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The ubiquitin-proteasome system (UPS) is involved in the pathoge-
netic mechanisms of neurodegenerative disorders, including amyo-
trophic lateral sclerosis (ALS). Dorfin is a ubiquitin ligase (E3) that
degrades mutant SOD1 proteins, which are responsible for familial
ALS. Although Dorfin has potential as an anti-ALS molecule, its life in
cells is short. To improve its stability and enhance its EJ activity, we
developed chimeric proteins containing the substrate-binding hydro-
phobic portion of Dorfin and the U-box domain of the carboxyl
terminus of Hsc70-interacting protein (CHIP), which has strong E3
activity through the U-box domain. All the Dorfin-CHIP chimeric
proteins were more stable in cells than was wild-type Dorfin
(Dorfin™ 7). One of the Dorfin-CHIP chimeric proteins, Dorfin-
CHIPY, ubiquitylated mutant SODI more effectively than did
Dorfin™" and CHIP in vivo, and degraded mutant SODI protein
more rapidly than Dorfin™" does. Furthermore, Dorfin-CHIP"
rescued neuronal cells from mutant SOD1-associated toxicity and
reduced the agg formation induced by SOD1 more
effectively than did Dorfin™",

© 2006 Elsevier Inc. All rights reserved.
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Amyotrophic lateral sclerosis (ALS), one of the most commaon
neurodegenerative disorders, is characterized by selective motor
neuron degeneration in the spinal cord, brainstem, and cortex. About
10% of ALS cases are familial, of these, 10%—20% are caused by
Cuw/Zn superoxide dismutase (SOD1) gene mutations (Rosen et al.,
1993; Cudkowicz et al., 1997). However, the precise mechamsm that
causes motor neuron death in ALS is still unknown, although many
have been proposed: oxidative toxicity, glutamate receptor abnorm-
ality, ubiquitin proteasome dysfunction, inflammatory and cytokine
activation, neurotrophic factor deficiency, mitochondrial damage,
cytoskeletal abnormalities, and activation of the apoptosis pathway
(Julien, 2001; Rowland and Shneider, 2001),

Misfolded protein accumulation, one probable cause of neuro-
degenerative disorders, including ALS, can cause the deterioration
of various cellular functions, leading to neuronal cell death (Julien,
2001; Ciechanover and Brundin, 2003). Recent findings indicate
that the ubiquitin—proteasome system (UPS), a cellular function that
recognizes and catalyzes musfolded or impaired cellular proteins
(Jungmann et al., 1993; Lee et al,, 1996; Bercovich et al., 1997), is
involved in the pathogenesis of various neurodegenerative diseases,
among them ALS, Parkinson’s disease (PD), Alzheimer's disease,
polyglutamine disease, and prion disease (Alves-Rodrigues et al,,
1998; Sherman and Goldberg, 2001; Ciechanover and Brundin,
2003). The ubiquitin ligase (E3), a key molecule for the UPS, can
specifically recognize misfolded substrates and convey them to
proteasomal degradation (Scheffner et al, 1995; Glickman and
Ciechanover, 2002; Tanaka et al., 2004).

Dorfin, an E3 protein, contains an m-between-ring-finger
(RING-IBR) domain at its N-terminus. The C-terminus of Dorfin
can recognize mutant SOD1 proteins, which cause familial ALS
(Niwa et al, 2001; Ishigaki et al.,, 2002b; Niwa et al., 2002). In
cultured cells, Dorfin colocalized with aggresomes and ubiquitin-
positive inclusions, which are pathological hallmarks of neurode-
generative diseases (Hishikawa et al., 2003; Ito et al., 2003). Dorfin
also interacted with VCP/p97 in ubiquitin-positive inclusions in
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ALS and PD (Ishigaki et al., 2004). Moreover, formation of this
complex was found to be necessary for the E3 acuvity of Dorfin
against mutant SODI. These findings suggest that Dorfin is
mvolved in the quality-control system for the abnormal proteins
that accumulate in the affected neurons in neurodegenerative
disorders.

Dorfin degrades mutant SODIs and atwenuates mutant SODI1-
associated toxicity in cultured cells (Niwa et al., 2002), However,
n Dorfin/mutant SOD1 double transgenic mice, we found only a
modest beneficial effect on mutant SODI-induced survival and
motor dysfunction (unpublished data). These findings, combined
with the short half-life of Dorfin protein, led us to hypothesize that
the limiting effect of the Dorfin transgene may be a consequence of
autodegradation of Dorfin, since Dorfin can execute autoubiqui-
tilation in vive (Niwa et al., 2001).

Carboxyl terminus of Hsc70-interacting protein (CHIP) is also an
E3 protein; it has a TPR domain in the N terminus and a U-box
domain in the C terminus. The U-box domain of CHIP is responsible
for its strong E3 activity, whereas the TPR domain recruits heat
shock proteins harboring misfolded client proteins such as cystic
fibrosis transmembrane conductance regulator (CFTR), denatured
luciferase, and tau (Meacham et al., 2001; Murata et al., 2001, 2003;
Hatakeyama et al., 2004; Shimura et al., 2004).

To prolong the protein lifetime of Dorfin and thereby obtain
more potent ubiquitylation and degradation activity against mutant
SODIs than is provided by Dorfin or CHIP alone, we generated
chimenc proteins containing the substrate-binding domain of
Dorfin and the UPR domain of CHIP substitute for RING/IBR of
Dorfin, We developed 12 candidate constructs that encode Dorfin-
CHIP chimeric proteins and analyzed them for their E3 activities
and degradation abilities against mutant SOD! protein in cultured
cells.

Experimental procedures
Plasmids and antibodies

We designed constructs expressing Dorfin-CHIP chimeric
protein. In these constructs, different-length fragments of the C-
terminus portion of Dorfin, including the hydrophobic substrate-
binding domain (amino acids 333-838, 333-700, and 333 454)
and the C-terminus UPR domain of CHIP with amino acids 128~
303 or without amino acids 201-303, a charged region was fused
in various combinations as shown in Fig. 2C. Briefly, Dorfin-
CHIP™ ¥ © % ™ 4nd ' had the C-terminus portion of Dorfin in
their N-terminus and the U-box of CHIP in their C-terminus;
Dorfin-CHIP™ & % " ¥ and * had the U-box of CHIP in their N-
terminus and the C-terminus portion of Dorfin in their C-terminus.

We prepared a pCMV2/FLAG-Dorfin-CHIP chimeric vector
(Dorfin-CHIP) by polymerase chain reaction (PCR) using the
appropriate design of PCR primers with restriction sites (Clal,
Kpnl, and XBal or EcoRI, Clal, and Kpnl). The PCR products
were digested and inserted into the Clal-Kpnl site in pCMV2
vector (Sigma, St. Louis, MO). These vectors have been
described previously: pFLAG-Dorfin™" (Dorfin™"), FLAG-
DorfinC'2%/C13ss {Dorﬁn("""gc'”s)_ pFLAG-CHIP (CHIP),
pFLAG-Mock (Mock), peDNA3.1/Myc-SODI™™ (SODI™T),
pcDNA3. 1/Myc-SOD19%*4 (SOD19%*"), pecDNA3.1/Mye-
SOD19%® (SOD19%*") heDNA3.1/Myc-SOD1H6R (SODIHR),
pecDNA3. 1/Myc-SOD1%Y® (SOD19*™®) pEGFP/SODIWT
(SOD1™'.GFP), and pEGFP/SOD1*** (SODI®***.GFP) (Ishi-

gaki et al., 2004). We used monoclonal anti-FLAG antibody (M2;
Sigma), monoclonal anti-Myc antibody (9E10; Santa Cruz
Biotechnology, Santa Cruz, CA), monoclonal anti-HA antibody
(12CAS5; Roche, Basel, Switzerland), and polyclonal anti-SODI
(SOD-100; Stressgen, San Diego, CA).

