EAAT4 IN RAT FORE- AND MIDBRAIN

Fig. 6

Immunchiglochemicnl staining in the presence of Triton
X-100, illustrating the distribution of EAAT4 throughout the basal
ganglin. A: Detail of the striatum. In the middle of a large number of
homogeneously distributed intermediate-sized neurons, very few,

faintly stiined large newrons could be distinguished (arrowhead-)
B,C: Detail of the globus pallidus (B} and the subthalamic nucleus
(STN: C). EAAT4-immunoreactive neurons were homogeneously dis
tributed. EAAT4 label was present in the cell bodies and dendrites
D: A large number of intensely labeled neurons could be =een in the
snbstantia nigra pars compacta (SNel In the subetantin nigra pare

Large, very faintly stained neurons could be detected when
Triton X-100 was used (Fig 6A, arrowhead) These large
neurons probahly represent the large aspiny cholinergic in-

laterale (SNI) cells were less alunduant bul stll intensely stained
Only & few intensely labeled cells were present in the substantia nigra
pars reticulata (SNr), in the middle of a number of faintly stained
neurons. E: In the entopeduncular nueleus (EP), sparse immunoreac-
tive neurons could be visualized in & meshwork of immunoreactive
neuropil. F: In the VTA intensely and homogeneously stained neurons
were abundantly prosent. Abbreviations: cp, cerebral peduncle; MT,
medial terminal nucleus aceessory oplic tract Seale bar 50 wm in
ABT-F; 100 pm in ©

terneurons of type 11 (2535 pm), which account for 1-2% of
the total neuron population, because this is the only cell type
in the striatum exhibiting this size (Yelnik, 2002) As in the
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striatum, in the globus pallidus (Fig. 6B) and STN (Fig. 6C),
EAAT4-immunoreactive neurons were homogeneously dis-
tributed. Staining was present in cell bodies and, contrary to
the striatum, also in dendrites. In the EP, a few immunaore-
active neurons could be visualized, whereas neuropil stain-
ing was moderate (Fig. 6E)

As for the SNe (Figs. 2D, 6D) and VTA (Figs. 2B,C, 6F),
very intensely and homogeneously stained, densely
packed neurons were visualized after EAAT4 staining.
The nuecleus of some immunopositive neurons was devoid
of this intense and homogeneous labeling, vet was often
covered by a number of immunoreactive puncta (Fig. 2C,
arrow). Still other neurons and most of the dendrites were
defined only by these immunoreactive puncta (Fig. 2D,E).
In the substantia nigra pars laterale (SN1), the staining
pattern of the immunoreactive neurons was similar to
that of the SN¢; however, the density of immunoreactive
neurons was significantly smaller compared with the SNe.
In contrast, in the substantia nigra pars reticulata (SNr),
an occasional intensely stained neuron was present in the
middle of a small number of faintly stained neurons, char
acterized by a punctate labeling (Fig. 6D).

Mesencephalic regions. EAAT4 was omnipresent in
the midbrain region. Besides the aforementioned high ex-
pression levels in the IP (Fig. 5F) and VTA (Fig. 6F),
EAAT4 was also enriched in the superficial layers of the
SC (Fig. 4A). The immunoreactive signal in the SC was
higher than average, with a very intense neuropil staining
in the zonal layer and superficial gray layer. In the optic
nerve layer, cell bodies as well as dendrites showed clear
EAAT4 labeling

Reverse transcription polymerase chain
reaction

The presence of EAAT4 in the fasciculus retroflexus was
further investignted on the mRNA level, given the unex-
pected abundant occurrence of EAAT4 protein in an axon
bundle. After callecting the tissue samples by means of the
LMD technique (Fig. 7TA-C), making it possible to isolate
tissue very precisely from the fasciculus retroflexus with.
out contamination from any other nearby brain tissue,
RT-PCR was performed with up- and downstream primers
corresponding to rat EAAT4 nucleotide sequences 906
926 and 1,299-1.319, respectively (Lin et al., 1998; Massie
et al., 2001). As a control we also included mRNA samples
of the cerebellum, cerebral cortex, striatum, and hip-
pocampus. For each condition a fragment was amplified
with a length of 414 bp, the expected length based on the
known sequence (Fig. 7D). No fragment was amplified
when the eDNA in the PCR reaction mixture was replaced
by water

