M.
Wilson, Plasmid DNA (4 jig) was transfecred i into the cells within each dish by using
Lip ™ 2000 (Invitrogen). After g out plasmid DNA, the transfected

celis were cnllumi. in gmwll! medium uvvmlﬂl‘ll-. and then their differentiation was

ng the medium to the DMEM medium containing 5% horse serum,
10 pg/ml msulin, and the antibiotics. After 2 or 3 days, C2C12 myotubes were fixed
with chilled (-20°C) hanol and § d for g (Hijikata et al,
1997),

Immunoflucrescence microscopy and immunoelectron microscopy
Cryosections of rat akzlml rru.m'les (dlnphrnlm and tibilis anterior) were prepared
and p {Hl]lkam et al, 1999), These sections
were observed und.cr a confocal (Fluoview FV1000,

by ¢ the mtio of value per the mean \-'uiur Slmllnﬂ)r ntensity
of each band obtained in i blottings of control and d ient muscles
was represented relative to the mean value of |

d in control
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Recombinant Adeno-Associated Virus Type 8-Mediated
Extensive Therapeutic Gene Delivery into Skeletal Muscle
of a-Sarcoglycan-Deficient Mice
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Abstract

Autosomal recessive limb-girdle muscular dystrophy type 2D (LGMD 2D) is caused by mutations in the a-
sarcoglycan gene (a-SG). The absence of a-SG results in the loss of the SG complex at the sarcolemma and com-
promises the integrity of the sarcolemma. To establish a method for recombinant adeno-associated virus (rAAV)-
mediated a-SG gene therapy into a-SG-deficient muscle, we constructed rAAV serotypes 2 and 8 expressing
the human a-5G gene under the control of the ubiquitous cytomegalovirus promoter (rAAV2-a-SG and rAAVS-
a-SG). We compared the transduction profiles and evaluated the therapeutic effects of a single intramuscular
injection of rAAVs into a-SG-deficient (Sgea ™/ ) mice. Four weeks after rAAV2 injection into the tibialis ante-
rior (TA) muscle of 10-day-old Sgca™/~ mice, transduction of the a-5G gene was localized to a limited area of
the TA muscle. On the other hand, rAAV8-mediated a-SG expression was widely distributed in the hind limb
muscle, and persisted for 7 months without inducing cytotoxic and immunological reactions, with a reversal
of the muscle pathology and improvement in the contractile force of the Sgca™/ = muscle. This extensive rAAVS-
mediated a-SG transduction in LGMD 2D model animals paves the way for future clinical application.

Introduction Many in vivo studies have demonstrated that recombinant
adeno-associated virus (rAAV) packaged in various

LIMB-CIRDLE MUSCULAR DYSTROPHY TYPE 2D (LGMD 2D) is  serotypes of AAV capsids exhibits serotype-specific tissue or
caused by mutations in the a-sarcoglycan (a-5G) gene, cell tropism with different transduction efficiencies (Fisher
and is the most frequent cause of the autosomal recessive et al,, 1997; Greelish et al., 1999; Gao et al., 2002, 2004; Wang
LGMD. LGMD 2D patients have the clinical characteristics et al., 2005). rAAV has been shown to mediate long-term
of progressive muscle necrosis in the proximal limb muscles  transgene expression in many tissues without evoking se-
(Eymard et al., 1997). Sarcoglycans (SGs) are essential con-  vere immune reactions. Some rAAVs efficiently transduce
stituents of the dystrophin-associated protein (DAP) com-  skeletal muscle (Kessler et al., 1996; Xiao et al., 1996; Fisher
plex, which consists of several membrane-spanning and cy-  etal,, 1997). rAAV serotype 2 (rAAV2)-mediated muscle gene
toplasmic proteins, including dystroglycans (« and 8), SGs  therapy is a promising approach, but it is effective only lo-
(@, B. v, and &), sarcospan, syntrophins (a;, 8, and B;), and  cally. In contrast, rAAV serotype 8 (rAAVS)-mediated gene
dystrobrevins that directly or indirectly associate with dys- transfer is capable of crossing capillary blood vessels to
trophin (Ervasti et al., 1990; Yoshida and Ozawa, 1990; Iwata  achieve systemic gene delivery, and effectively transduces
et al., 1993). A defect in any one of the four SGs can disrupt  genes into cardiac and skeletal muscle (Wang et al., 2005).
the entire SG complex. Mutations in four genes encoding Therefore, rAAVS is a good candidate for a therapeutic tool.
a-, B-, ¥-, and 8-5G are responsible for autosomal recessive To assess the efficacy and therapeutic potential of rAAVS for
LGMD 2D, 2E, 2C and 2F, respectively (Ervasti et al., 1990; LGMD 2D, we directly injected rAAV2-a-5G and rAAV8-a-5G
Bonnemann et al,, 1995; Noguchi et al., 1995; Nigroetal., 1996;  into the tibialis anterior (TA) muscles of 10-day-old a-SG-defi-
Eymard et al., 1997; Fanin et al., 1997). cient mice (neonatal Sgca™/~ mice). Our data suggested not

'Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502,
Japan.