Cell culture and mansfection

We grew HEK293 cells and neuro2a (N2a) cells in Dulbecco’s
modified Eagle’s medium (DMEM) containing 10% fetal calf
serum (FCS), 5 U/ml penicillin, and 50 pg/ml streptomycin. At
subconfluence, we transfected these cells with the indicated
plasmids, using Effectene reagent (Qiagen, Valencia, CA) for
HEK293 cells and Lipofectamine 2000 (Invitrogen, Carlsbad, CA)
for N2a cells. After overnight posttransfection, we treated the cells
with | pM MG132 (Z-Leu-Leu-Leu-al; Sigma) for 16 h 1w inhibit
cellular proteasome activity. We analyzed the cells 24-48 h afier
transfection. To differentiate N2a cells, cells were treated for 48 h
with 15 uM of retinoic acid n 2% serum medium.

Immunological analysis

At 24-48 h after ransfection, we lysed cells (4% 10" in 6-cm
dishes) with 500 pl of lysis buffer consisting of 50 mM Tns- HCI,
150 mM NaCl, 1% Nonidet P-40, and | mM ethylenediaminete-
traacetic acid (EDTA), as well as a protease inhibitor cocktail
(Complete Mini, Roche). The lysate was then centrifuged at
10,000x g for 10 min at 4°C to remove debris. We used a 10%
volume of the supernatants as the lysate for SDS-PAGE. When
immunoprecipitated, the supernatants were precleared with protein
A/G agarose (Santa-Cruz). A specific antibody, either anti-FLAG
(M2) or antu-Myc (9E10), was then added. We incubated the
immune complexes, first at 4°C with rotation and with protein A/G
agarose {Roche) for 3 h, after which they were collected by
centnfugation and washed four times with the lysis buffer For
protein analysis, immune complexes were dissociated by heating in
SDS-PAGE sample buffer and loaded onto SDS-PAGI. We
separated the samples by SDS-PAGE (15% gel or 5%-20% gradient
gel) and transferred them onto polyvinylidene difluoride mem-
branes. We then immunoblotted samples with specific antibodies

Immunohistochemisory

We fixed differentiated N2a cells grown in plastic dishes in 4%
paraformaldehyde in PBS for 15 min. The cells were then blocked
for 30 min with 5% (vol/vol) normal goat serum in PBS, incubated
overnight at 4°C with anti-FLAG antibody (M2), washed with
PBS, and incubated for 30 min with Alexa 496 nm anti-mouse
antibodies (Molecular Probes, Eugene, OR). We mounted the cells
on slides and obtained images using a fluorescence microscope
(IX71; Olympus, Tokyo, Japan) equipped with a cooled charge-
coupled device camera (DP70; Olympus). Photographs were taken
using DP Controller software (Olympus).

Analysis of protein stability

We assayed the stability of proteins by pulse-chase analysis
using [**S] followed by immunoprecipitation. Metabolic labeling
was performed as described previously (Yoshida et al, 2003),
Briefly, in the pulse-chase analysis of Dorfin proteins, HEK293
cells in 6-cm dishes were transiently transfected with 1 pg of
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performed. Cells were harvested and analyzed a1 0, 1, or 3 h after labeling
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Dorfin™" and Dorfin®' %S were significant at 1 h (p<0.01) and 3 h
after labeling (p<0.001) (lower panels). Values are the means+SE, n=4.
Statistics were done using an unpaired r-test. (B) Cells overexpressing
Dorfin™T or Dorfin®"***“1*% yere reated with different concentrations of
MUG132 for 3 h after labeling.

FLAG-Dorfin™" or FLAG-Dorfin”'¥“"**S_In pulse-chase ex-
periments using SOD1**® N2a cells in 6-cm dishes were tran-
siently transfected with 1 pg of SOD1%***-Myc or SOD17"**-Myc
and FLAG-Mock, FLAG-Dorfin, or FLAG-Dorfin-CHIP", FLAG-
Mock was used as a negative control. After starving the cells for
60 min in methionine- and cysteine-free DMEM with 10% FCS, we
labeled them for 60 min with 150 pCi/ml of Pro-Mix L-[**S] in vitro
cell-labeling mix (Amersham Biosciences). Cells were chased for
different lengths of time at 37°C. In experi with p ymal
inhibition, we added different amounts of MGI32 in medium
during the chase period. We performed immunoprecipitation using
protein A/G agarose, mouse monoclonal anti-FLAG (M2), and anti-
Myc (9E10). The intensity of the bands was quantified by
ImageGauge software (Fuji Film, Tokyo, Japan).

MTS assay

We transfected N2a cells (5000 cells per well) in 96-well
collagen-coated plates with 0.15 pg of SODI“**™.GFP and
0.05 pg of Dorfin, CHIP, Dorfin-CHIP®, or pCMV2 vector (Mock)
using Effecten reagent (Qiagen). Then we performed 3-(4,5-
dimethylthiazol-2-yl)-5-{3-carboxymethoxyphenyl}-2-(4-sulfophe-
nyl)-2H-tetrazolium inner salt (MTS) assays using Cell Titer 96

(Promega) at 48 h after incubation. This procedure has previously
been described (Ishigaki et al., 2002a).

Aggregation assay

We trunsfected N2a cells in 6-cm dishes with 1.0 pg of
SODI“***.GFP and 1.0 pg of FLAG-Mock, FLAG-Dorfin,
FLAG-CHIP, or FLAG-Dorfin-CHIP"_ Afier overnight incubation,
we changed the medium to 2% FCS containing medium with
15 uM retinoic acid (RA) for differentiation. In the MG132 (+)
group, | pM of MG132 was added after 24 h of differentiation
stimuli. After 48 h of differentiation stimuli, we examined the cells
in their living condition by fluorescence microscopy. The
transfection ratio was equivalent (75%) among all groups. Visually
observable macro aggregation-harboring cells were counted as
“aggregation positive™ cells (Fig. 7C). All cells were counted in
fields selected at random from the four different quadrants of the
culture dish. Counting was done by an investigator who was blind
to the experimental condition.

Results
Dorfin degradation by the UFS in vivo

We analyzed the degradation speed of FLAG-Dorfin by the
pulsechase method using ["SS] labeling, finding that more than
half of wild-type Dorfin (Dorfin*") was degraded within |1 h
(Fig. 1A). This degradation was dose-dependently inhibited by
MG132, a proteasome inhibitor (Fig. 1B). On the other hand, the
RING mutant form of Dorfin (Dorfin®'"*¥“"**%)_which lacks E3
activity (Ishigaki et al., 2004), degraded significantly more slowly
than did Dorfin™" (Fig. 1A and Table 1). As shown in Fig. 1A,
Dorfin™" showed two bands, whereas Dorfin®'**¥C1¥%8 hag o
single band. This was also seen in our previous study (Ishigaki et
al., 2004) and may represent posttranslational modification.