Real-time PCR

In order to estimate tissue expression levels of EAATY
mRNA, semiquantitative analysis was performed by using
real-time PCR. As expected, the cerebellum was found to
contain by far the highest levels of EAAT4 mRNA (Fig
TE). By comparison, after setting the cerebellum as ecali-
brator, the cerebral cortex contained 6.7 = 1.8%, the hip-
pocampus 2.0 = 0.4%, the striatum 1.6 = 0.2%, and the
fasciculus retroflexus 4.7 = 1 8% of the total cerebellar
EAAT4 mRNA content (n = 3) These mRNA levels are on
the same order of magnitude as those measured by Ward
et al. (2004) in the cerebral cortex. ie. 3.1% relative to the
cerebellum
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Fig. 7. A: Photograph showing a frontal section from which the
fusciculus retroflexus (arrows) waa bilaterally removed by laser micro
dizsection. B,C: Detail of the same section before (B) and after (C) Lhe
fnsciculus retroflexus was lnser-collected. D: Conventional end-point RT
PCR with specific primers for EAAT4 on mRNA from the cerebellum
(Ch), cerebral cortex (Ctx), hippocampus (Hel, striatum (Str), and laser
caplured (reciculus retroflexus (Fr), No band could be detected in Lhe
negative control lane (INC), whereas for all other conditions a band of 414
Iy vigwalized E: Real-lime PCR analysis of EAAT4 mRNA expres
sion in ral cerebellum (Ch), eer | eortex (Cix), hippocampus (He),
strintum (Str), and mscoulus retr # (Frl. EAAT4 mRNA expreasion
levels wers normalized Lo GAPDH The amount of transeript in forebrain
regions was expressed as mean value (n - 3,  SD) relative to corebel
lum - 100%) Scalebar  2mmin A; 05 mm in B,.C
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B = 5 . 8

Fig. 8 Dislribution of EAAT4 mRNA throughoul the fore- and
midbrain (A=J) and cerebellum (K). Autoradiograms were generated
after in situ hybridization by using EAAT4 *S-labeled antisense
(A,C.E,G,ILK) and sense (L) riboprobes. Neighboring seclions were
stained with Richardson’s methylene blue-azure IT Nissl stain (B,
F.HJ). A=J: In the fore -and midbrain, labeling was higher than
average in layers TITT and layer V of the cerchral cortex (Cx;
A,CLEG), the substantia nigra pars compacla (SN¢; 1), the medisl
geniculate nucleus (MG; 1), and the supenior colliculus (SC; 1. Clear
FEAATY labeling was observed in the preotpic ares (PO; A), the hed

In situ hybridization
As a last verification of the immunchistochemical data

for EAAT4, in situ hybridization was performed on sec-
tions containing some important brain regions (Fig 8)

B A 5 - 8
nucleus of the stria terminalis (Bat, A), piriform cortex (Pi; A), hypo-
thalamie region (Hyp; C), premammillary nuclei (PM; E), the CAl
region of the hippocampus (He; ), and the central gray (CG; T K: A
very high signal was observed in the cerebellum (Chi. Abbreviations:
BS, brainstem CPu, caudate putamen; Hb, habenular nuclei; ic,
internal capsule; NST, subthalamic nucleus; SNr, substantia nigra
pare reliculate. Scale bar 2 mm. Scale bar in panel A applies to all
in situ hybridization figures (i.e. panel C, E, G, 1, K. L), scale bar in B
npplies to all Nissl stains (ie. D, F. H, J)

EAAT4 mRNA expression was by far highest in the cere-
bellar cortex (Fig. 8K) As for the cerebral cortex. we could
clearly distinguish a layered pattern with the highest
signal in layers [1/111 followed by layer V (Fig. 8A,C,E,G.I)
Also. a relatively intense signal was observed in the piri-
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form cortex (Fig. 8A,C). As for the hippocampal formation.
relatively strong labeling could be seen in all CA regions,
with the most intense zignal in CAl and in the dentate
gyvrus (Fig. SE.G). Concerning the nuclei of the basal gan-
glia, high EAATA signal was present in the SNe (Fig. 8I)
In addition, clear EAAT4 labeling occurred in the preoptic
area, the bed nucleus of the stria terminalis, several hy-
pothalamic, amygdaloid, and premammillary nuclei (Fig.
8C,E), in the central gray, and in the intermediate gray
layer of the superior colliculus (Fig. 81). Labeling with the
gens probe resulted in a faint background signal (Fig.
8L).

DISCUSSION

In this paper we describe for the first time in detail the
widespread distribution of EAAT4 protein throughout the
rat fore- and midbrain. EAAT4, which is highly enriched
in the Purkinje cells of the cerebellum, was omnipresent
in the rat fore- and midbrain, albeit at protein levels
significantly lower compared with those in the cerebellum.
On the whole, EAAT4-IR was localized not merely in glu-
tamatergic and GABAergic neurons, but also in dopami-
nergic and probably cholinergic neurons. Besides the neu-
ronal localization of EAAT4 protein, a very faint glial
labeling in white matter of several CNS regions as well as
in the ventricular walls could be observed. Given the un-
expected high expression level of EAAT4 protein in the
fasciculus retroflexus, the presence of EAATY in this axon
bundle was confirmed at the mRNA level and estimated to
be 4.7% that of the cerebellum. In addition, the distribu-
tion of EAAT4 in the main brain nuclei was confirmed on
the mRNA level by using conventional RT-PCR as well as
in situ hybridization.