IDepartment of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261.
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only the extensive expression of a-5G in Sgea ™/~ skeletal mus-
cle, but also a robust level of expression of a-SG at the sar-
colemma after a single intramuscular injection of rAAVE-a-5G.
In addition, rAAV8-u-SG effectively transduced the cardiac
muscle of 7-week-old Sgea™/ ~ mice (adult Sgca / ~ mice). Most
importantly, 7 months after the injection of rAAV8-a-5G into
neonatal Sgca™/~ mice, expression of a-SG and improvement
of sarcolemmal function were sustained, without inducing cy-
totoxic and immunological reactions. Thus, the AAVS vector is
a promising tool for gene therapy of LGMD 2D.

Materials and Methods

Recombinant AAV production

The tull-length human a-SG cDNA was amplified from a
skeletal muscle single-strand ¢cDNA library (Human Skele-
tal Muscle Marathon-Ready cDNA; Clontech, Palo Alto, CA)
by polymerase chain reaction (PCR) with the following set
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of oligonucleotide primers: 5-CTCTGTCACTCACCGGG-3’
(nucleotide positions 2-18) and 5-AGGATGAAGTC-
AGGGCTGGAC-3' (nucleotide positions 1223-1243) (Mc-
Nally et al.,, 1994). The amplification was carried out with
LA-Taq polymerase (TaKaRa Bio, Shiga, Japan) for 30 cycles,
with each cycle consisting of 94°C for 30 sec and 60°C for 2
min. The PCR products were then cloned into a TA cloning
vector (Invitrogen, Carlsbad, CA), and sequenced with an
ABI310 sequencer (Applied Biosystems, Foster City, CA).
a-5G cDNA was then cloned into an AAV serotype 2 vector
plasmid (Xiao et al., 1998; Yuasa et al., 2002) including the cy-
tomegalovirus (CMV) promoter, splicing donor/acceptor
(SD/SA) sites derived from the simian virus 40 (SV40), an
5V40 poly(A) signal, inverted terminal repeat (ITR) of the
AAV2 viral genome, and 2.0 kb of A DNA, which served as
a stuffer (depicted in Fig. 1A).

The vector genome was packaged in the AAV2 capsid or
pseudotyped into the AAVS capsid by triple transfection of

A

FIG. 1. Widespread expression of a-SG in hind limb muscles after a single injection of rAAV2-a-SG or rAAV8-a-5G into
the tibialis anterior (TA) muscles of 10-day-old a-5G-deficient mice. (A) Genomic structure of rAAV used in this study. Hu-
man a-5G cDNA (1.2 kb) was inserted downstream of the CMV promoter. ITR, inverted terminal repeat from AAV2 ge-
nome; SD/SA, splicing donor/acceptor sites derived from SV40 intron; poly(A), a polyadenylation signal from SV40. The
large shaded box represents a stuffer sequence derived from A DNA. (B-D) Right TA muscles of neonatal Sgca™/~ mice
were injected with 1 X 10" VG of rAAV2-a-5G (C) or tAAV8-a-5G (D). Four weeks after rAAV injection, the hind limb
muscles of Sgca~/~ mice were immunolabeled with a rabbit polyclonal antibody to a-SG. Hind limb muscles included the
TA, extensor digitorum longus (EDL), plantaris (PL)/tibialis posterior (TP), soleus (SOL), and gastrocnemius (GAS) mus-
cles. The TA and EDL muscles of Sgca '~ mice are shown as negative controls (B). Note that a-SG is expressed not only
in rAAV8-injected TA muscle, but also in all hind limb muscles after direct injection of rAAV8-a-5G into the right TA mus-
cle (D). Scale bars (B-D}): 500 um. (E) Percentages of a-SG-positive myofibers in TA, EDL, and SOL muscles after injection
of rAAV2-a-SG (shaded columns) and rAAVE-a-5SG (solid columns) injection into TA muscles of Sgea™ /= mice. The right
TA muscles of neonatal Sgca~/~ mice were transduced with 1 x 10" VG of rAAV2-a-5G or rAAV8-a-5G. Four weeks af-
ter rAAV injection, the hind limb muscles of Sgca™/~ mice were immunolabeled with the a-SG antibody and then coun-
terstained with hematoxylin and eosin. Hind limb muscles include the TA, EDL, and SOL muscles. The percentage of a-
SG-positive myofibers was calculated on the basis of more than 200 total myofibers in cross-sections from three animals for
each group. p Values are indicated and show statistical significance between Sgca™/~ mice and rAAV8-injected Sgca™/~
mice (p < 0.01 for TA, p < 0.001 for EDL, and p < 0.001 for SOL).
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the AAV vector plasmid, AAV helper plasmid (p5E18
VD2/8) (Wang et al., 2005), and adenovirus helper plasmid
(XX6) (Xiao et al., 1998) at a molecular ratio of 1:1:1 in 293
cells, using the calcium phosphate coprecipitation method
(Wigler et al., 1980). All the vectors were then purified by
two cycles of cesium chloride gradient centrifugation, and
concentrated as described by Burton and coworkers (1999)
T'he final viral preparations were kept in phosphate-buffered
saline. Physical particle titers were determined by a quanht
tative dot-blot assay

Administration of rAAV vectors to murine skeletal muscle

All animal-handling procedures were done in accordance
with a protocol approved by the committee of the National
Institute of Neuroscience (National Center of Neurology and
Psychiatry, Kodaira, Japan). Wild-type (Sgca*/") and
Sgca mice (Burnham Institute, La Jolla, CA) were used
e TA muscles of 10-day-old (neonate) and 7-week-old
(adult) Sgea mice were transduced with 1 x 10" vector
genomes (VG) (10 ul) and 5 % 10" VG (50 ul), respectively,
of rAAV2- or rAAVB-a-5G, using 29-gauge needles.