Construction of Dorfin-CHIP chimeric proteins

It 1s known that the C-terminus portion of Dorfin can bind 1o
substrates such as mutant SOD1 proteins or Synphilin-1 (Niwa et
al., 2002; Ito et al., 2003). We attempted to identify the domain of
Dorfin that interacts with substrates. Although there was no
obvious known motif in the C-terminus of Dorfin (amino acids
333-838), us first quarter contained rich hydrophobic amino acids
(amino acids 333-454) (Fig. 2A). Immunoprecipitation analysis
revealed that the hydrophobic region of Dorfin (amino acids
333-454) was able to bind to SOD1°*F  indicating that this
hydrophobic region is responsible for recruiting mutant SOD1 in
Dorfin protemn (Fig. 2B).

To establish more effective and more stable E3 ubiquitin ligase
molecules that can recognize and degrade mutant SODls, we

Table 1
Serial changes in the amounmts of Dorfin™", Dorfin®'* €% 4ng
Dorfin-CHIP*

0h (%) 1 h (%) 3h (%)
Dorfin™" 100 437470 10.3£4.4
Dorfin® ' #3%¢1355 100 7392138 43,7419
Dorfin-CHIP* 100 £9.0£57 475453

Values are the mean and SD of four independent experiments.
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designed Dorfin-CHIP chimenc proteins containing both the
hydrophobic substrate-binding domam of Dorfin and the U-box
domain of CHIP, which has strong E3 activity (Fig. 2C). We
verified that all of the 12 candidate chimenc proteins were
expressed in HEK293 cells (Fig. 2D)

Expression of Dorfin-CHIP chimeric proteins in cells

The halflives ofall the Dorfin-CHIP chimeric proteins were more
than 1 h. In some of these protemns, such as Dorfin-CHIP™ %’ and ",
moderate amounts of protein still remained at 6 h after labeling,
indicating that they were degraded much more slowly than was
Dorfin™" (Fig. 3). Repetitive experiments using Dorfin-CHIP"
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yielded a significant difference between the amount of Dorfin™"
and Dorfin-CHIP" at | h and 3 h (Table 1)

E3 activity of Dorfin-CHIP chimeric proteins against mutant
SOD1

Immunoprecipitation analysis demonstrated that Dorfin and
CHIP bound to mutant SOD19% ig equivalent amounts and that
all of the Dorfin-CHIP chimenc proteins interacted with mutant
SOD19%® iy vive, Dorfin-CHIP* P & F 2 % 4nd © bound 1o the
same or greater amounts of SOD1“**® than did Dorfin, whereas
Dorfin-CHIP® © % and ! did not (Fig. 4A, upper panel). None
of the Dorfin-CHIP chimeric proteins bound to SODI™ in vive
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Fig. 4. The E3 activity of Dorfin-CHIP chimeric proteins on mutant SODI in vivo. (A) fn vivo binding assay with both wild-type and mutant SODIs.
SOD19%®. or SODI™"-Myc and FLAG derivatives of Dorfin-CHIP chimeric proteins were coexpressed in HEK293 cells. Immunoprecipitation was done
using anti-Myc antibody. Immunoblotting with anti-FLAG antibody revealed that all the Dorfin-CHIP chimeric proteins bound in vive to S{JDim(R-Myc but
not to SODI%-Myc. Single and double asterisks indicate overexpressed human SODIs and mouse endogenous SOD1, respectively. (B) In vivo
ubiquitylation assay in HEK293 cells. SOD19**®-Myc, HA-Ub, and FLAG derivatives of Dorfin-CHIP chimeric proteins were coexpressed in HEK293 cells.
Immunoblotting with anti-HA antibody demonstrated the ubiquitylation level of SDDIG”R~M_\-'C by FLAG denvatives of Dorfin-CHIP chimeric proteins in
vivo. Arrows indicate IgG light and heavy chains. Single and double asterisks indicate overexpressed SOD! and mouse endogenous SODI, respectively. (C)
In vivo ubiquitylation assay in N2a cells. SODI®**®.Myc, HA-Ub, and FLAG derivatives of Dorfin-CHIP chimeric proteins were coexpressed in N2a cells,
Arrows indicate IgG light and heavy chains. Single and double asterisks indicate overexpressed human SOD1s and mouse endogenous SODI, respectively
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(Fig. 4A, lower panel). Some Dorfin-CHIP chimeric proteins, such
as Dorfin-CHIP® ©, and ', had lower amounts of both SOD1™"
and SOD1°**® in the lysates. We performed quantitative RT-PCR
using specific pnmers for SOD1-Mye, finding that coexpression of
Dorfin-CHIP" © or ' suppressed the mRNA expression of
overexpressed SOD1 gene (Supplementary Fig. 1). Considenng
the possibility that these Dorfin-CHIP chimeric proteins might
have unpredicted toxicity for cells by affecting gene transcription
via unknown mechanisms, we excluded them from further
analysis. Other Dorfin-CHIP proteins did not affect SODI-Myc
gene expression, which validated the companison among IPs and
ubiquitylated mutant SOD1 in Figs. 4A-C.
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SO ™ amye - 4+ - - -

*  |Lysate
** |B: anti-S0D1
IP: anti-Flag
|B: anti-SOD1
HEK293
B :
Dorfin-CHIP
soD1™mye + - - - -
SO ™ e - 4+ - - -
s001®* me - - + - -
SO01% e
S001™  ye

HA-UL

IP: anti-Myc
IB: anti-HA

—] + Lysaie

L | 4+ |B: anti-SOD1

HEK293

To assess the effectiveness of the E3 activity of Dorfin-CHIP
chimenic proteins, we did an (n-vivo ubiquitylation analysis by
coexpression of SODI“**.Mye, HA-Ub, and Dorfin-CHIP
chimeric proteins in HEK293 cells. We found that Dorfin and
CHIP enhanced the ubiquitylation of SOD1“**® protein and that
the ubiquitylation levels of these two E3 ligases were almost
equivalent. Moreover, Dorfin-CHIPP- B F ¥ and U ubiquitylated
SOD1%*® more effectively than did Dorfin or CHIP (Fig. 4B)

Performing the same in-vivo ubiquitylation assay using N2a
cells, we observed that the levels of ubiquitylation of SOD1%%*® by
Dorfin and CHIP were equivalent, as they were in HEK293 cells.
Among Dorfin-CHIP chimeric proteins, only Dorfin-CHIP"
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Fig. 5. Dorfin-CHIP" specifically ubiquitylates mutant SOD1s in vivo. (A) fn vivo binding assay with various mutant SODIs. SOD1™"-Myc, SOD19*- My,
SODI*™*-Mye, SODI™"-Myc or SODI™™®.-Myc, and FLAG-Dorfin-CHIP" were coexpressed in HEK293 (left) and N2a cells (right). Immunoprecipitation
was done using anti-Myc antibody. Immunoblotting with anti-FLAG antibody showed that both chimeric proteins specifically bound to mutani SOD1s in vive.