In general, given the presence of the glial glutamate
transporters, which are, in most fore- and midbrain re-
gions, responsible for the bulk of glutamate reuptake, and
given the low glutamate transport rate of EAATY (Torres-
Salazar and Fahlke, 2007), we can imagine that the func-
tional significance of EAAT4 in all these regions is not
solely linked to glutamate reuptake activity. EAAT4 has
large substrate-gated Cl currents that are not coupled to
substrate transport. Thus, besides taking up glutamate to
terminate glutamate neurotransmission, EAAT4 might
also modulate neurotransmission by dampening of neuro-
nal excitability via the substrate-gated anion conduc-
tance, without interfering with glutamate homeostasis. In
addition, it has been noted that metabotropic glutamate
receptor activation is specifically controlled by neuronal
glutamate transporters in the cerebellar cortex (Brasnjo
and Otis, 2001), and it was suggested by Otis et al. (2004)
that this interaction could influence synaptic plasticity in
a synapse-specific manner. Moreover, metabotropic gluta-
mate receptors and neuronsl glutamate transporters,
which are closely associated in the perisynaptic space, can
serve together as a physiological mechanism for limiting
glutamate spillover from excitatory synapses (Otis et al.,
2004). This is further supported by results obtained from
EAAT4.deficient mice, indicating that indeed in the cere-
bellum EAAT4 is responsible for effectively preventing
glutamate from spilling over to neighboring synapses
(Takayasu et al., 2005).

Unfortunately, all studies on mice lacking EAAT4 are
uninformative on brain regions outside the cerebellum
{Huang et al., 2004; Takayasu et al.. 2005, Yamashita et
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al., 2006). The reuptake of glutamate by EAATA can also
have a metabolic role. After being transported into the
cell, glutamate can be converted into a-ketoglutarate by
glutamic acid decarboxylase and then enter the tricarbox-
ylic acid eycle to produce ATP. The functionality of EAAT4
in the fore- and midbrain is further supported by the
observation of Huerta et al. (2006) that the mRNA of the
EAAT4-associated interacting proteins KIAA0302 and
ARHGEF11 is highly expressed throughout the brain,

In the hippocampal formation, a strong somatodendritic
labeling could be observed in the pyramidal cell layer of
the subiculum. Also, the pyramidal cell layer of CA1-3
and the granular cell layer of the dentate gyrus showed a
staining higher than average. Besides EAAT4, all other
glutamate transporter subtypes (Lehre et al., 1995; Ku-
gler and Schmitt, 1999) as well as glutamate receptor
subtypes (Monaghan et al., 1989; Petralia and Wenthald,
1992) are expressed throughout the hippocampus, which
is not surprising given that the glutamatergic as well as
the GABAergic in- and output to all parts of the hippocam-
pal formation is quite sbundant (Ottersen and Storm-
Mathisen, 1984). Moreover, in the stratum radiatum of
CA1, synapses are often found side by side without any
intervening glial processes (Harris and Stevens, 1989;
Sorra and Harrig, 1993; Lehre and Danbolt, 1998), mak-
ing neuronal glutamate reuptake more important relative
to other brain regions (Rothstein et al., 1996).

Concerning the nuclei of the basal ganglia, very strong
staining could be observed in the SNc and in the VTA, a
basal ganglia-related structure. Neurons from the SNc
receive, among other inputs, glutamatergic input from the
medial prefrontal cortex, the STN, and the pedunculopon-
tine region. Also the VTA receives glutamatergic input
from a number of different brain structures, including the
prefrontal cortex (Carr and Sesack, 2000; Sesack and
Pickel, 1992; Thierry et al., 1983), the pedunculopontine
nucleus (Charara et al., 1996; Kelland et al., 1993), and
the bed nucleus of the stria terminalis (Georges and
Aston-Jones, 2001, 2002). In the SN¢ as well as the VTA,
BAAT4 is present on dopaminergic neurons. Direct evi-
dence comes from staining performed on rats with
6-OHDA lesions of the medial forebrain bundle. Five
weeks after lesioning, a dopaminergic cell loss of 90% can
be ohserved in the SN and VTA (Sarre et al., 2004), which
corregponds to the loss of EAAT4-immunoreactive cells
that we observe in both nuclei (personal observations).
The glutamatergic afferents to the SNe and VTA are prob-
ably involved in the regulation of these dopaminergic neu-
rons. Therefore, several glutamate receptor subtypes (N-
methyl-p-aspartate [NMDA] and non-NMDA) have been
found in both brain regions (Fallon and Loughlin, 1995;
Kalivas, 1993), For the same reasons it ie not surprising
that EAAT4 has a high expression level in these neurons.

Regarding the other nuclei of the basal ganglia, as dis-
cussed above, we detected a relatively high expression
level of EAATA in the striatum as well as the STN. Inter-
estingly, both nuclei share common characteristics be-
cause they both receive cortical and thalamic afferents
(Parent, 1986; Canteras et al., 1990} and project o the
pallidum and SN (Parent, 1986; Kita and Kitai, 1987), In
GABAergic cells, glutamate taken up by EAAT4 cun sérve
as a precursor for neosynthesis of GABA (Furuta et al,
1997; Seal and Amara, 1999) and thus enhance the inhib-
itory synaptic strength. In addition, the presence of
EAAT4 on striatal neurons might be part of the glutama-
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tergic regulation of the dopaminergic activity in the stri-
atum as well as the STN, described by Willlner et al
(1994) and Ampe et al. (2007), respectively. Small frac-
tions of ionotropic and metabotropic striatal EAA binding
sites are located on dopaminergic terminals where they
may have a distinct impact on dopaminergic activity. As
for the expression of EAAT4 on cholinergic neurons, we
might speculate that, again, it is linked to its chloride
channel properties, which make it behave, to some extent,
as an inhibitory glutamate receptor (Dehnes et al., 1998),
In addition, as described above, EAAT4 can transport

glutamate into the neuron, which can then serve as an'’