Transgene expression analyses

Histological and immunohistochemical analyses were per-
formed as described (Imamura et al., 2000; Yuasa et al., 2002).
Cryosections (6 um thick) were prepared from frozen
muscle

FIG. 2. Extensive a-5G expression after in-
jection of rAAVS-a-SG into TA muscles of 7-
week-old a-5G-deficient mice. Right TA mus-
cles of adult Sgca or Sgeca*’ " mice were
transduced with 5 ¥ 101! VG of rAAVS8-a-SG.
Four weeks after rAAVS injection, a cross-sec-
tion of the right hind limb muscles (rAAVS-
injected) (A), left contralateral hind limb mus-
cles (B), and cardiac apex (C) were labeled by
indirect immunofluorescence, using a-5G an-
tibody (green). Scale bars: (A and B) 500 um;
(C) 100 um. Note the widespread expression
of a-SG in the hind limb muscles and cardiac
muscle of rAAVE-a-SG-injected mice. (D)
Cross-sections of TA muscle from Sgeca*/*
and rAAVB-injected Sgca®™/* (rAAVS) mice
were immunolabeled with a-5G antibody
and counterstained with hematoxylin and
eosin. Overexpression of a-SG caused no cy-
totoxic reactions in Sgca* muscle. Scale
bars (D): 50 um
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For colorimetric immunodetection of «-SG, blocked
cryosections were incubated with a 1:1000 dilution of rabbit
polyclonal anti-a-SG (Araishi ef al, 1999) for 1 hr at room
temperature. The signal was visualized with a VECTA-
STAIN ABC kit (Vector Laboratories, Burlingame, CA) and
then counterstained with hematoxylin and eosin (H&E).
Stained sections were photographed with a light microscope
(Leica, Heidelberg, Germany) using DP70 image scanning
software (Olympus, Tokyo, Japan)

For fluorescence immunohistochemical detection of SGs,
cryosections were fixed by immersion in cold acetone at
-20°C for 5 min. After blocking with 2% casein in Tris-
buffered saline (TBS, pH 7.4) at room temperature for 1 hr,
a-5G was detected with rabbit polyclonal anti-a-5G (1:1000
dilution) (Araishi ¢t al., 1999). 8-, y-, and §-5Gs were detected
with mouse monoclonal anti-8-SG (NCL-b-SARC, 1:50 dilu-
tion; Novocastra Laboratories, Newcastle-upon-Tyne, UK),
anti-p-SG (1:50 dilution), and anti-5-SG (DSG-1; 1:50 dilu-
tion), rt‘.-»pm'til.'t_*h.', after an'l\mg with an M.OM. kit (Vec-
tor Laboratories). Mouse monoclonal antibodies against -
SG and 4-5G (DSG-1) were generated in our laboratory
(Yamamoto et al., 1994; Noguchi et al., 1999). The signal was
visualized with Alexa 488-conjugated anti-rabbit and anti-
mouse g antibodies (Invitrogen Molecular Probes, Eugene,
OR). Fluorescence signals were observed with a confocal
laser-scanning microscope (Leica TCS SP; Leica).

Sodium dodecyl sulfate-polyacrylamide gel electrophore-
sis (SDS-PAGE) and protein transfer to a polyvinylidene di
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fluoride (PVDF) membrane were performed as described by
Laemmli (1970) and Kyhse-Andersen (1984), respectively.
Protein concentrations were determined with a protein as-
say kit (Bio-Rad, Hercules, CA) with bovine serum albumin
as a standard.

Transgene copy number analyses

Cryosections of mouse hind limb muscle were collected
for vector copy number analysis by quantitative PCR. After
DNA extraction by successive treatments with RNase and
proteinase K, viral genomes were quantified by a real-time
PCR assay using SYBR Premix Ex Tag (TaKaRa Bio). The real-
time PCR was carried out for 40 cycles, with each cycle con-
sisting of 95°C for 5 sec, 60°C for 10 sec, 72°C for 10 sec, and
75°C for 10 sec. Oligonucleotide primers for this assay were
5 -CTCTAGAGGATCCGGTACTCGAGGAAC-3"  (SD/SA
sites) and 5-AGAGGAGTCCAGAAGAGTGTCTCAGCC-3'
(human a-5G gene) for the a-SG gene in the rAAV2 genome
and 5-TGCCATGAGCAGCCCATTTTG-3" and 5-ATAA-
CATCGCGGTGGCTCAGG-3' for the slug promoter. The
slug promoter was used for normalization of data across
samples.

Analysis of toxicity

Blood was obtained from a murine heart. Serum alanine
aminotransferase, y-glutamyl transpeptidase, albumin, and
total protein concentration were determined with a Fuji Dri-
Chem slide system (Fujifilm, Tokyo, Japan).