ous SODI,

Single and double asterisks indicate overexpressed SOD1 and mouse endog

pectively. (B) In vivo ubiquitylation assay, SOD1*-Mye,

SODI™*.Mye, SODI9***.Myc, SOD1"™**-Myc or SOD1%™-Mye, as well as FLAG-Dorfin-CHIP* and HA-Ub. was coexpressed in HEK293 (left) and N2a
cells (nght). Immunoblotting with anti-HA antibody showed the specific ubiquitylation of mutant SOD1-Myc by FLAG-Dorfin-CHIP" in vive. Arrows indicate
IgG light and heavy chains. Single and double asterisks indicate overexpressed human SOD1s and mouse endogenous SODI, respectively.
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ubiquitylated SOD1°*** more effectively than did Dorfin or CHIP, SOD1"** and SODI'™® but not SODI™", in HEK293 cells
while Dorfin-CHIP™ ® ™ *_ and * did not (Fig. 4C). Thus, Dorfin- This was confirmed in N2a cells (Fig. SA). In both HEK293 and
CHIP" was the most potent candidate of the chimeric proteins N2a cells, Dorfin-CHIP" also ubiquitylated mutant SOD| proteins
but not SOD1™7 (Fig. 5B).
Ubiguitylation of mutant SOD1 by Dorfin-CHIP*
Degradation of mutant SODI by Dorfin-CHIP chimeric proteins
Dorfin specifically ubiquitylated mutant SOD1 proteins, but not
SODI™™ protein (Niwa et al, 2002; Ishigaki et al, 2004). To assess the degradation activity of Dorfin-CHIP* against
Similarly, Dorfin-CHIP" interacted with SOD19%4, SOD19%*, mutant SOD1s, we performed the pulse-chase analysis on N2a

Ratic to time 0 h
=~
o

T v T T

3
Chasing time (h)

Chasingtime 0 1 3 6 (h)

Ratio o tma O h

i 3 :
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Fig. 6. Degradation of mutant SODI proteins with Dorfin-CHIP". {(A) Pulse-chase analysis of SOD1“**® with Dorfin-CHIP". N2a cells were coexpressed with
50D19***.Myc and Mock, Dorfin, and Dorfin-CHIP*. Pulse-chase expeniments using [**S)-Met/Cys were done. Immunoprecipitation using anti-Myc antibody
and SOD-PAGE analysis revealed the degradation speed of SOD19***.Myc_ (B) Serial changes in the amount of SOD1%*™ coexpressed with Mock, Dorfin, or
Dorfin-CHIP". Four independent experiments were performed and the amounts of SOD17*** were plotted. There were significant differences between Mock and
Dorfin (p<0.005), Mock and Dorfin-CHIP" (p<0.005), and Dorfin and Dorfin-CHIP* (p<0.05) at 3 h, as well as between Mock and Dorfin (< 0.05), and Mock
and Dorfin-CHIP" (p<0.05) ut 6 h afier labeling. Values are the means+SE, n =4, Statistical analysis was done by one-way ANOVA. (C) Pulse-chase analysis of
SOD19"* with Dorfin-CHIP". N2a cells were coexpressed with SOD1”**-Myc and Mock, Dorfin, and Dorfin-CHIP" as in panel A. (D)) Serial changes in the
amount of SODI™* coexpressed with Mock, Dorfin, or Dorfin-CHIP*. Four independent experiments were performed and the amounts of SOD1** were
plotted. There were significant differences between Mock and Dorfin (2<0.05) and Mock and Dorfin-CHIP" (p<0.01) at 3 h, as well as between Mock and
Dorfin (p<0.05), Mock and Dorfin-CHIP* (p<0.01), and Dorfin and Dorfin-CHIP* (p<0.05) at 6 h afier labeling. Values are the means+SE, n=4. Statistics
were done by one-way ANOVA. (E) The equivalent protein expression levels of Dorfin and Dorfin-CHIP. Half of the volume of samples used in the pulse-chase
analysis of panel C at 0 h was used for immunoprecipitation using anti-Flag M2 antibody. The following SOD-PAGE analysis revealed the amounts of Dorfin and
Dorfin-CHIP* in the experiment shown in pancl C.
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cells, using [**S] labeled Met/Cys. The protein levels of SOD1 %5%
and SOD19"** declined more rapidly with Dorfin coexpression.
Dorfin-CHIP" remarkably declined in both SOD1%%® and
SOD1%"* (Figs. 6A, C). Dorfin and Dorfin-CHIP* had similar
expression levels at 0 b of this experiment (Fig. 6E). As compared
to Mock, Dorfin showed significant declines of both SOD19%® 4
3 h (p<0.001) and 6 h (p<0.05) after labeling, as shown in a
previous study (Niwa et al., 2002). Dorfin-CHIP" also significantly
accelerated the decline of SODI*® at 3 h (p<0.001) and 6 h
(p<0.05) after labeling again as compared to Mock. At 3 h afler
labeling, a significant difference between Dorfin-CHIP" and
Dorfin was present with respect to SODI“**® degradation
(p<0.05). As compared to Dorfin, Dorfin-CHIP* also tended
toward accelerated SOD19**® degradation at 6 h after labeling
(Fig. 6B). Similarly, Dorfin showed significant declines of
SODI"* at 3 h (p<0.05) and 6 h (p=<0.05) after labeling, and
Dorfin-CHIP" significantly accelerated the declines of SOD19%*4
at 3 h (p<0.01) and 6 h (p<0.01) after labeling as compared 1o
Mock. A significant difference between Dorfin-CHIP" and Dorfin
was present at 6 h in SOD1"'* degradation (p<0.05) (Fig. 6D).

Attenuation of the toxicity of mutant SOD] and decrease in the
Sformation of visible aggregations of mutant SOD! in cultured
neuronal culture cells

The ability of Dorfin-CHIP chimenic proteins to attenuate
mutant SOD1-related toxicity was mlsyzed by MTS assay using
N2a cells. The expression of SOD19%F a5 compared to that of
SODI™T, decreased the viability of cells. Overexpression of Dorfin
reversed the toxic effect of SOD19%*® whereas overexpression of
CHIP did not. Dorfin-CHIP" had a significantly greater rescue
effect on SOD1%***_related cell toxicity than did Dorfin (Fig. 7A).
We also measured the cell viability of N2a cells overexpressing
Mock, Dorfin, and Dorfin-CHIP" with various amounts of
constructs, and found no difference in toxicity among them
(Supplementary Fig. 2).

A structure that Johnston et al. (1998) called aggresome is
formed when the capacity of a cell to degrade misfolded proteins is
exceeded. The accumulation of mutant SODI induces visible
macroaggregation, which is considered 1o be ‘aggresome’ in N2a
cells. We examined the subcellular localizations of Dorfin, CHIP,
and Dorfin-CHIP" by immunostaining N2a cells expressing
SOD1“***.GFP. Dorfin was localized in aggresomes with
substrate proteins, as in our previous studies. Dorfin-CHIP" was
also seen in aggresomes, whereas the staining of CHIP was
diffusely observed in the cytosol (Fig. 7B). We counted these
visible aggregations with or without MG132 treatment. Dorfin
decreased the number of aggregation-containing cells, as has been
reported (Niwa et al., 2002), but Dorfin-CHIP" did so more

logy of Disease 25 (2007) 331-341

effectively. These effects were inhibited by the treatment of
MG132 (Fig. 7C),

Discussion

E3 proteins can specifically recognize and degrade accumulat-
ing aberrant proteins, which arc deeply involved in the pathogen-
esis of neurodegenerative disorders, including ALS (Alves-
Rodrigues et al., 1998; Sherman and Goldberg, 2001; Ciechanover
and Brundin, 2003). For this reason, E3 proteins are candidate
molecules for use in developing therapeutic technology for
ncurodegenerative diseases. Dorfin is the first E3 molecule that
has been found specifically to ubiquitylate mutant SOD1 proteins
as well as to attenuate mutant SOD-associated toxicity in cultured
neuronal cells (Niwa et al,, 2002).