Energy source

A moderate expression level could be observed in the
globus pallidus and the EP. In the SNr only very few
intensely labeled neurons could be seen intermingled with
a moderate number of faintly stained neurons. However,
in addition to the GABAergic input provided by the
caudate-putamen (Chevalier and Deniau, 1990; Deniau et
al., 1978), a prominent glutamatergic innervation of the
SNr is provided by fibers of the STN (Hammond et al,,
1978; Kitai and Kita, 1987, Nakanishi et al., 1987), and all
classes of glutamate receptor subtypes are present in this
area (Albin et al., 1992).

EAAT4-IR was very pronounced in the habenulo-
interpeduncular system, including the fasciculus ret-
roflexus. Given this unexpected expression of EAAT4 in
an axon bundle, we further investigated the presence of
EAAT4 here. Real-time PCR revealed a relatively high
amount of EAAT4 mRNA in the fasciculus retroflexus
compared with the other fore- and midbrain regions ex-
amined. Surprisingly, and in sharp contrast to EAATY, for
all other high-affinity glutamate transporters, i.e.,
GLAST, GLT-1, and EAACI, the fasciculus retroflexus is
devoid of immunolabeling. In addition, the glial glutamate
transparters GLAST and GLT-1 are absent from the MHb,
whereas EAAC1, like EAATY, is expressed in this nucleus
However, all glutamate transporters show a considerable
expression level in the LHb (personal observations). The
MHb contains cholinergic and substance P-containing
neurons, the former being crowded in the ventral two-
thirds of the nucleus whereas the latter are exclusively
localized in the dorsal part (Contestabile et al., 1987),
Some neurons of the MHb feature dense glutamatergic
innervation (Robertson et al., 1999), and glutamate serves
as the excitatory transmitter at MHb-IP synapses (Brown
et al., 1983; McGehee et al., 1995). This might explain the
very high expression levels of EAAT4 in both aforemen-
tioned nuclei as well as the expression of metabotropic
glutamate receptors, as reported before by Kinoshita et al
(1998),

The fasciculus retroflexus however, is an axonal tract
Projecting GABAergic neurons from the LHb sent axons
through the mantle of the tract to midbrain cell targets
(the SN, VTA, and raphe) (Herkenham and Nauta, 1979;
Carlson et al., 2000). In contrast, the MHb projects
through the core of the tract, corresponding to the cholin-
ergic half of the fasciculus retroflexus (Herkenham and
Nauta, 1979; Woolf and Butcher, 1989), to the IP This
part of the fasciculus retroflexus contains the highest con-
centration of nicotinic receptors in brain (London et al
1985; Perry and Kellar, 1995) Our staining suggests that
the immunoreactive fibers originate in the LHb as well as
the MHb. These fibers could be followed until arrival in
the IP We were able to detect branching of the fasciculus
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retroflexus only once, which is not surprising given the
small width of such branches.

The most plausible explanation for the labeling of this
axon bundle with the EAAT4 antibodies is that not the
axons but the glial processes, which are intimately asso-
ciated with the axons, contain EAATS protein and mRNA.

The faint glial labeling obtained with the EAAT4 anti-
serum was not restricted to glial cells located in the white
matter of several CNS regions. Also, ependymal cells lin-
ing the lateral and third ventricle were stained. Hu et al
(2003) detected glial labeling. However, they did not ob-
serve colocalization of EAAT4-IR with an oligodendrocyte
marker, whereas they did with an astrocyte marker. Our
data do not exclude the presence of EAAT4 in astrocytes,
although the typical arrangement of the majority of the
cells in rows strongly suggests that EAAT4 protein is
localized to oligodendrocytes. Also, EAACI, originally con-
sidered to be confined to neurons, was localized to glial
cells. In accordance with our data, EAAC1 was expressed
in oligodendrocytes of white matter, in ependymal cells,
and in epithelial cells of the choroid plexus (Kugler and
Schmitt, 1999). In epithelial cells of the choroid plexus no
GLAST or GLT-1 could be detected, contrary to the ta-
nycytes and ependymal cells (Berger and Hediger, 2000,
2001). Therefore, the presence of EAAC1 and EAATY in
the choroid plexus might be important to prevent the
passage of glutamate from the blood stream into the cere-
brospinal fluid, where the glutamate concentration is very
low, as stated by Kugler and Schmitt (1999).