Muscle physiological function

TA and extensor digitorum longus (EDL) muscles were
exposed by removal of overlying connective tissue (Xiao et
al., 2000; Yoshimura et al., 2004; Imamura et al., 2005). Both
tendons of the TA and EDL muscles were cut from their in-
sertions and secured with 5-0 silk sutures. Muscles were
mounted in a vertical tissue chamber containing physiolog-
ical salt solution (150 mM NaCl, 4 mM KCl, 1.8 mM CaCl,,
1 mM MgCl,, 5 mM HEPES, 5.6 mM glucose [pH 7.4], and
0.02 mM p-tubocurarine) maintained at 37°C with continu-
ous aeration. The chamber was connected to a force trans-
ducer (UL-10GR; Minerva, Nagano, Japan) and a length ser-
vosystem (MM-3; Narishige, Tokyo, Japan). Electrical
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stimulation (SEN3301; Nihon Kohden, Tokyo, Japan) was de-
livered through a pair of platinum wires placed on both sides
of the muscle. The muscle fiber length was adjusted incre-
mentally with a micropositioner until peak isometric twitch
force responses were obtained (i.e., optimal fiber length L;).
L, was measured with a microcaliper. Maximal tetanic force
{P,) was induced by stimulation frequencies of 125 pulses
per second, delivered in trains of 500-msec duration with 2-
min intervals between each train. The muscle was weighed,
rapidly frozen in liquid nitrogen-cooled isopentane, and
stored at -80°C for further analysis. All forces were normal-
ized to the physiological cross-section area (CSA), which was
estimated on the basis of the following formula: muscle wet
weight (in mg)/[L, (in mm) X 1.06 (in mg/mm?)]. The esti-
mated CSA was used to determine specific tetanic (P,/C5A)
force of the muscle. Data are presented as means * SE. Dif-
ferences between groups were assessed by Student | test.

Exercise tolerance tests

Mice were subjected to an exhaustion treadmill test
(Mourkioti et al., 2006). Each mouse was placed on the belt
of a four-lane motorized treadmill (MK-680; Muromachi
Kikai, Tokyo, Japan) supplied with shocker plates. The tread-
mill was run at an inclination of 7 degrees at 5 m/min for 5
min, after which the speed was increased by 1 m/min every
minute. The test was terminated when the mouse remained
on the shocker plate for more than 20 sec without attempt-
ing to reengage the treadmill, and the time to exhaustion was
determined.

Results

Expression of «-SG after injection of rAAV2- or
rAAVB-a-SG into TA muscles of neonatal
a-SG-deficient mice

We constructed rAAV2- and rAAVS-a-5G expressing hu-
man a-5G ¢cDNA under the control of the ubiquitous CMV
promoter, and injected 1 X 10" VG into the right TA mus-
cle of neonatal Sgca~/~ mice (Fig. 1A). Neonatal Sgeca /-
mice showed no obvious dystrophic changes, whereas adult
(>4 weeks old) Sgca™/~ skeletal muscles showed active cy-
cles of the degeneration-regeneration process. In the hind
limb muscles of 5-week-old Sgca ™/~ mice, a-SG-positive

TasLe 1. EFFecT OF rAAV2- AND rAAVB-a-SARCOGLYCAN ADMINISTRATION ON THE Liver FuncTiON OF
ApuLt Sgea ™/~ Mice 4 Werks AFTER INjECTION™D

ALT y-GTP ALB TP

Number of mice (Uliter) (U/liter) (g/dl) (g/dl)
Sgea*/* 3 26.67 = B.50° <10 243 = 021 4.80 = 0.20
Sgea / 3 14533 £ 22.22 <10 233 £ 0.23 4.60 = 0.42
rAAV2-injected Sgca /- 3 149 + 9d <10 2.10 = 0.44 4.00 = 053
rAAVS-injected Sgea / 3 124 = 15.10¢ <10 203 = 0.25 4.60 = 0.89

Abbreviations: ALT/GPT, alanine aminotransferase /glutamic pyruvic transaminase; y-GTP, y-glutamy| transpeptidase; ALB, albumin; TP,

total protein
*Data represent means * SE.

"The p values indicate statistical significance. Significant differences from the ALT/GPT level of Sgca ™/~ mice are indicated.

“p < 0.001.
4p = 0.797.
*p=0.229.
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fibers were not observed and the active cycle of muscle de-
generation-regeneration was present (Fig. 1B). Four weeks
after a single intramuscular injection of rAAV2-a-5G, a-5G
was expressed only in a limited area of rAAV2-injected TA
muscle (Fig. 1C and E). Analysis of TA muscle showed that
less than 10% of muscle fibers were a-5G positive (p < 0.01;
Fig. 1E).

In contrast, after rAAV8-a-SG injection, a-SG-positive
fibers were widely spread in rAAV8-injected hind limb mus-
cles, including the TA, extensor digitorum longus (EDL),
soleus (SOL), gastrocnemius (GAS), and plantaris (PL)/tib-
ialis posterior (TP) muscles (Fig. 1D). Analysis of the TA,
EDL, and SOL muscles showed 62.3 * 20.2, 795 = 11.0, and
74.2 = 11.2% a-SG-positive fibers, respectively (p < 0.01,p <
0,001, and p < 0.001; Fig. 1E). The expression of a-5G in
rAAV8-a-5G-injected TA muscle and surrounding muscles
persisted more than 7 months (data not shown)

Expression of a-SG after injection of rAAV2«a-SG or
rAAVE-a-SG into TA muscles of adult a-SG-deficient mice

Adult Sgca™ /" mice (>4 weeks old) showed active cycles
of the degeneration-regeneration process and had a mature