NEDLI, a HECT type E3 ligase, has also been reported to be a
mutant SOD1-specific E3 ligase and to interact with TRAPS and
dvll (Miyazaki et al, 2004). It has also been reported that
ubiquitylation of mutant SOD1-associated complex was enhanced
by CHIP and Hsp70 in vive (Urushitani et al, 2004). CHIP
ubiquitylated Hsp70-holding SODI1 complexes and degraded
mutant SODI, but did not directly interact with mutant SODI1
(Urushitani et al., 2004). Among these E3 molecules, Dorfin seems
to be the most potentially beneficial E3 protein for use in ALS
therapy since it is the only one that has been demonstrated to reverse
mutant SOD1-associated toxicity (Niwa et al., 2002), Furthermore,
Dorfin has been localized in various ubiquitin-positive inclusions
such as Lewy bodies (LB) in PD, as well as LB-like inclusions in
sporadic ALS and glial cell bodies in multiple-system atrophy
These findings indicate that Dorfin may be involved in the
pathogenesis of a broad spectrum of neurodegenerative disorders
other than familial ALS (Hishikawa et al., 2003, lto et al., 2003;
Ishigaki et al., 2004).

The half-life of Dorfin™" is, however, less than | h (Fig. 1,
Table 1). The amount of Dorfin is increased in the presence of
MG132, a proteasome inhibitor, indicating that Dorfin is
immediately degraded in the UPS. Since the nonfunctional RING
mutant form of Dorfin, Dorfin® %1% deoraded more slowly
than did Dorfin™", Dorfin seemed to be degraded by auto-
ubiquitylation. The degradation of Dorfin®' %€ s 4150
inhibited by MG132, suggesting that it is degraded by
endogenous Dorfin or other E3s. This immediate degradation of
Dorfin is a serious problem for its therapeutic application against
neurodegenerative diseases.

Several reports have shown that engineered chimera E3s are able
to degrade certain substrates with high efficiency. Protac, a chimeric
protein-targeting molecule, was designed to target methionine
aminopeptidase-2 to Skpl-Cullin-F box complex (SCF) ubiquitin
ligase complex for ubiquitylation and degradation (Sakamoto et al.,

Fig. 7. Dorfin-CHIP chimenc proteins can attenuate toxicity induced by mutant SOD| and decrease the formation of visible aggregation of mutant SOD1 in N2a
cells. (A) N2a cells were grown in 96 collagen-coated wells (5000 cells per well) and transfected with 0,15 ug of SODI™" and 0.05 g of Mock or 0.15 ng of
SODI™* and 0.05 ug of Mock, Dorfin, CHIP, or Dorfin-CHIP*, After the medium was changed, MTS assays were done at 48 h of incubation. Viability was
measured as the level of absorbance (490 nm). Values are the +SE, n=6. St were camed out by onc-way ANOVA. There were significant
differences between SOD 1 %**®-expressing cells coexpressed with Mock and SOD1 9% ing cells ¢ d with Dorfin (p<0.001), as well as between
SOD19% ™ ex g cells coexp 1 with Dorfin and SOD1%**-expressing cells coexpressed with Dorfin-CHIP* (p<0.001). (B) N2a cells were transiently
expressed with SOD19***_GFP and Mock, Dorfin, CHIP, or Dorfin-CHIP". Immunostaining with anti-FLAG antibody revealed that Dorfin, CHIP, and Dorfin-
CHIP" were localized with SOD1°**.GFP in macroaggresomes (arrows). Scale bar=20 um (C) The visible macrosggregations in N2a cells expressing both
SOD1°***.GFP and Mock, Dorfin, CHIP, or Dorfin-CHIP* with or without MG 132 tr were 1and the ratio of cells with aggregations to those with
GFP signals was calculated. Values are the means+SE, n=4. Statistics were done by one-way ANOVA. *p<0.01 denotes a significant difference between cells
with Mock and Dorfin or Dorfin-CHIP". **5<0.05 denotes a significant difference between cells with Dorfin and Dorfin-CHIPL,
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2001, 2003). Oyake et al. (2002) developed double RING ubiquitin
ligases containing the RING finger domains of both BRCA and
BARDI linked to a substrate recognition site PCNA. Recently,
Hatakeyama et al. developed a fusion protein composed of Max,
which forms a heterodimer with c-Myc, and the U-box of CHIP.
This fusion protein physically interacted with c-Myc and promoted
the ubiquitylation of c-Mye. It also reduced the stability of c-Myc,
resulting in the suppression of transcrniptional activity dependent on
c-Myc and the inhibition of tumorogenesis (Hatakeyama et al.,
2005). This indicated that the U-box portion of CHIP is able to add
an effective E3 function to a U-box-containing client protein.

We postulated that engineered forms of Dorfin could be stable
and still function as specific E3s for mutant SOD1s. Dorfin has a
RING/IBR domain in the N-terminal portion (amino acids 1-332),
but has no obvious motif in the rest of the C-terminus (amino acids
333-838). In this study, we have demonstrated that the
hydrophobic domain of Dorfin (amino acids 333-454) is both
necessary and sufficient for substrate recruiting (Fig. 2B). In our
engineered proteins, the RING/IBR motif of N-terminal Dorfin
was replaced by the UPR domain of CHIP, which had strong E3
activity (Murata et al.,, 2001). Some of the engineered Dorfin-
chimeric proteins, such as Dorfin-CHIP™ ® 7, and ", were
degraded in vivo far more slowly than was wild-type Dorfin,
indicating that they were capable of being stably presented in vivo
(Fig. 3). However, Dorfin-CHIP failed to show strong ubiquityla-
tion activity against SOD1%** in HEK293 cells. Since Dorfin-
CHIP®?, and - were able to bind to SOD19*** more strongly than
did Dorfin-CHIP®, the binding activity was more important for the
E3 activity than for the protein stability.

We next showed that although all of the Dorfin-CHIP chimenic
protemns bound to mutant SOD1 in vive, some of them, such as
Dorfin-CHIP* ©, and ', bound less than others (Fig. 4A). In
HEK293 cells, Dorfin-CHIP™ & 2 K ang & ubiquitylated
SOD1%**® more effectively than did Dorfin or CHIP; however, in
N2a cells only Dorfin-CHIP" had more effective E3 activity than
did Dorfin or CHIP. This discrepancy may be due to differences
between HEK 293 and N2a cells which could provide slight
different environment for the E3 machinery. Therefore, Dorfin-
CHIP" was the most potent of the candidate chimeric protemns in
degrading mutant SOD1 in the UPS in neuronal cells. We also
showed that Dorfin-CHIP" could specifically bind to and
ubiquitylate mutant SOD1s but not SODI™7 in vive, as Dorfin
had done (Niwa et al., 2002; Ishigaki et al., 2004) (Fig. 5). This
observation confirmed that the hydrophobic domain of Dorfin
(amino acids 333-454) is responsible for mutant SOD] recruiting.

