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Fig. 3 Neuropathological findings of GIH-G93A mice as a gold-stan-
dard ALS model. a The number of anterior horn cells at 90 days of age
is not decreased significantly; approximately 10 anterior horn cells can
are observed, although an anterior horn cell with intracytoplasmic vac-
uolation is evident (arrow). b The numbers of anterior horn cells at
100 days of age are slightly decreased; about eight anterior horn cells
can be seen, whereas abundant vacuoles are observed. ¢ At 120 days,
when the mouse is quadriplegic and moribund, there is severe loss of
anterior horn cells and prominent inclusion pathology (arrowheads),
although the vacuolation pathology is less marked than that at disease
onset (in Fig. b), There is an inverse correlation between the number of
vacuoles and the number of inclusions. a~¢ H&E. Scale bar a (also for
b, €) 200 pm. d Light micrograph of a round neuronal LBHI (arrow)
in a spinal anterior horn cell of a G1H-G93A mouse. This LBHI is ob-
served n the cytoplasm of an anterior hom cell, and is composed of

cosinophilic core with paler peripheral halo. Vacuolation pathology is
evident in the neuropil. H&E. Scale bar d 20 pm. e-h Immunostaining
with antibody against human SOD| in the spinal cord anterior horn of
the GIH-G93A mouse. This antibody (MBL, Nagoya, Japan) recog-
nizes only buman SODI, ie., mutant human G93A-50D1. e Liuer-
mate mouse, showing no expression of G93A-SOD1. ['ln a 90-day-old
G1H-G93A mouse, G93A-SOD1 is expressed mainly in the neuropil,
and sometumes expressed intensely within the nms of vacuoles in the
neuropil and motor neuran cytoplasm (arrows). However, it 1s not ex-
pressed in the motor neurons. g In a 110-day-old G1H-G93A mouse,
G93A-SODI is expressed within the motor neuron cytoplasm in addi-
tian to the vacuole rims in the neuropil (arrows). h: In a 120-day-old
G1H-G93A mouse, LBHIs are strongly positive for G93A-SODI
{arrows), Scale bar e (also for f~h) 10 ym
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with more frequent focusing on lower motor neuron pathol-
ogy. This can be explained mainly in terms of the anatomi-
cal difference in the corticospinal tract system between
humans and rodenis: the main corticospinal tracts in the
human spinal cord are the lateral and anterior columns,
while the main spinal cord pyramidal tracts in rodents are
the dorsal columns. Another major consideration is that
even at necropsy with end-stage pathology, SOD|-mutated
FALS, which is the prototype for these models, demon-
strates only slight or mild corticospinal tract degeneration.
Although there are a relatively few reports, some are perti-
nent. One group has reported that 110-day-old GI1H-G93A
mice demonstrate degeneration of the corticospinal and
bulbospinal systems, in which 53% of corticospinal, 41%
of bulbospinal and 43% of rubospinal neurons are lost (the
bulbospinal neuron system in mice comprises three sys-
tems: rubospinal, vestibulospinal and reticulospinal neu-
rons) [103]. Another group has reported that G85R mice
at the end stage show progressive axonal degeneration of
corticospinal tracts in the dorsal and lateral columns of the
spinal cord [101].

Inclusion pathology

Ever since Hirano et al. [42] emphasized the presence of
neuronal LBHIs in the anterior hom cells of FALS patients
with posterior column mvolvement in 1967, and the author
discovered Ast-Hls in 1996 [53], LBHI/Ast-HI have been
considered pathognomonic features of mutant SOD1-linked
FALS with postenior column involvement, which is the
prototype form of human mutant SODI transgenic rodents,
and in these transgenic rodents neuronal LBHIs are fre-
quently observed in the soma (Fig.3d) and neurites,
although rarely in axons. Although Ast-HIs are sometimes
found in only long-surviving patients with SOD|-mutated
FALS [53, 54], they are frequently seen in G85R mice and
H46R rats as well as in both GIH-/GIL-G93A mice and
GY3A rats at terminal stage [36, 59].