A
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immune system. To investigate whether injection of rAAV2-
a-SG or rAAVE-a-5G could induce stable expression of a-
SGinadultSgea /~ skeletal muscle without cytotoxicity and
immune response, we injected 5 X 10" VG of rAAV2-a-5G
or rAAVE-a-5G into the right TA muscles of adult Sgea ™/

mice. Four weeks after rAAV2-a-5G injection, we did not ob-
serve a-SG-positive fibers in the right TA muscle (data not
shown). rAAV2-a-SG-injected TA muscles showed the de-
generation-regeneration process. In contrast, after rAAVS-
a-SG injection, we observed numerous a-5G-positive fibers
in the entirety of rAAVS-injected hind limb muscles (Fig.
2A). Moreover, a-SG-positive fibers were detected even in
contralateral hind limb muscles and cardiac muscle (Fig. 2B
and C). In particular, when rAAV8-a-5G was injected into
the TA muscle of Sgea® /" mice, we observed no pathologi-
cal changes in the injected hind limb muscles 4 weeks after
injection (Fig. 2D). No signs of tissue damage were found in
regions where a-SG was detected after injection of rAAVS-
a-SG. a-SG-positive myofibers retained normal morphology
up to 4 weeks after injection. In addition, to examine whether
rAAV2-a-SG and rAAV8-a-SG administration affect liver
function, we measured the serum level of liver-related
isozymes including alanine aminotransferase (ALT), y-glu-

P<0.01
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FIG. 3. Immunoblot analysis of a-5G in rAAV-injected a-SG-deficient muscles. Expression of a-5G in the hind limb mus-
cles and heart of Sgca™/~ mice was examined 4 weeks after rAAV injection, by real-time PCR and Western blot. (A) Real-
time PCR was performed in duplicate to quantitate transgene copy number in each hind limb muscle after a single intra-
muscular administration of rAAV2-a-SG and rAAV8-a-SG. The right TA muscle of neonatal Sgca™ /™ mice was transduced
with vector at 1 x 1019, 5 x 10'°, and 1 x 10" VG. Results are represented as vector copy number per diploid genome to-
gether with standard errors of mean. p Values are indicated and show a significant difference between rAAV2- and rAAVS-
injected Sgca~/~ mice (p < 0.001). (B) The right TA muscles of Sgca™/~ mice were transduced with 1 10" VG (neonates)
or 5 x 10" VG (adults) of rAAV2-a-SG (lanes 1-3 and 7-9) or rAAVS-a-5G (lanes 4-6 and 10-18). Ten-microgram samples
of muscle lysates were separated by 10% SDS-PAGE. Faint bands were detected in the contralateral hind limb muscles of
rAAV8-a-SG-injected mice. Adult Sgea*/* and Sgea ™/~ hind limb muscle lysates were used as positive and negative con-
trols, respectively. The a-SG antibody detected a 50-kDa band. a-Sarcomeric actin is shown as a loading control.
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tamyl transpeptidase (y-GTP), albumin (ALB), and total pro-
tein (TP) in rAAV2-a-5G- and rAAV8-a-5G-injected Sgca

mice. Because skeletal muscle contains isozymes of creatine
kinase, lactate dehydrogenase, aspartate aminotransferase,
and ALT, these may be released into the blood stream after

muscle necrosis (Janssen et al, 1989); the ALT level in
Sgca mice was 5.4-fold higher than that in Sgca®/* mice
(p< 0.001; Table 1). The ALT level in rAAVSB-injected
Sgeca mice was slightly lower than that in Sgca mice

[he levels of other liver-related proteins, including y-GTP,

ALB, and TP, were not significantly different between
Sgca and rAAV2-a-5G- and rAAVS-a-SG-injected
Sgca mice

Tropism of rAAV2- and rAAVE8-«-5G in
a-SG-deficient mice

T'o investigate whether there is any difference in tissue tro-
pism between rAAV2 and rAAVS, we determined the vec-
tor copies per diploid genome (C/DG) between the two vec
tors in injected skeletal muscle by a quantitative, real-time
PCR assay. We injected neonatal Sgca mice with either
rtAAV2-a-5G or rAAVE-a-SG at three different doses (1 %
1012,5 % 109, or 1 x 10" VG /mouse) via the TA muscle (n =
3 per group). At a dose of 1 x 10" VG/mouse, we detected
rAAV2-a-5G and rAAVS-a-SG vector genomes in skeletal
muscle at levels of 0.05 = 0.03 and 533 = 1.88 C/DG, re-
spectively (p < 0.01; Fig. 3A). Increasing doses of rAAVS-a-
SG resulted in increased levels of transgene expression
Higher transduction efficiency was observed with rAAVS-
a-5G when large amounts of vector were used. Moreover, to
evaluate the amount of a-5G in rAAV2-a-5G- or rAAVS-a-
SG-injected skeletal muscles of Sgca
Western blot analysis. Four weeks after injection of rAAV2-
a-5G into the TA muscle of neonatal and adult Sgca mice,

mice, we performed

a-SG

SG

Sgca*

FIG. 4.
jection. Right TA muscles of neonatal Sgca
injected Sgca
tibodies against 8-5G, -5G, or 6-5G. Untreated Sgca