Pulse-chase analysis using N2a cells showed that Dorfin-CHIP
degraded SOD19%® and SODI1”** more effectively than did
Dorfin (Fig. 6). This is compatible with the finding that Dorfin-
CHIP" had a greater effect than Dorfin did on the ubiquitylation
against mutant SOD1. The cycloheximide assay verified that the
degradation ability of Dorfin-CHIP" against SOD1°%® was
stronger than that of Dorfin or CHIP in HEK293 cells (data not
shown).

Dorfin-CHIP" also reversed SOD19%*®.associated toxicity in
N2a cells more effectively than did Dorfin (Fig. 7). This
therapeutic effect of Dorfin-CHIP" was expected from its strong
E3 activity and degradation ability against SOD1°*°®. Visible
protein aggregations have been considered to be hallmarks of
neurodegeneration. Increased understanding of the pathway
involved in protein aggregation may demonstrate that visible
macroaggregates represent the end-stage of a molecular cascade of
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steps rather than a direct toxic msult (Ross and Poirier, 2004), Two
facts that Dorfin-CHIP" decreased aggregation formation of
SOD1°%® and that this effect was inhibited by a proteasome
mhibitor should reflect the ability of Dorfin-CHIP" 1o degrade
mutant SOD1 in the UPS of cells.

Based on our present observations, Dorfin-CHIP', an en-
gineered chimeric molecule with the hydrophobic substrate-
binding domain of Dorfin and the U-box domain of CHIP, had
stronger E3 activity against mutant SOD| than did Dorfin or CHIP.
Indeed, it not only degraded mutant SOD1 more effectively than
did Dorfin or CHIP but, as compared to Dorfin, produced marked
attenuation of mutant SODI-associated toxicity in N2a cells. This
protective effect of Dorfin-CHIP" against mutant SOD1 has
potential applications to gene therapy for mutant SOD1 transgenic
mice because this protein has a long cnough life to allow the
constant removal of mutant SOD] from neurons. Since Dorfin was
originally identified as a sporadic ALS-associated molecule
(Ishigaki et al., 2002b) and is located in the ubiquitin-positive
inclusions of various neurodegenerative discases (Hishikawa et al.,
2003}, this molecule is an appropnate candidate for future use in
gene therapy not only for familial ALS, but also for sporadic ALS
and other neurodegenerative disorders.

So far, most reports on engineered chimera E3s have targeted
cancer-promoting  proteins. Dorfin-CHIP chimenc proteins are
the first chimera E3s to be intended for the treatment of
neurodegenerative diseases. Since the accumulation of ubiquity-
lated proteins in neurons 1s a pathological hallmark of various
neurodegenerative diseases, development of chimera E3s like
Dorfin-CHIP", which can remove unnecessary proteins, is a new
therapeutic concept. Further analysis, including transgenic over-
expression and vector delivery of Dorfin-CHIP chimeric proteins
using ALS animal models will increase our understanding of the
potential utility of Dorfin-CHIP chimenic proteins as therapeutic
tools.
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Mutations in the Cu/Zn-superoxide dismutase (SOD1) gene
cause familial amyotrophic lateral sclerosis (ALS) through the
gain of a toxic function; however, the nature of this toxic func-
tion remains largely unknown. Ubiquitylated aggregates of
mutant SOD1 proteins in affected brain lesions are pathological
hallmarks of the disease and are suggested to be involved in
several proposed mechanisms of motor neuron death. Recent
studies suggest that mutant SOD1 readily forms an incorrect
disulfide bond upon mild oxidative stress in vitro, and the insol-
uble SOD1 aggregates in spinal cord of ALS model mice contain
multimers cross-linked via intermolecular disulfide bonds.
Here we show that a non-physiological intermolecular disulfide
bond between cysteines at positions 6 and 111 of mutant SOD1
is important for high molecular weight aggregate formation,
ubiquitylation, and neurotoxicity, all of which were dramati-
cally reduced when the pertinent cysteines were replaced in
mutant SOD1 expressed in Neuro-2a cells. Dorfin is a ubiquityl
ligase that specifically binds familial ALS-linked mutant SOD1
and ubiquitylates it, thereby promoting its degradation. We
found that Dorfin ubiquitylated mutant SOD1 by recognizing
the Cys®- and Cys'"'-disulfide cross-linked form and targeted it
for proteasomal degradation.

Cu/Zn superoxide dismutase (SOD1),? a major intracellular
antioxidant enzyme, metabolizes superoxide radicals to molec-
ular oxygen and hydrogen peroxide (1, 2). Because mutations in
SODI linked to familial amyotrophic lateral sclerosis (ALS)
were first identified (3), more than 100 mutations at over 70
residues in the 153-amino acid SODI protein have been
reported (4). Most mutations are missense mutations, with a
few causing early termination or frame shifts near the carboxyl

* This work was supported by a Center of Excellence grant from the Ministry
of Education, Culture, Sports, Science and Technology and grants from the
Ministry of Health, Labor and Welfare of Japan, The costs of publication of
this article were defrayed in part by the payment of page charges. This
article must therefore be hereby marked “advertisement” in accordance
with 18 U5.C. Section 1734 solely to indicate this fact.

I The on-line version of this article (available at http://www.Jbc.org) contains
supplemental Fig. 51.

' To whom correspondence should be addressed. Tel: 81-52-744-2385; Fax:
81-52-744-2384; E-mail: sobueg@med.nagoya-u.ac.jp

* The abbreviations used are: SOD1, superoxide dismutase 1; ALS, amyo-
trophic lateral sclerosis; 2-ME, 2-mercaptoethanol; WST-1, 4-[3-(4-iodo-
phenyl}-2-(4-nitrophenyl)-2H-5-tetrazolio]-1,3-benzene  disulfonate:
GFP, green fluorescent protein.
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terminus of the protein. SODI mutations account for ~20% of
familial ALS, which is characterized by selective degeneration
of motor neurons, SOD1 is primarily a cytosolic protein (5), and
the active enzyme is a homodimer of two subunits (6). Each
subunit contains four cysteine (Cys) residues at positions 6, 57,
111, and 146. An intramolecular disulfide bond between Cys®”
and Cys'* of each subunit facilitates its correct folding and
stabilizes the active homodimeric structure (7, 8), but it is not
known how the disulfide is formed in the reducing environment
of the cytosol. Although the endoplasmic reticulum is the
specialized site for oxidative folding (9), there is no SODI
localization to the endoplasmic reticulum (10). Most familial
ALS-linked mutations render SOD1 more susceptible to
intramolecular disulfide bond reduction (11) and accelerate
the rate of protein turnover (12, 13). Recent lines of evidence
implicate the disulfide-reduced monomer as the common
aggregation-prone, neurotoxic intermediate of mutant
SODI1 proteins (8, 11, 14-16), and a significant fraction of
the insoluble SOD1 aggregates in the spinal cord of mutant
SOD1 transgenic mice contains high molecular weight spe-
cies cross-linked via intermolecular disulfide bonds (17).
Hence, modulation of disulfide bond formation may be
important in mutant SOD1-linked motor neuron-selective
neurotoxicity.