The author has examined six different lines of GIH-/
GIL-G93A mice, GB5R-148 mice, L84V mice, and H46R-4
and G93A-39 rats by electron microscopy, and all show
almost identical ultrastructural features of neuronal LBHIs
and Ast-Hls. Interestingly, neuronal LBHIs observed in both
SODI1-mutated rodents and humans have a similar ultra-
structure, being composed mainly of randomly oriented
granule-coated fibrils approximatelyl5-25 nm in diameter
and granular materials. Ast-HIs seen in both SOD1-mutated
rodents and humans also have the same ultrastructure.
Therefore, the essential ultrastructural common components
of neuronal LBHIs and Ast-HIs in SODI-mutated rodents
and humans are granule-coated fibrils about 15-25 nm in
diameter and granular materials. As the inclusions develop,
the granule-coated fibrillar component increases and the
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amount of granular material decreases, suggesting that the
former might be derived from the lauer [57].

It is of considerable interest that LBHIs/Ast-Hls
observed in SODI-mutated rodents are light- and electron-
microscopically identical to those in patients with
SODI-mutated FALS. The presence of LBHI/Ast-HI is a
morphological hallmark of cells affected by mutant SODI
|58], and the formation of LBHI/Ast-HI is reported 10 be
correlated with disease severity and progression [90).
However, the mechanism by which SOD1 mutation in vivo
leads to the formation of 15-25-nm granule-coated fibrils
as an essential component of LBHI/Ast-HI remains poorly
defined. An important clue for explaining the formation of
the granule-coated fibrils as an ultrastructural hallmark
of mutant SOD1 has been reported: the same granule-coated
fibrils as those in SOD!I-mutated cells in vivo are induced
by endoplasmic reticulum (ER) stress in vitro using neuro-
blastoma cells overexpressing human mutant L84V SODI
[100]. Transgenic mice with L84V SOD1 show aberrant
aggregation of the ER in association with early-stage
neuronal LBHIs, suggesting that the LBHIs might anse as a
result of ER dysfunction [100]. Collectively. the presence
of LBHI/Ast-HI 1s a hght-microscopical hallmark of
SODI1-mutated cells, and the 15-25-nm granule-coated
fibrils as an essential component of the LBHI/Ast-HI
provide ultrastructural authentication of SOD1-mutated
cells. In marked contrast, Bunina bodies are not found in
the transgenic rodents bearing mutant SODI.

Vacuolation pathology

With regard to vacuolation pathology, although transgenic
rodents expressing mutant SOD1 exhibit vacuoles of var-
ous sizes in neurons and neuropil, similar features are not
evident in autopsy cases of mutant SODI-related FALS,
which is the prototype of the mutant SODI transgenic
rodent. This vacuolation pathology is also undetectable in
mutant SOD1-unrelated FALS and SALS. Ultrastructur-
ally, the vacuolation is evident in somata, dendrites and
axons of motor neurons. At an early stage, these alterations
occur in the rough ER and mitochondria. In particular, peri-
nuclear vacuoles in somata at the early stage are derived
from dilated ER cisternae. As the disease progresses, the
number of mitochondria-derived vacuoles increases, while
the number of vacuoles originating from the ER decreases.
Mitochondria-derived vacuoles originate through expan-
sion of the mitochondrial intermembrane space and exten-
sion of the outer mitochondrial membrane [40]. These
vacuoles are apparently more abundant at disease onset,
and decline thereafter; vacuole formation itself is reported
to be related 1o disease onset rather than disease progres-
sion [61]. There are abundant vacuoles and few LBHIs in
the early course of degeneration in GIL-G93A and GI1H-
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(G93A mice (Fig. 3b), and mice at the terminal stage show
less abundant vacuoles and many LBHIs (Fig. 3c), re,
there is a significant inverse correlation between the num-
bers of vacuoles and LBHIs [91]. Another important find-
ing in GIH- and GIL-G93A mice at the presymptomatic
stage is fragmentation of the Golgi apparatus in the spinal
cord anterior hom cells [69].