In conclusion, some areas of high EAAT4-IR coincide
with target areas of dense glutamatergic innervation, e.g.,
some corticofugal pathways. as described before for
GLAST and GLT-1 (Lehre et al., 1995). lowever, some
areas known to be low in glutamatergic innervation, e.g.
globus pallidus, also show a considerable EAAT4 expres-
sion level, indeed suggesting that the role of EAAT4 in
these regions goes beyond the canonical role of glutamate
removal. Thus, whether the functional significance of this
widespread distribution of EAAT4 in the fore- and mid-
brain is related to its re-uptake activities or to possible
other functional roles that this transporter can play, on
account of its chloride channel properties (Sonders and
Amara, 1996; Seal and Amara, 1999) or its close associa-
tion with metabotropic glutamate receptors (Otis et al.,
2004), needs further investigation. After all, besides de-
creasing the total glutamate concentrations, EAATY can
also prevent excessive excitation and help membrane re-
polarization inasmuch as its activation elicits chloride
influx and consequent local hyperpolarization (Raiter1 et
al., 2002). Moreover, the interaction of the neuronal glu-
tamate transporters with the metabotropic glutamate re-
ceptors can influence synaptic plasticity as well as limit
the glutamate spillover from excitatory synapses, as de-
scribed for the cerebellum (Otis et al., 2004)
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Edited GIuR2, a gatekeeper for
motor neurone survival?

S.D. Bucklngham. S. Kwak,? A.K.
S.E. Blackshaw,” and D.B. Sattelle'*

Summary

Amyotrophic lateral sclerosis (ALS) is a progressive
degenerative disorder of motor neurones. Although the
genetic basis of familial forms of ALS has been well
explored, the molecular basis of sporadic ALS Is less
well understood. Recent evidence has linked sporadic
ALS with the failure to edit key residues in lonotropic
glutamate receptors, resulting in excessive Influx of
caleium lons into motor neurones which in turn tri

cell death. Here we suggest that edited AMPA glutamate
(GluR2) receptor subunits serve as rs for motor
neurone survival. BioEssays 30:1185-1192, 2008.

© 2008 Wiley Periodicals, Inc.

Introduction

Amyotrophic lateral sclerosis (ALS), somelimes relerred to as
Lou-Gehrig's disease after the renowned American baseball
player who suffered from the condition, is a progressive
disorder of motor neurones, characterized by both pyramidal
tract symptoms of spasticity with pathological reflexes, as well
as lower motor neurone defects leading to progressive muscle
wasting and inevitable death from respiralory muscle paralysis
within a lew years of onset (Fig. 1). The pathological hallmark
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of ALS is selective vulnerability ol motor neurons, which show
neuronal inclusion bodies including Bunina bodies and
ubiquitinated Lewy-like or skein-like formations (Fig. 1). These
slructures are found in mos! patients with sporadic ALS but not
in those with familial ALS associated with SOD1 mutations.
Some cases of ALS are inherited, and may even represent
multiple disease types (Table 1), but the majority (95%) are
sporadic, with poorly understood aetiology, as none of the
genes that cause familial ALS have so far been shown to be
associated with sporadic ALS. The molecular mechanisms
that underlie selective degeneration of motor neurones while
sparing other neuronal cell types, including other neurons
within the dorsal horn, are unresolved. Among several
possible explanations, excitotoxicity mediated by x-amino-3-
hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors, a
subtype of ionotropic glutamate receptors, has attracted much
attention due lo the fact that molor neurons are particularly
vulnerable to AMPA receptor-mediated neurotoxicity in vivoas
well as in cultured spinal cord neurons.®

lonotropic receptors for glutamate (iGIuRs) are important in
mediating fast glutamatergic synaptic transmission in the
vertebrate nervous system. Three distinct iGIUR families were
initially defined by their sensitivity o ligands:*® the N-methyl-
D-aspartate (NMDA type), the (S)-2-amino-3-(3-hydroxy-5-
methyl-4-isoxazole) propionic acid (AMPA type) and the
kainate type. Human iGluRs are composed of the products
of seven NMDA receplor subunit genes (NR1, NR2A-D,
NR3A and NR3BY), four AMPA receptor genes (GIuR1~GluR4)
and five kainate receptor genes (GluR5-GIluR7, plus KA1 and
KAZ). Co-assembly of subunit within families gives rise to a
large number of receptor subtypes with distinct pharmaco-
logical and physiological properties. An increased influx of
Ca®* through activated AMPA receptors, which is regulated by
the presence or absence of the Q/R editing at a site within the
pore region of the GIuR2 subunit (the unedited form is highly
permeable fo Ca®"), plays a key role in slow death of motor
neurons in culture (Fig. 2). In this context, an excling new
avenue for research has emerged with the discovery that
sporadic ALS patients have a defect in pre-mRNA editing of
the ionotropic glutamate (AMPA) receptor subunit, GluR2.
Editing of this receptor is developmentally controlled
and failure to edit results in motor neurone loss and early
death of the organism. Here we discuss the significance of the
under-editing phenotype as a characteristic of the sporadic
forms of ALS.