ALS-linked mutant SOD1 proteins are turned over more
rapidly than wild-type SODI, and proteasome inhibitors
increase the amount of mutant SOD1 (18, 19). To date, two
distinct ubiquityl ligases, Dorfin and NEDL1, have been
reported to ubiquitylate mutant SOD1 (20, 21). Dorfin is a
RING-finger/IBR (in-between ring-finger) domain-containing
ubiquityl ligase, which we previously identified from human
spinal cord (22}, and belongs to the RBR (RING-Between rings-
RING) family of proteins (23). Dorfin physically binds and ubiq-
uitylates various familial ALS-linked SOD1 mutants and subse-
quently targets them for proteasomal degradation, but it has no
effect on the stability of wild-type SOD1 (20). Overexpression
of Dorfin protects neuronal cells against the toxic effects of
mutant SOD1 and reduces the number of aggregates composed
of mutant SOD1 (20). However, the mechanism by which Dor-
fin discriminates between the normal and pathogenic status of
SOD1 proteins remains unknown. There are numerous vari-
ants causing familial ALS, thus it seems reasonable that Dorfin
recognizes a common protein modification among mutant
SOD1s that is not present in wild-type SODI.
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In this study, we generated SOD1 proteins with various com-
binations of the four Cys residues replaced by serines and
assessed their disulfide bond status, the changes in the forma-
tions of their high molecular weight species, and their neuro-
toxicity. Moreover, by studying the interaction between Dorfin
and these engineered SOD1s, we investigated whether disulfide
bonds are critical for Dorfin recognition and ubiquitylation of
mutant SOD1s.

EXPERIMENTAL PROCEDURES

Construction of Expression Vectors—Construction of
pcDNA3.1/MycHis-SOD1, pEGFP-N1-SODI1, and pcDNA4/
HisMax-Dorfin vectors were described previously (20, 22). Cys to
Ser missense mutations were introduced into pcDNA3.1/
MycHis-SOD1 and pEGFP-N1-50D1 with a QuikChange site-
directed mutagenesis kit (Stratagene, La Jolla, CA). Primer pairs
for each Cys to Ser mutant were as follows: 5'-CGAAGGCCGT-
GTCCGTGCTGAAGGGC-3' and 5'-GCCCTTCAGCACGGA-
CACGGCCTTCG-3' for C6S; 5'-GATAATACAGCAGGCTC-
TACCAGTGCAGGTCC-3' and 5'-GGACCTGCACTGGTAG-
AGCCTGCTGTATTATC-3' for C575; 5 -CTCAGGAGACCA-
TTCCATCATTGGCCGCAC-3" and 5'-GTGCGGCCAATGA-
TGGAATGGTCTCCTGAG-3' for C111S; and 5'-GGAAGTC-
GTTTGGCTTCTGGTGTAATTGGGATCG-3" and 5'-CGAT-
CCCAATTACACCAGAAGCCAAACGACTTCC-3 for C1465.
Multiple Cys to Ser replaced vectors were obtained by repeatedly
applying a mutagenesis.

Cell Culture, Transfection, and Antibodies—Neuro-2a cells
(American Type Culture Collection, Manassas, VA), a line
derived from mouse neuroblastoma, were maintained in Dul-
becco’s modified Eagle's medium containing 10% fetal calf
serum, 5 units/ml penicillin, and 50 pg/ml streptomycin.
Transfections were performed using Lipofectamine 2000
(Invitrogen) in the WST-1 assay or Effectene Transfection Rea-
gent (Qiagen, Valencia, CA) in other experiments according to
the manufacturers’ instructions. To inhibit cellular proteasome
activity, cells were treated with 1 um (except as otherwise indi-
cated) MG132 (Z-Leu-Leu-Leu-al, Sigma) or epoxomicin
(Sigma) as indicated concentration for 24 h after overnight
transfection. To differentiate Neuro-2a cells, they were
changed to Dulbecco’s modified Eagle’s medium culture
medium containing 2% fetal calf serum and 20 pm retinoic
acid and cultured for 48 h. Primary antibodies used were as
follows: anti-Myc mouse monoclonal antibody (9EIO,
Sigma), anti-Myc rabbit polyclonal antibody (A-14, Santa
Cruz Biotechnology, Santa Cruz, CA), anti-SODI1 rabbit
polyclonal antibody (SOD100, Stressgen Bioreagents, Victo-
ria, Canada), anti-a-tubulin mouse monoclonal antibody
(B-5-1-1, Sigma), anti-ubiquitin mouse monoclonal anti-
body (4PD1, Santa Cruz Biotechnology), and anti-Xpress
mouse monoclonal antibody (Invitrogen).

Transgenic Mice—17-week-old symptomatic B6S]L-
TgN(SOD1-G93A)1Gur ALS mice overexpressing the human
mutant SOD15%** (The Jackson Laboratory, Bar Harbor, ME)
were used. The experimental design of this study was fully
approved by the Experimental Animal Ethical Committee of
the Nagoya University Graduate School of Medicine. Tissues
were homogenized in 10 volumes of lysis buffer (TNE) consist-
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ing of 50 mm Tris-HCI, 150 mm NaCl, 1% Nonidet P-40, and 1
mm EDTA with a protease inhibitor mixture (Complete Mini,
Roche Diagnostics, Indianapolis, IN) and centrifuged at
20,000 x g for 30 min at 4 "C. Supernatants were used for West-
ern blotting analysis.

Immunoprecipitation and Western Blotting Analysis—5 X
10° cells from a 6-cm dish were lysed on ice with 1 ml of TNE
lysis buffer. The lysate was centrifuged at 1,000 X gfor I5min at
4°C to remove nuclei and cell debris. Denucleated cell lysates
(crude fraction) were separated into supernatant (soluble frac-
tion) and pellet fractions by centrifuging at 20,000 x g for 20
min at 4 *C. The pellets were lysed (insoluble fraction) with 1 ml
of TNES lysis buffer consisting of 50 mm Tris-HCl, 150 mm
NaCl, 1% Nonidet P-40, 2% SDS, and 1 mm EDTA with a pro-
tease inhibitor mixture (Complete Mini, Roche Diagnostics).
Protein concentrations were determined with a DC protein
assay kit (Bio-Rad). Immunoprecipitation from the soluble
fraction was performed with 2 pg of anti-Myc or anti-Xpress
antibodies and Protein A/G Plus-agarose (Santa Cruz Biotech-
nology), and the precipitates were washed four times in TNE
buffer. Cell lysates or immunoprecipitates were separated by
SDS-PAGE (5-20% gradient gel) and analyzed by Western
blotting with ECL plus detection reagents (GE Healthcare
Bio-Sciences, Piscataway, NJ). Non-reducing SDS-PAGE was
conducted without 2-mercaptoethanol (2-ME) in the sample
buffer. Because omitting reducing agents from the protein sam-
ples can lead to adventitious air oxidation or disulfide scram-
bling, 100 mwm iodoacetamide was added to the lysates to pre-
vent these changes during sample preparation.