Contribution of mutant SODI in each cell type

Transgenic rodents overexpress human mutant G93A
SOD1 in all cells because the transgene is driven by a non-
cell-specific endogenous promoter. On the other hand, there
are transgenic mice in which mutant SOD1 expression is
driven by a neuron-specific promoter such as the neurofila-
ment light chain. In transgenic mice whose anterior horn
cells specifically overexpress mutant SOD1, neither motor
neuron impairment nor degeneration is evident [80]. Trans-
genic mice that overexpress the mutant SOD1 transgene in
neurons after birth also do not show motor neuron pathol-
ogy [65]. Some other types of transgenic mice overexpress
mutant GB6R SODI only in astrocytes under control of the
GFAP promoter. Despite the fact that these mice develop
astrocytosis, they show no motor neuron degeneration and
develop normally [34]. Although neurons or astrocytes play
very important role in ALS pathogenesis, it is of consider-
able interest that mutant SOD1, when over expressed either
in neurons or astrocytes, does not sufficiently contribute to
the onset of ALS. In culture study, conversely, astrocytes
expressing mutated SOD1 kill spinal primary and embry-
onic mouse stem cell-derived motor neurons [73]. In addi-
tion to neurons and astrocytes, microglia are closely related
10 neuron injury not only in ALS but also other neuro-
degenerative disorders, Approaches such as the use of a
deletable mutant SOD1 transgene have demonstrated that
diminishing mutant SOD1 within microglia has litle effect
on the early disease phase but sharply slows later disease
progression: 1.e.. SOD1 mutated motor neurons are a deter-
minant of onset and early disease, and mutant accumulation
within microglia accelerates disease progression [9]. Inter-
estingly, microglia themselves have a double-edged sword
effect; wild-type microglia can extend the survival of G93A
mice with PU.1 knockout mice (which are unable to
develop myeloid and lymphoid cells) by using bone mar-
row transplantation [6]. Since retraction of motor axons
from synaptic connections to muscle is among the earlier
presymptomatic morphological findings in SOD1-mutated
mice, muscle itself is also a likely primary source of mutant
SOD!1 toxicity. However, use of a deletable mutant gene to
eliminate mutant SOD1 from muscle does not affect disease
onset or survival: SODI-mutant-mediated damage within
muscles is not a significant contributor to non-cell-autono-
mous pathogenesis in ALS [66].

Relation between mutant SOD| and disease progression

Unlike patients with SODI-mutated FALS, transgenic
rodents bear both human mutant SOD1 and native endoge-
nous rodent SOD1. Native endogenous rodent SODI cata-
lyzes the conversion of the superoxide radical to hydrogen
peroxide and molecular oxygen. Even overinduced human
mutant SOD1 also detoxifies the superoxide radical, which
is a source of reactive oxygen species generated from aero-
bic organisms, and protects cells, including motor neurons,
from oxidative injury. Based on the gain-of-function theory,
human mutant SODI1 itself acts as a cytotoxic factor, and in
G1H-G93A mice human mutant G93A-SOD1 shows cyto-
toxicity for motor neurons. In 90-day-old G1H-G93A mice
that show no significant motor neuron loss and only slight
vacuolation pathology, G93A-SODI is already present but
its expression level is not marked, and immunohistochemi-
cally it is expressed mainly in the neuropil, sometimes being
expressed intensely within the rims of vacuoles in the neuro-
pil and motor neuron cytoplasm (Fig. 3e.f). In contrast,
motor neurons do not express mutant SODI (Fig. 3e,f). In
100-day-old GIH-GY3A mice that demonstrate a slightly
decreased number of motor neurons and prominent vacuola-
tion pathology, mutant G93A-SODI1 is highly expressed in
comparison with the level at 90 days of age. At 110 days, the
mice that show loss of anterior horn cells with some inclu-
sions and vacuole formation also exhibit high expression of
mutant G93A-SODI, which morphologically is located
within the motor neuron cytoplasm and the vacuole rims in
the neuropil (Fig. 3e.g). End-stage GIH-G93A mice that
show severe motor neuron loss as well as vacuolation and
inclusion pathologies demonstrate high expression of mutant
G93A-SODI, and immunohistochemically mutant G93A-
SODI is aggregated and sequestered into the LBHIs, which
are strongly positive for mutant G93A-SODI (Fig. 3e, h).
Considered in connection with the abundance of neuropil
vacuoles and few LBHIs at the early stage, and the fact that
mice at the terminal stage show many LBHIs and less abun-
dant vacuoles, as well as the accumulation of mutant G93A-
SOD1 in vacuoles at the early stage and marked aggregation
of mutant G93A-SODI in LBHIs ar the late stage, it is possi-
ble that cytotoxic mutant G93A-SOD1 within vacuoles at
the early stage leaks into the neurons and then aggregates
within neurons as LBHIs with disease progression. Along
with disease progression, there is a breakdown of cytotoxic
mutant SOD1 sequestration in vacuoles, and the mutant
SOD1 aggregates in motor neurons, resulting in their degen-
eration/death.