weeks after injection, SGs were expressed in rAAV8-injected Sgca
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mice were injected
TA muscles (top and bottom, respectively) were labeled by indirect immunofluorescence, using specific an
muscle showed a secondary loss of SGs from the sarcolemma. Four
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a-5G was almost undetectable (Fig. 3B). In contrast, when
rAAV8-a-5G was injected into the right TA muscle of neona
tal Sgca mice, the amount of @-5G in rAAVE-transduced
muscles was 3.5-fold higher than that in Sgca*
When transduced in adulthood, the expression level of a-5G
in the TA muscle of Sgca
in Sgca* In addition, a-5G was detected in con-

muscles

mice was almost equal to that
* muscle
tralateral hind limb muscles and the heart after injection of
rAAVS-a-5G into the TA muscle (Fig. 3B)

rAAVE8-mediated a-SG expression ameliorated
muscle pathology

A defect in any one of the four SGs can disrupt the entire
SG complex in LGMD 2C-2F patients. Thus, we investigated
the presence of a SG complex in the sarcolemma 4 weeks af
ter injection of rAAVS-a-SG into the TA muscle of neonatal
Sgca mice. Immunostaining of rAAV8-a-5G-injected TA
muscle with anti-SGs antibodies revealed that restoration of
a-5G expression accompanied the sarcolemmal expression
of other components of the SG complex, that is, -, y-, and
8-SG (Fig. 4). Moreover, 4 weeks after rAAVB-a-5G injection,
H&E staining demonstrated considerable amelioration of the
muscle pathology of rAAVS-injected TA muscles (Fig. 5A),
and of surrounding EDL, SOL, GAS, and TF/PL muscles
(data not shown). In contrast, uninjected and rAAV2-a-5G-
injected muscles of Sgca mice still showed signs of mus-
cle degeneration and regeneration. To evaluate the amelio-
ration of the dystrophic phenotype (Morgan et al, 1990;
Duclos et al., 1998; Li et al., 1999; Allamand et al., 2000; Dress
man ¢ al., 2002), we counted centrally nucleated myofibers
in tAAVB-a-5G-injected muscles 4 months after injection
(Fig. 5B). Sgca hind limb muscles showed approximately
90% centrally nucleated myofibers. In contrast, rAAV8-a-5G-
injected TA and ipsilateral EDL and SOL muscles showed

y-SG 3-SG

Complete restoration of sarcoglycan expression at the sarcolemma of a-SG-deficient muscle after rAAVS-a-5G in

with 1 x 10" VG of rAAVB-a-SG. Untreated and rAAVS-

muscle. Scale bars: 50 um
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FIG. 5. Reduction of muscle degeneration in a-5G-deficient mice after rAAVS-a-SG-mediated gene transfer. (A) Right TA
muscles of neonatal or adult Sgca™/~ mice were transduced with 1 X 10" VG (neonates) or 5 X 101 VG (adults) of rAAV2-
a-SG or rAAV8-a-5G. Four weeks after rAAV injection, serial cross-sections of Sgca*/*, Sgca™/, and rAAV2- or rAAVS-
injected Sgca ™/~ TA muscles (rAAV2 and rAAVS, respectively) were labeled by indirect immunofluorescence, using a-5G
antibody (left, green), and stained with hematoxylin and eosin (H&E) (right). rAAV8-injected Sgca™/~ TA muscles showed
no signs of muscle degeneration. Arrowheads indicate a-SG-positive fibers. Scale bars: 50 um. (B) Percentages of centrally
nucleated myofibers in Sgea™/~ skeletal muscles 4 months after injection of rAAV8-a-5G. Right TA muscles of neonatal
Sgeca~/~ mice were transduced with 1 X 10" VG of rAAVB-a-5G. Centrally nucleated myofibers among more than 200 to-
tal myofibers were counted in randomly selected H&E-stained cross-sections of the hind limb from Sgca~/~ mice (hatched
columns) and rAAV8-a-5G-injected Sgca™ /™ mice (solid columns) (n = 3 for each group). The percentage of centrally nu-
cleated myofibers in rAAVS-a-SG-injected Sgca™/~ mice was significantly lower than that in untreated Sgca ™/~ mice. p
Values showed a statistically significant difference between Sgca™/~ mice and rAAV8-injected Sgca™/~ mice (p < 0.0001
for TA, p < 0.0001 for EDL, and p < 0.01 for SOL).

13.2 = 7.3,104 = 104, and 29.1 = 12.9% centrally nucleated  study of muscular dystrophy model animals, we confirmed
myofibers, respectively (p < 00001, p< 00001, and p< profound muscle force deficits in TA muscle (Yoshimura e
0.0023, respectively; Fig. 5B). The percentage of centrally nu-  al., 2004; Imamura et al., 2005).

cleated myofibers in rAAV8-injected hind limb was signifi- A deficiency of a-5G decreases the contractile force of af-
cantly lower than that of Sgca~/~ muscle, indicating that full  fected muscles (Danieli-Betto et al, 2005; Imamura et al.,
recovery of the SG complex at the sarcolemma of Sgca=/~  2005). To evaluate whether rAAV8-a-5G transfer might im-

mice corrected the underlying biochemical deficiency and prove Sgca™/~ muscle physiological function, we measured
consequently restored the integrity of the muscle membrane.  the contractile force of rAAVB-injected Sgea™/~ TA and EDL
muscles. TA and EDL muscles were carefully separated from

- —— ’ the hi i jecte: | ' 51 i
rAAV-8-mediated a-SG expression improves contractile e hmd‘ limb and subjuf.:tcd to in vitro electrophysiological
stimulation and contractile measurement on a force trans-