Filter Trap Assay—Each of the various fractions from the cell
lysates (crude, soluble, and insoluble fractions) was filtered
under vacuum through 0.2-pm cellulose acetate membranes
(Sartorius, Gottingen, Germany) followed by two washes in
Tris-buffered saline. The membranes were then incubated with
5% milk powder in Tris-buffered saline at room temperature for
1 h, followed by an overnight incubation at 4 "C with anti-Myc
antibody in Tris-buffered saline with 0.1% Tween 20. Primary
antibodies were detected with horseradish peroxidase-conju-
gated secondary antibodies (GE Healthcare Bio-Sciences),
which were then detected with ECL plus chemiluminescence
reagent (GE Healthcare Bio-Sciences). To confirm equal load-
ing of proteins, the same samples were blotted onto 0.45-um
nitrocellulose membranes (Bio-Rad) and probed with anti-Myc
or anti-a-tubulin antibodies.

Neurotoxicity Analysis and Quantification of SODI
Ageregates—2 % 10* Neuro-2a cells were grown overnight on
four-chamber, collagen-coated slides (Nalge Nunc, Rochester,
NY) and then transfected with 0.2 ug of pEGFP-N1-SOD1.
After overnight incubation, the cells were differentiated in Dul-
becco’s modified Eagle’s medium containing 2% fetal calf serum
and 20 um retinoic acid for 48 h. Inclusion bodies were counted
in more than 100 randomly selected cells, and the percentages
of cells with such inclusions were calculated. Data from three
independent experiments were averaged. For the cell viability
assay, 5 X 10* Neuro-2a cells were grown in 96-well collagen-
coated plates overnight, and then transfected with 0.1 pg of
pEGFP-N1-SOD1 or pcDNA3.1/MycHis-SODI, with or with-
out 0.1 pg of pcDNA4/HisMax-Dorfin. pcDNA4/HisMax
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mock vector was used as a control. A 4-[3-(4-iodophenyl)-2-(4-
nitrophenyl)-2H-5-tetrazolio]-1,3-benzene disulfonate (WST-
1)-based cell proliferation assay (Roche Diagnostics) was per-
formed 48 h after differentiation. Absorbance was measured in
a multiple plate reader (PowerscanHT, Dainippon Pharmaceu-
tical, Japan). The assay was carried out in triplicate and statis-
tically analyzed by one-way analysis of variance or unpaired
t test.

Quantitative Analysis of Gene Expression Levels—Total RNA
was extracted from Neuro-2a cells expressing SOD1-GFP and
their Cys to Ser derivatives by usingan RNA Easy Kit (Qiagen),
followed by c¢DNA synthesis primed with oligo(dT) using
Superscript Il (Invitrogen). The gene expression level was
examined by quantitative reverse transcription-PCR using
primer sets specific to target genes and QuantiTect SYBR
Green PCR kit (Qiagen). PCR was performed on an iCycler
system (Bio-Rad) under the manufacturer's recommended
conditions.

Isolation of SOD1 Aggregates—Isolation of SOD1 inclusion
bodies was carried out according to Lee et al. (24) with a slight
modification. 5 X 107 Neuro-2a cells in a 60-mm dish express-
ing SODI-GFP were washed with cold phosphate-buffered
saline before addition of TNE buffer. After a 5-min incubation
at room temperature, the supernatant containing Nonidet
P-40-soluble proteins was carefully removed from dishes. After
gentle washing of dishes with phosphate-buffered saline, the
Nonidet P-40-insoluble materials were scraped and incubated
on ice for 5 min. The extract was then centrifuged at 80 X g for
15 min. The pellet containing big inclusions was put onto a slide
glass, sealed with a coverslip, and observed under a BX51 epif-
luorescence microscope (Olympus, Tokyo, Japan).

Cycloheximide Chase Analysis—Neuro-2a cells grown on
6-cm dishes were transfected with 1 pg of pcDNA3.1/
MycHis-50D1 with or without 1 pg of pcDNA4/HisMax-
Dorfin. 24 h after transfection, cycloheximide (50 pg/ml) was
added to the culture medium, and the cells were harvested at
the indicated time points. The samples were subjected to SDS-
PAGE and analyzed by Western blotting with anti-Myc anti-
body. The intensities of the bands were quantified by Image-
Gauge software (Fuji Film, Tokyo, Japan). The assay was carried
outin triplicate and statistically analyzed by one-way analysis of
variance or unpaired ¢ test.

RESULTS

Proteasome Inhibition Increases SDS-resistant Disulfide-
linked Species as Well as Insoluble Ones of ALS-linked Mutant
SOD1—Mutant SOD1 is a fairly unstable protein, and the
increased turnover of mutant SODI is mediated by the ubiq-
uitin-proteasome pathway (18, 19). Thus, we first examined the
effect of proteasome inhibition on mutant SODI1 proteins.
When cellular proteasome activity was blocked by the protea-
some inhibitor MG132, the level of soluble mutant SOD]5%%F
and SOD1%%** increased in a dose-dependent manner (Fig. 18,
arrowhead), and an SDS-resistant mutant SOD1 dimer
appeared (Fig. 1B, arrow). The increase in the amount of wild-
type SOD1 was much smaller than that of mutant SOD1 (Fig.
1B, arrowhead). Detergent-insoluble, sedimentable mutant
SOD1 also increased as proteasome activity was inhibited (Fig.
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FIGURE 1. Proteasome inhibition leads to the accumulation of intermo-
lecular disulfide bond-linked mutant SOD1. Neuro-2a cells expressing
wild-type (WT), GB5R, and G93A mutant SOD1-MycHis were treated with
MG132 for 24 h at the indicated concentrations. Soluble fractions were ana
lyzed by S0S5-PAGE in the absence (A) or presence (B) of 2-ME. Insoluble frac
tions were analyzed by SDS-PAGE in the presence of 2-ME (C). Arrow, a soluble
SDS-resistant dimer; arrowhead, a soluble monomeric SOD1; asterisk, disul-
fide-linked high molecular weight-species of SOD1. D, anti-a-tubulin as load-
ing control.

1C). Interestingly, as the proteasome activity was inhibited,
aberrant high molecular weight SDS-resistant disulfide-linked
mutant SOD1%%® and SOD15%** became more abundant (Fig.
1A, asterisk). There were almost no SDS-resistant disulfide-
linked species of the wild-type SOD1. The same findings were
obtained when blots were probed with anti-SOD1 antibody
(supplemental Fig. S1A4). These results were also confirmed
with epoxomicin, a selective and irreversible proteasome inhib-
itor (supplemental Fig. S1B). Thus, intermolecular disulfide
bond-linked mutant SOD1 is unstable and prone to degrada-
tion by the proteasome.

Free Cys® and Cys"'" Are Important for Generating Disulfide
Bond-linked Species and Insoluble, Sedimentable Forms of
Mutant Human SOD]—e examined the role of Cys residues
in the formation of aberrant disulfide-bond linked high molec-
ular weight species. Various combinations of the four Cys res-
idues at positions 6, 57, 111, and 146 replaced with serines were
introduced into SODI protein-expression vectors using site-
directed mutagenesis. The effects of amino acid replacement at
one of the four Cys residues, at two of the four Cys residues, and
at all four Cys residues on wild-type and two familial ALS-
linked SOD1 mutants, SOD1%%® and SOD15%3*, were investi-
gated. We used Myc-His-tagged SOD1 expression vectors and
an antibody against the tag peptide to detect SOD1 protein so as
to avoid possible reduced detection of SOD1 with multiple
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