BicEssays 30:1185-1192, © 2008 Wiley Periodicals, Inc
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Figure 1. Neuropathological characteristics of sporadic ALS.
A: There is a marked loss in the number of large neurons in the
anterior horn of the spinal cord of a sporadic ALS casa as
oompwodmamnhnls:bjaduahmin' Sm’aeramahﬂg

motor neurons show bare ¢ terstic cytoplasmic
bodies, mmmnmm(mmc}.wm
inclusion (round body) (D) and skein-like inclusion (E). These
inclusions are the pathological halimark of sporadic ALS. Bars
are 1 pm (G, E) and 5 pm (D). (Courtesy of Professor Shoichi
Sasaki at the Tokyo Women's Medical University).

RNA editing of AMPA-type glutamate receptors
and other ligand-gated ion channels adds to
their functional diversity

The repertoire of IGIURs is expanded further by allernative
splicing, which can affect various receptor properlies such as
their pharmacological characteristics,'® desensitization (e.g.
AMPA recsptor “flip” and “flop” variants'¥), interaction with
other proteins (e.g. GluR6a and GluReb"™) and trafiicking
(e.g. GluR7a and GIuR7b'®). Diversification of iGIuRs is also
increased by RNA A-to-1 editing in which “deaminases acting
on RNA" (ADARs)") cause selected adenosine residues in the
genome lo be read as guanosine in transcripts by converting
an adenosine to an inosine'”® (Fig. 3). There are three human
ADAR members, of which ADAR2 plays a major role in GIuR2
Q/R site-editing, whereas other editing positions are consid-
eredto be catalyzed by sither ADAR1 or ADAR2. Three AMPA
(GluR2, GIuR3 and GluR4) and two Kainate receptors (GIUR5
and GIuR6) are known to undergo RNA editing®™'® which
alters amino acid residues in functionally significant regions
(Table 2).

Editing is not restricted to GluRs; RNA edifing is also seen
in nicotinic acetylcholine receptors (nAChRs) of Drosophila,
the first organism for which RNA ediling of nAChRs
was demonstrated, with editing being shown for the three

a subunits, D«5, Du6 and D47.""") This finding was confirmed
and extended in a comparative genomics approach, in which
Hoopengardner and colleagues identified 16 ADAR targets
in Drosophila, including additional nAChR subunits, DB1, Dp2
as well as the ionotropic GABA receptor (GABAR) subunit,
RDL""2'¥ and a glutamate-gated nAChR chloride channel.!"¥
The RNA editing sites in the nicotinic acetylcholine receptor
subunits'’® are present in the transmembrane region
and ligand-binding domains, so they might potentially affect
channel function, although difficulties in expressing Droso-
phila nAChR subunits has so far prevenled this from being
tested experimentally. Interestingly, the editing sites in nAChR
subunits of different insects are only partially conserved,
giving rise to species-specific isoforms.!"® RNA editing of
the rat «3 glycine receptor (GlyR) enhances agonist
potency."" In mice, editing of the x3 GABA receptor subunit
is developmentally regulated and affects activation and
deactivation kinetics and rectification.!'® In humans, howsver,
editing for LGICs other than giutamate or GABA has not been
demonslrated, although there is editing in a G-protein coupled
receptor, 5-HT2C, with possible links to depression.""” The
editing of human lonotropic glutamate receptors may also be
of important functional significance.

RNA editing at the Q/R site of the AMPA
receptor GluR2 subunit reduces calcium
permeability and protects neurones

The Q/R switch at amino acid 607 in the second transmembrane
domain of GIUR2 is attibulable to RNA editing.®*® GluR2-
containing AMPA raecaptors are normally impermeable to calcium
ions because of editing al this site. Consequently, failure to edit
the Q/R site results in achannel permeable to calciumions, Thus,
AMPA receplors that contain unedited GluR2 (or lack GluR2
altogether) are permeable to caldum and there is abundant
evidence, particularly from studies on ischemia, that this calcium
permeability renders nesurones wulnerable lo exciloloxic cell
death. First, there is a time delay between overstimulation of
AMPARs and resulting cell death. For example, the obsarvation
that, following transient global ischemia, neurodegeneration
does not occur until 48-72 hours afler circulation has been
restored®'2? is consistent with cell death being caused by an
axcessive accumulation of intracellular calcium resulling from
overstimulation of calcium-permeable glutamate receptors.
Secondly, ischemic cell death appears to depend upon increased
calcium influx through AMPARS. For instance, in animal models
of ischemia and epilepsy, it has been confirmed that before
vuinerable neurones die, GIUR2 subunit expression is down-
regulated and this is accompanied by an enhanced calcium
component in their excitatory posisynaptic potentials.®
Furthermore, antisense cligonuclectides to GIuR2 enhanced
neuronal death and ischemic pathogenicity®* and over-
axpression of Ca-permaable AMPARs promotes ischemic cell

1186 BioEssays 30.11-12
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Table 1. Familial forms of amyatrophic lateral sclerosis (ALS) have been categorized into 8 types according to
the locus of mutation (where known) and the age of onset and progression of the disease.