ﬁgg;:‘:mﬁ;?ﬁi;?:xm hypaciophy of ducer. First, the right TA muscles of neonatal Sgca mice
were transduced with 1 x 10" VG of rAAVS-a-5G. At the

A major functional deficit in muscular dystrophy patients age of 5 months, the specific tetanic force of untreated
is the loss of muscle strength. In our previous physiological Sgea®/* and Sgca—/~ TA muscles was 17.3 = 45 and 89 =

- -
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FIG. 6. Recovery of contractile force of a-SG-deficient muscle after transduction with rAAV8-a-SG. Right TA muscles of
neonatal or adult Sgca™/~ mice were transduced with 1 x 10" VG (necnates) or 5 x 10" VG (adults) of rAAV8-a-5G, and
tetanic forces and time to exhaustion were assessed in vitro and in vive. (A) Specific tetanic force of TA muscles from Sgea™’”
(open column, n = 3), untreated Sgca~/~ (hatched column, n = 3), and rAAVS-a-5G-injected Sgca” /= mice (solid column,
n = 3). The right TA muscles of neonatal Sgca™/~ mice were transduced with 1 x 10" VG of rAAV8-a-5SG, and the tetanic
forces of TA muscles were assessed in vitro 5 months after injection. (B) Specific tetanic force of EDL muscles from Sgca*®’~
(open column, n = 3), untreated Sgca / ~ (hatched column, n = 3), and rAAV8-a-SG-injected Sgca 7~ mice (solid column,
n = 4). The right TA muscles of adult Sgca™/~ mice were transduced with 5 X 10" VG of rAAVB-a-5G, and the tetanic
forces of EDL muscles were assessed in vitro 10 weeks after injection. The p values show a statistically significant differ-
ence between Sgca™/~ mice and rAAVS-injected Sgca/~ mice (p < 001 for TA, and p = 0.05 for EDL). (C) Time to ex-
haustion in treadmill test: Sgea*/* (open column, n = 3), untreated Sgca /" (hatched column, n = 4), and rAAV8-a-5G-
injected Sgca~/~ mice (solid column, n = 4). The right TA muscles of adult Sgca /~ mice were transduced with 5 x 10"
VG of rAAV8-a-SG, and the tetanic forces of EDL muscles were assessed in vitro 10 weeks after injection. The p values
show a statistically significant difference between Sgca™/~ mice and rAAVS-injected Sgca™/~ mice (p < 0.05).

1.2 mN/mm?, respectively, whereas that of rAAVS-injected ~ Discussion
Sgea~/~ TA muscle was 19.4 = 0.7 mN/mm? (p < 0.01; Fig.
6A and Table 2). Furthermore, we assessed the improvement In this paper, we have presented evidence that a single in-
of EDL muscle after rAAV8-a-SG injection in adulthood. tramuscular injection of a rAAVS vector expressing human
rAAVS-a-SG (5 x 10" VG) was injected into the right TA  a-SG cDNA via a CMV promoter could achieve efficient ther-
muscle of adult Sgca™/~ mice. We measured the contractile  apeutic effects in a dystrophic animal model of LGMD 2D.
force of the EDL muscle surrounding rAAV8-injected TA When rAAVS-a-5G was administered to neonatal Sgac™/
muscle 10 weeks after injection. The specific tetanic forces of  mice, we observed extensive a-5G transduction in the hind
Sgca*/* and Sgea™/~ EDL muscles were 1215 = 1.6 and  limb muscles, including the TA, EDL, SOL, and GAS mus-
61.74 = 833 mN/mm?, and that of rAAV8-injected Sgca™/~  cles. In the case of rAAVS injection of adult Sgac™/~ mice,
EDL muscle was 121.15 * 22,12 mN/mm? (p = 0.05; Fig. 6B a-SG was expressed not only in all of the hind limb muscles
and Table 2). Consequently, the specific tetanic force of an-  and but also in cardiac muscle. A similar profile was further
imals injected with rAAVB-a-5G was 2-fold higher than that  confirmed in a study by Wang and coworkers, in which they
of uninjected Sgca™ '~ TA muscle (p < 0.01,and p = 0.05;Fig.  delivered more potent double-stranded rAAVS vectors into
6A and B, Table 2) adult and neonatal mice. The rAAVS vector is more stable
In addition to the drastic improvement in contractile in the bloodstream than other rAAV serotypes when ad-
force of rAAVS-a-SG-injected TA muscle, the weight of ministered intravascularly and extravascularly (Wang et al.,
rAAV8-a-5G-injected TA and EDL muscles as a percent-  2005). The 37/67-kDa laminin receptor (LamR) has been
age of body weight was comparable to those of Sgca®’ " identified as the host cell receptor for the AAVS vector
muscle and much smaller than those of their untreated (Akache et al., 2006). LamR is widely expressed in human
counterparts (Table 2), suggesting that rAAV8-a-5G treat- tissues, where it is normally involved in interactions of ex-