Development of rats with human mutant SOD1

The ultimate aim of developing transgenic rodents express-
ing human mutant SOD1 are as follows: to gain an
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understanding of the mechanism of motor neuron death in
the presence of mutant SODI, and to test new ALS therapies.
Freshly obtained mouse spinal cord including the nerve
roots, cauda equina and filum terminale, weighs only about
110 mg and is approximately 4 cm in length. In order to
perform more extensive analysis of the mechanism of
motor neuron death and to devise new ALS therapies that
are difficult or impossible to explore using the small spinal
cord of the mouse, transgenic rats expressing human mutant
SODI1 have been developed [2, 43, 72]. As rats are a larger
species than mice, they are easier to use in studies involv-
ing manipulations of spinal fluid (e.g., implantation of
intrathecal catheters for chronic therapeutic studies and
CSF sampling) and the spinal cord (e.g., direct administra-
tion of viral and cell-mediated therapies).

Relationship between ALS and TDP-43

The 43-kDa TAR DNA-binding protein (TDP-43) is local-
ized o the nucleus. Oniginally, TDP-43 was identified as a
component of ubiquitinated inclusions in frontotemporal
lobar degeneration with ubiquitinated inclusions (FTLD-
U) and ALS [3, 74]. Analyses of TDP-43 immunohisto-
chemistry in SALS (two patients), mutant SOD1-unrelated
FALS (two patients) and ALSD (one patient) have shown
TDP-43-immunoreactive inclusions such as SLI/RHI in
the anterior horn cells of the spinal cord [95]; as men-
tioned above, SLI/RHI are characteristic morphological
structures in ALS, and mutant SOD1-unrelated FALS 1s
neuropathologically indistinguishable from SALS. TDP-
43 immunoreactivity has also been detected in the motor
neurons of the hypoglossal nucleus in 4 patients with
FTLD-MND/ALSD and 11 patients with ALS: TDP-43-
positive structures include SLI/RHI [26]. Although Bunina
bodies are a pathognomonic structure in SALS, mutant
SODI1-unrelated FALS and FTLD-MND/ALSD, Bunina
bodies themselves are negative for TDP-43 [95]. With
regard to mutant SODI-related motor neuron death,
LBHIs, which are characteristic structures in mutant
SODI-related FALS with A4T (one patient) and DI10TY
(one patient) reportedly do not express TDP-43 [95]. In
SALS (one patient) as well as mutant SOD1-related FALS
with A4T (one patient) and 11 13T (one patient), TDP-43 is
mislocalized from the nucleus to the cytoplasm [83], Espe-
cially. one case of SALS was reported 1o show ubiquitin-
positive RHIs with TDP-43 staining pattern [83]. By
marked contrast, human mutant G93A, G37R and G85R
SODI-transgenic mice do not show any TDP-43 abnor-
malities including either TDP-43-positive inclusions or
TDP-43 mislocalization [83]. It could be stated that in gen-
eral, TDP-43 contributes to mutant SOD1-unlinked motor
neuron degeneration, whereas mutant SOD1-linked motor
neuron degeneration may not be essentially related 1o
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TDP-43 abnormality; in particular, human mutant SOD1
transgenic mice do not show TDP-43 abnormality [83].

Mouse models of ALS2

As already mentioned. SOD1 mutations have been identi-
fied as a cause of autosomal dominant FALS [22, Bd4].
Mutation in a second ALS-related (ALS2) gene has also
been identified as the cause of a rare autosomal recessive
form of juvenile-onset ALS, also referred to as ALS2 [7,
37,102], as well as juvenile-onset primary lateral sclerosis
(PLS) [37], and infantile-onset ascending hereditary spas-
tic paralysis (HSP) [24, 29, 35]. In humans, the ALS2 gene
is located on chromosome 2 at position 33.2, and encodes
a protein called ALS2 protein or alsin. ALS2 protein is
produced in a wide range of normal tssues, with the high-
est amounts in the brain and spinal cord, ALS2 protein is
composed of 1,657 amino acids with three predicted guan-
ine nucleotide exchange factor (GEF)-like domains (37,
102]: an N-terminal regulator of chromatin condensation
(RCC 1)-like domain (RLD) homologous to GEF for Ran
GTPase [77], middle Dbl homology (DH) and pleckstrin
homology (PH) (DH/PH)-like domains resembling GEF
for Rho GTPase [87), and a C-terminal vacuolar protein
sorting 9 (VPS9)-like domain similar to GEF for Rab5
GTPase [79]. This ALS2 protein is particularly abundant
in motor neurons, ALS2 protein is preferentially associ-
ated with the cytoplasmic face of the endosomal mem-
brane [79]. Although the function of ALS2 protein in
motor neurons is unclear, it may play an important role in
regulating cell membrane organization and the movememt
of molecules within motor neurons. Therefore, it would be
expected to play a role in the development of axons and
dendrites. It is unclear how and why loss of ALS2 protein
function causes the ALS2-linked diseases: ALS2, juve-
nile-onset PLS, and infantile-onset ascending HSP. In
order to gain insight into the physiological role of ALS2
protein and the pathogenesis of ALS2-linked diseases,
four types of ALS2 knockout mice have been successfully
developed.