ALS type Gene onset cells
1 S001 Adult (40-60yo)  Anterior horn
NEFH Autosomal dominand
3% of cases ol sporadic ALS[1]
2 ALSZ{2] Juvenile (3--20) Autosomal recessive
UMNs of pyramidal tract
Rasults from shorl-form spice variant of ALS2{3]
3 unknown Aduh (45) Anterior horn
4 SETX[4] senataxin: ANA processing Juvenile (<25) Autosomal dominan
No bulbar involvemeant
Long duration - some with full ifespan
slowly progressive distal muscle weakness and atrophy with UMN
signs, normal sensation, and absence of bulbar involvement [5]
5 Linked to 15q15-q22{6] 8-18 Autosomal recessive
Upper mn and lower mn signs, fasciculation
6 Linkage to 16q12(7] or 8p 13.2-21.3(8] 37-66 Limb onset, bulbar involvement
7 unknown Clinical presentation not reported
8 VAPB Adult (25-44 yo)  Autosomal dominant
TOP-43 Adult (50-70yo)  Spinal or bulbar onset[9—11]
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death.®® This suggests that a reduction in GluR2-containing
receptors is causative of neuronal death in ischemia, Thus, RNA
ediing may play a key role in preventing cell death through
regulating the calcium permeability of ionotropic glutamate
receptors.

Inhibiting RNA editing of GIuR2 enhances cell
death through excitotoxicity

Since under-editing of GluR2 leads to enhanced calcium
permeability, it would also be expected to enhance cell death
through excitotoxicity. Introducing an R residue into the
glutamate receptor of the model genetic organism, Caeno-
rhabditis elegans, at a position equivalent to the Q/R site in
vertebrate GIuRs, results in strong phenoctypic impairmenis
including neuronal degeneration.”” Similarly, mice engi-
neered o be incapable of editing at the Q/R site die shortly
after birth from status epilepticus,”® even though removal of
the GluR2 gene is not lethal.*? Furthermore, preventing all
aditing by means of siRNA silencing of ADAR2 largeted 1o

the hippocampus in rats leads to degeneration of ischemia-
sensitive neurones, which can be rescued by exogenously
expressing ADAR2b.”" These findings support the hypoth-
esis that the presence of AMPARs containing edited GluR2
protect neurones from excitotoxic cell death and that the
vulnerability of neurones is attributable to calcium influx
through calcium permeable iGluRs.

Is the selective vulnerability of neurones to cell death in ALS
caused by excessive calcium influx through AMPARSs lacking
GluR2 subunits? Although the presence of GluR2 expression
in spinal motor neurones has been reported,®" expression
of AMPARS in human or rat spinal motor neurones is low or
undetectable.® 34 Single-cell PCR approaches have shown
that, of several neuronal subtypes examined, motor neurones
contained the lowest amounts of GluR2 and expression of
GluR2 was nol significantly altered in ALS,”* even though
AMPA current density in these cells is high, at lsast in rat spinal
motoneurones.® However, some studies have shown that
both GluR2-containing and non-containing AMPARSs exist in
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Figure 2. Editing at the Q/R site in the second trans-
membrane domain of GluR2 jonotropic glutamate

by ADAR ("deaminases acting on ANA") reduces the perme-
ability of the channel to calcium ions. Whera fails, the
resultant increase in calcium permeability is thought to
contribute to excessive calcium influx when the recaptors are
activated in the course of synaptic transmission. This can lead
in turn to & build-up of excess frae calcium in the cytosol, which
eventually triggers cell death.

the same cells®** in different membrane synaptic micro-
domains.®™ This presence of largely calcium-impermeable
AMPARs and a subset of calcium-permeable AMPARS results
in motor neurones with an overall calcium permeability
in response to glutamate intermediale between calcium-
permeable and caldum-impermeable AMPARS.'* In view of
the consensus that AMPARS are not highly expressed in spinal
motor neurones, it has been suggested® that tha low levels of

GluR2 in motor neurones would provide a phenotype in which
changes in calcium parmeability due to altered editing would
have a greater effect, since even a modestincrease in unedited
GluR2 subunits would affect a higher proportion of receptors.
Because GluR2 knockout mice did not display any neuronal
death,® an increase of GluR2-lacking AMPA receptors per se
cannot induce neuronal death and may merely be an
exacerbating factor of excilotoxic neuronal death. This notion
is supporied by the upregulation of GluR3 (and therefore
downregulation of GluR2-containing AMPA receplors) in
degenerating molor neurones after long-term intrathecal
infusion of kainite in rat** and in the spinal cord of SOD1
transgenic mice,'*'*? which was rescued by GIuR2 over-
expression.'**! On the other hand, GIuR2 under-editing per se
induces excitotoxic neuronal death. This difference between
GluR2-lacking and unedited GluR2-containing AMPA receptors
in their role in excitotoxicity may be attributable to the differsnce
inthe functional calcium-permeable AMPA receptor density dus
to the different efficiency of unedited and edited GluR2
containing AMPA receptor trafficking. *44%