ment reduced the muscle hypertrophy of Sgca™/~ muscle.  tracellular laminin-1 with proteases and the cell (Ardini ef
Moreover, we investigated whether a-SG expression in gl 1997, 2002). Furthermore, the rAAVS vector might be able
Sgca /~ muscle effectively increases the physical perfor-  to cross the capillary endothelial cell barrier and transduce
mance of the muscle. In an enforced treadmill test, the ex- remote organs with high efficiency (Inagaki et al., 2006)
haustion times of Sgca /- and rAAVS-a-SG injected However, the detailed mechanism of rAAVS-mediated cell
Sgca '~ mice were 259 = 2.0 and 30 = 2.6 min (p < 0.05; recognition and transduction has yet to be fully elucidated.
Fig. 6C). rAAVB-injected Sgca ™/~ mice demonstrated in- In the present study, we demonstrated that rAAVE-a-5G
creased exercise time before reaching exhaustion and could  transduced skeletal muscle about 100-fold more compared
run longer distances. with rAAV2-a-SG. In addition, rAAV8-a-SG-injected
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Sgca ' mice did not demonstrate cytotoxic and immuno-
logical reactions for more than 7 months after injection.
Transduction of a-5G in an LGMD 2D animal model by
means of adenovirus, rAAV1, or rAAV2 vector was previ-
ously reported (Duclos et al., 1998; Allamand et al., 2000;
Dressman et al., 2002; Fougerousse et al., 2007; Pacak et al.,
2007). In the two studies using the adenovirus vector, it was
necessary to use neonatal animals to take advantage of the
immaturity of the immune system and thereby to circum-
vent the strong immune response elicited by the adenoviral
vector (Duclos et al., 1998; Allamand et al., 2000). The AAV
vector, which has been more widely used, is nonpathogenic,
has low immunogenicity, and has been shown to confer long-
term gene expression in muscles of various species. Use of
the ubiquitous CMV promoter would allow expression of
the transgene in various cells. Therefore, expression of a-5G
via rAAV] and rAAV2, using the CMV promoter, induced
an immune response, whereas those vectors introduced bal-
anced expression of SGs within the injected Sgca™/~ my-
ofibers (Duclos et al., 1998; Allamand et al., 2000; Dressman
et al., 2002; Fougerousse et al., 2007; Pacak et al., 2007). Be-
tween 28 and 41 days after rAAV2 injection, a drastic de-
crease in a-5G expression occurred in the injected Sgea ™/~
muscle. In particular, numerous antigen-presenting cells in
the dystrophic muscles could direct a strong immune re-
sponse against the transgene product when the CMV pro-
moter was used (Yuasa et al., 2002). On the other hand, the
AAVS vector transduced antigen-presenting cells (such as
dendritic cells) less efficiently than did the rAAV2 vector
(Xin et al., 2006). Consequently, gene transduction via the
AAV2 vector with the CMV promoter might be less efficient
than with rAAVS and other AAV serotypes.

Because the CMV promoter elicits an immune response
against the transgene product (Cordier et al., 2001; Yuasa et
al., 2002; Liu et al., 2004), several studies of rAAV-mediated
transduction of striated musculature used the muscle crea-
tine kinase (MCK), CK#, or SP6 promoter as a muscle-spe-
cific promoter (Gregorevic et al., 2004; Yoshimura et al., 2004;
Zhu et al., 2005). Transduction driven by a muscle-specific
promoter was achieved without acute toxicological response.
Moreover, to enable strong expression in striated muscle, an-
other group created a hybrid promoter containing the MCK
enhancer and the simian virus 40 promoter (MCK/5V40 pro-
moter) (Takeshita et al, 2007). The MCK/SV40 promoter
yielded long-term (=6 months) expression of a human se-
cretory alkaline phosphatase (huSEAP) reporter gene after
electrotransfer of the plasmid into mice. In addition, selec-
tion of the rAAV serotype is important. rAAVY has also been
shown to be efficient in cardiac or skeletal muscle transduc-
tion (Inagaki ef al., 2006; Sarkar et al., 2006).

Our study demonstrated improvement of the contractile
force and decreased sensitivity to stretch and exhaustion
time for exercise in Sgca /- muscle after rAAVS-a-5SG in-
jection. Recovery of absolute maximal force and specific
tetanic force is one of the barometers of amelioration. A dose
of about 1 % 10" VG (for neonates) or 5 x 10" VG (for
adults) in Sgca~/~ TA muscle led to transduction of ap-
proximately >70% of hind limb muscles and was sufficient
to increase the global force of the animal. We compared
tetanic contractions of rAAVB-a-SG-injected muscles with
those of Sgea */* and Sgeca ~/~ muscles. The contractile forces
of rAAVS-injected Sgca /~ TA and EDL muscles were in-
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creased 2-fold compared with that of Sgca™ /™ muscles. Fur-
thermore, the exercise treadmill test results for rAAVE-in-
jected Sgca /~ mice were higher than those of Sgca ~/~ mice.
This suggested that increased synthesis of a-SG had no ad-
verse effects on SG complex formation, and that overexpres-
sion of a-5G might induce stability of the transmembrane
without causing muscle pathology. In a therapeutic study us-
ing rAAV1 (Fougerousse et al., 2007), injection of rAAV1 en-
coding a-5G cDNA via the C5-12 promoter (a muscle-specific
promoter) into the artery of Sgca™/~ mice increased the con-
tractile force of EDL muscles 1.5-fold compared with that of
Sgea™/~ EDL muscles. Therefore, rAAVS would be an effec-
tive tool for the delivery of therapeutic genes to skeletal mus-
cles in the treatment of limb-girdle muscular dystrophy.
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