The ALS2 knockout mice with disruption of exon 3 of
the murine ALS2 gene reported by Cai et al. [13] show a
higher anxiety response as well as an age-dependent deficit
of motor coordination and learning. Histopathologically
and biologically, ALS2 knockout mice are characterized by
a lack of neuropathological abnormality, no alteration of
peripheral nerve conduction or electromyography features,
susceptibility to oxidative stress, and increased susceptibil-
ity to glutamate receptor-mediated excitotoxicity. In the
ALS2 knockout mice reported by Hadano et al. [38], exon
3 of the murine ALS2 gene is disrupted by inserting a stop
codon. These mice demonstrate no obvious developmental,
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reproductive or motor abnormalities, However, histopatho-
logically and biologically, they are characterized by an age-
dependent decrease in the size and number of ventral motor
axons and cerebellar Purkinje cells. astrocytosis and
microghal activation in the spinal cord and brain, motor
unit remodeling and fiber redistribution in skeletal muscle,
and slightly affected endosomal dynamics. ALS2 knockout
mice with disruption of both exons 3 and 4 of the murine
ALS2 gene reported by Devon et al. [25] show mild hypo-
activity. Neuropathologically, at the age of 12 months, they
show significantly smaller cortical motor neurons, and in
addition, marked diminution of Rab5-dependent endosome
fusion activity and disturbance in endosomal transport of
the insulin-like growth factor 1 and BDNF receptors. ALS2
knockout mice with disruption of exon 4 of the murine
ALS2 gene reported by Yamanaka et al. [101] demonstrate
slowed movement without muscle weakness and progres-
sive axonal degeneration in the lateral spinal cord. Signifi-
cantly, all four of these ALS2 knockout murine models
show no human ALS2-like symptoms and are not neurolog-
ically analogous to humans with ALS2.

Among previously reported human patients with ALS2-
linked disease, the members of a Tunisian family with
138delA ALS2 gene mutation showed development of
spasticity in all limbs between 3-10 years of age [7. 37,
102], and their clinical symptoms might be classifiable as
part of a spectrum of HSP rather than typical ALS. The
members of a Kuwaiti family with 1425_1426delAG ALS2
gene mutation showed infantile-onset spastic paralysis
without lower motor neuron involvement at 1-2 years
of age [37]. Members of a Saudi Arabian family
with1867_1868delCT ALS2 gene mutation developed PLS
between 1-2 years of age [33, 102]. Up to now, eight addi-
tional ALS2-linked diseases have been reported [24, 29, 30,
35, 62], and a major common characteristic is infantile-
onset spastic paralysis, reflecting upper motor disturbance.
Although lower motor neuron impairment has been
reported in a limited number of patients with ALS2 gene
mutation, the majority of ALS2 gene mutations appear to
be linked to upper motor neuron diseases from the view-
point of human clinical data of 11-type ALS2-linked dis-
eases. Although to the author’s knowledge there has been
no reported autopsy case of ALS2, detailed neuropathologi-
cal data from human ALS2 autopsy cases would clarify this
point. In this context, although the author is unable to
address the similarities and differences berween human
ALS2 and ALS2 animal models from a neuropathological
viewpoint, it might be concluded that data from ALS2
knockout mice and ALS2-linked diseases mentioned above
would become more valuable for clarifying the pathogene-
sis of human ALS2 if detailed human ALS2 autopsy data
were also available.

Animal models based on cytoskeletal abnormalities
Animal models based on neurolilament abnormalities

The neuron cytoskeleton consists of three major filaments:
actin microfilaments, microtubules, and neurofilaments,
Neurofilaments biochemically comprise three different iso-
forms known as neurofilament triplet proteins: light subunit
(68 kDa), medium subunit (160 kDa), and heavy subunit
(200 kDa). Ultrastructurally, neurofilaments are approxi-
mately 10 nm in diameter, but in cross-section they appear
tubular in structure with a narrow central electron-lucent
core, and have fine side arms. Their size places them in the
so-called “intermediate filaments™ morphologically.

Neurofilament-lacking mice

Mice lacking any of the neurofilament triplet protein genes
show no developmental problems [82]. However, mice
lacking the neurofilament light subunit show a lack of
intermediate filament structure, axonal hypotrophy, and
aggregation of neurofilament medium and heavy subunit in
motor neurons, although significant motor neuron loss is
not evident [5]. Mice lacking the neurofilament medium
subunit show axonal atrophy without significant motor
neuron loss, and reduce contents of neurofilament light
subunit [28]. Mice without the neurofilament heavy subunit
also exhibit axonal atrophy without significant motor
neuron loss [47). Therefore, model mice lacking any of the
neurofilament triplet protein subunits are not compatible
with human ALS patients, as no significant motor neuron
loss is evident.

Transgenic mice expressing the human wild-type
neurofilament gene

Transgenic mice expressing the human wild-type neurofila-
ment heavy chain gene show defective axonal transport and
axonal atrophy in association with ultrastructural diminu-
tion of cytoskeletal components, the smooth endoplasmic
reticulum, and mitochondria [16]. In mice showing a high
level of expression, neurofilament aggregation is observed
in the cytoplasm of neurons and proximal axons [17]. How-
ever, this transgenic mouse model shows no significant
motor neuron loss [16]. Like neurofilament heavy chain-
type transgenic mice, the neurofilament light chain-type
transgenic mice show accumulation of neurofilaments in
the neurons and axonal degeneration without significant
motor neuron loss [99]. Therefore, transgenic mouse mod-
els expressing the human wild-type neurofilament gene
bear no histopathological resemblance to human ALS in
terms of significant motor neuron loss.
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Transgenic mice expressing the human mutant
neurofilament light chain gene with the L394P

Transgenic mice expressing the human mutant neurofila-
ment light chain gene with the L394P develop neurological
symptoms of muscle weakness. Unlike mice expressing the
human wild-type neurofilament gene, these mice show sig-
nificant motor neuron loss [64]. From this viewpoint, this
mouse model is closely similar to human ALS on the basis
of neurofilament pathology, although in human ALS there
is no mutation of the neurofilament light chain gene with
L394P [27].

Transgenic mice expressing the peripherin gene

Peripherin is a 58-kDa type III intermediate filament pro-
tein, which has been reported to be a component of ubiqui-
tinated inclusion bodies in motor neurons of ALS patients
[39]. As the name “peripherin™ indicates, the protein exists
mainly in the peripheral nervous system, and only a small
amount is expressed with a selective distribution in the cen-
tral nervous system. Overexpression of peripherin in trans-
genic mice leads to loss of spinal cord anterior hom cells
and formation of inclusions that are immunoreactive for
peripherin [4].

Transgenic mice expressing the dynamitin gene

The dynein/dynactin-complex is a type of motor protein
responsible for minus-end-directed movement along the
microtubule and plays an important role in fast retrograde-
related axonal transport. Supporting the hypothesis that
impairment of retrograde axonal transport causes motor
neuron death, point mutations of the p150 subunit of the
dynactin gene have been reported in ALS patients [70].
Experimentally, on the basis of this retrograde axonal trans-
port impairment theory. mice overexpressing dynamitin,
which is a subunit of dynactin, have been produced, and
these mice show disruption of the dynein/dynactin com-
plex, leading to inhibition of retrograde axonal transport.
Histologically, such dynamitin-overexpressing mice show
motor neuron loss [63].

Concluding remarks

Human ALS pathology exhibits a variety of cytopathologi-
cal features including Bunina bodies, SLIs/RHIs, LBHIs/
Ast-Hls, and NFCls in addition to motor neuron degenera-
tion. Among various rodent models of ALS, rodents with
mutant SOD1 recapitulate motor neuron degeneration and
SODI-immunoreactive LBHIs/Ast-Hls, both of them found
in SODI-mutated FALS patients. Even with these similari-
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ties, human ALS pathology is different from that of rodents
carrying SODI mutation, because (1) ALS is not a single
entity but rather a heterogeneous syndrome, (2) relevant
anatomical structures are differemt berween humans and
rodents, and (3) human pathology generally deals with only
the terminal stage of the disease. In spite of these differ-
ences, motor neuron degeneration in rodent models pro-
vides us with opportunities to analyze the motor neuron
degeneration process in detail and even to test therapeutic
attempts. It is necessary to be aware not only of the similar-
ities but also of differences between these ALS models and
human ALS, because they are complementary.
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ARTICLE INFO ABSTRACT

The present study was aimed at determining whether human recombinant hepatocyte growth factor
(HGF) ameliorates cerebral edema induced by microsphere embolism (ME). Rats were injected with 700
microspheres (48 pm in diameter). Continuous administration of HGF at 13 pg/3 days/animal into the
right ventricle was started from 10 min after embolism to the end ol the experiment by using an osmotic
pump. On day 3 after the ME, the rats were anesthetized, and their brains were perfused with an isotonic
mannitol solution to eliminate constituents in the vascular and extracellular spaces. Thereafter, tissue
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g?nﬁﬂfschmu water and cation contents were determined. A significant increase in tissue water content of the right
Edema hemisphere by ME was seen. This ME-induced increase in water content was associated with increases in

tissue sodium and calcium ion contents and decreases in tissue potassium and magnesium ion contents
of the right hemisphere. The treatment of the animal with HGF suppressed the increases in water and
sodium and calcium ion contents, but not the decreases in potassium and magnesium ion contents, These
results suggest that HGF suppresses the formation of ischemic cerebral edema provoked intracellularly

lon
Hepatocyte growth factor

in rats with ME.

© 2008 Elsevier Ireland Led. All rights reserved.

It is well recognized that ischemia-induced cerebral edema
(ischemic cerebral edema) is a common complication in stroke
patients [15]. In experimental animals, the degree of ischemic
cerebral edema is dependent on the type and period of ischemia
|32] or ischemia/reperfusion [2], and is associated with sev-
eral pathophysiological alterations including disruption of the
blood-brain-barrier (BBB)[23], changes in the threshold of cerebral
blood flow [12], and an increase in hydrostatic pressure [17].

We have demonstrated various pathophysiological aspects of
microsphere embolism (ME)-induced cerebral ischemia in the rat.
For example, ME elicited decreases in substrates for cerebral energy
production [28] and mitochondrial activity [29], and caused alter-
ations in neuronal transmitter metabolism [27] as well as learning
and memory dysfunction [26]. Although cerebral edema is consid-
ered to occur after the onset of permanent arterial occlusion [10,13],
it remains unclear whether the ischemic cerebral edema occurs
under our experimental conditions for ME. Accordingly, we deter-

* Corresponding author at: Department of Molecular and Cellular Pharmacology.
Tokyo Umiversity of Pharmacy and Life Sciences. 1432-1 Honinouchi, Hachiogl. Tokyo
192-0392, Japan. Tel.: +81 42 676 4584; lax: +81 42 676 6595.
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mined whether ME-induced cerebral edema could be detectable
after rthe embolism.

Hepatocyte growth factor (HGF) and its receptor c-Met were
found to be expressed in the central nervous system, including
endothelial cells, and to function in an variety of ways [1,11,24,25].
Accumulating evidence indicates that HGF has been shown to
have organotropic action leading to regeneration from and pro-
tection against ischemic brain injury [19,22]. Particularly, we have
described profound effects of HGF on the ME-induced hyperper-
meability of the brain and learning dysfunction [7]. Accordingly.
the present study was designed to determine whether treat-
ment with HGF would affect the ME-induced ischemic cerebral
edema. Since, it remains unclear whether ME-induced cerebral
edema occurs intracellularly or extracellularly, we focused on the
development of intracellularly provoked cerebral edema in this
study.

Male Wistar rats weighing 220-250g were used as the exper-
imental animals. The animals were freely given food and water
according to the National Institute of Health Guide for the Care
and Use of Laboratory Animals, and the Guideline for Experimen-
tal Animal Care, issued by the Prime Minister's Office of Japan. The
study protocol was approved by the Committee of Animal Care and
Welfare of Tokyo University of Pharmacy and Life Sciences.
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