The effects of low expression levels of GIuR2 on the
vulnerability of motor neurones to cell death may also be
aggravated by the low levels of calcium-binding proteins in
these cells.*® In goldfish, expression of calcium-binding
proteins correlates positively with the expression of calcium-
permeable glutamate receptors,*” and calcium-binding
proteins such as calbindin and parvalbumin are absent in
motor neurones lost early in ALS but high in less vulnerable
motor neurones.*® In SOD1-mice, levels of parvalbumin and
calbindin in spinal motor neurones were severely reduced and,
inthe cass of parvalbumin, this preceded symptoms.“”) Taken
together, these observations raise the possibility that the
vulnerability of motor neurones to cell death in ALSis dueto a
combination of enhanced calcium entry and reduced buffering
capacity of the cells,
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Figure 3. ANA A-o-| editing recodes the genome. Select adenosine (A) residues in pre-mRNA are modified to inosine (I) by adenosine
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Table 2. Editing sites in iontropic glutamate receptors of the AMPA type, indicating which ADAR enzyme effects
editing, where known.
subunit Edited sites Editing s
GiuR 1 None
GR 2 ADAR2Z &7-T0
ADARZ ADAR1 68=-T1
e N T T B !'- -
GluR 3 Not known
S L L SN L ST 'l__—
GiuR4 Nol known
e T o W __.._.____:'—.c_.;. 1_ o —
GiuRS Not known
s e e B g
GluRG ADAR2 ADAR1 T2
_____K_;L"'_ ————————CRER
Not known
——— " ;l 1 —_ ;HL:.- —t
Nat known
GRT none
Editing occurs In regions of functional signilicance: the M1 and M2 transmembrane regions contain residues that control pore conductance and channal
properties, and tha lip/flop allernatively spliced domain controls the kinetic and pharmacological properties of the recaplot

Unedited AMPA receptors are associated

with ALS and neuronal cell death

In 2004, Kwak and colleagues used laser microdissection
to isolate single motor neurones and prepared RNA from
individuals with ALS and control subjects. Ediling efficiency
was determined by measuring the difference in digestion
patterns of nested GluR2 PCR products with reverse tran-
scription using Bbv, which cuts only the unedited RNA.#°*")
Editing of GluR2 receplors in molor neurones was variably
reduced ranging from 0% to 100% in sporadic ALS patients,
whereas 100% of GluR2 subunits from control subjects
were edited.®™® The ediling defect was nol observed in
motor neurones from patients suffering from spinal and
bulbar muscular atrophy (SBMA) or from symptomatic
mutated SOD1 transgenic rats'™ or in cerebellar Purkinje
cells from patients with denlatorubral —pallido—luysian atrophy
(DRPLA)2 or multiple system atrophy (MSA),** neither was

it seen in cerebellar Purkinje cells and in motor cortical
neurones from sporadic ALS patients, suggesting that the
ediling defect was spedific lo motor neurones of sporadic ALS
patients. These findings lend support to the view that sporadic
ALS involves, at least in part, a motorneurane-specific failure
fo edit GIuR2 subunits, with a resultant excessive calcium
entry leading 10 excitotoxic cell death. This has been lent
further support from the observation thal transgenic mice
engineered to express a GluR2 subunit withan N residue at the
Q/R site develop a late-onset ALS-like phenotype.®®

GluR2: a gatekeeper to neuronal survival

GluR2, through its expression and/or its editing stale, appears
1o act as a "gatekeeper” which can switch the phenotype of
cells between two states distinguished by their vulnerabiiity to
excitotoxicity. What would be the adaptive advaniage of a
mechanism in which an error can lead to massive motor
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neurone loss? In principle, editing allows a rapid switch in
recaptor function that can play a role in plasticity or develop-
ment. Indeed, editing is itsell developmentally regulated,
with editing of the GluR2 Q/R sits beginning in the embryonic
stage and continuing throughout life. This is indicated by
several observations that death resulting from experimentally
imposed editing inefficiency occurs in foetal or eary life
stages.!*™5) GluR2 Q/R is fully edited in the cerebellum and
cerebral cortices of human foetusaes and GluRS increases in
aditing efficiency from foetus to adult.**" Kainate receptors on
rat DRG (dorsal root ganglion) nociceptor neurones lose their
calcium permeability in the first postnatal week, and this
coincides with changes in GluRS editing.”*” In the developing
chick embryo, a reduction in calcium permeability over days E6
and E11 is accompanied by an increase in GluR2 expres-
sion."*® The Drosophila ADAR is also highly developmentally
regulated.®™ Thus, changes in calcium permeability resulling
from editing may match changes in the functional roles of
recepiors.

Why should it be so important for motor neurones to
possess this inbuilt vulnerability that is then mostly held at bay
throughout their life by RNA editing? One possibility is that
switching off this protection may be important in triggering the
fast molor neurone cell death thal takes place eardy in
development as overproduced developing motor neurones
compete for targets and those that fail are eliminated. This is
not likely to be the only explanation for the existence of this
mechanism, however, as a calcium-permeable component
of ionotropic glutamate responses is present in healthy
neurones.® It is therefore probable that editing permits a
fine-tuning of the calcium influx mediated by glutamats re-
ceplors to achieve an end whose benefils balance the risk of
excessive calcium influx. For instance, for the electrical
phenotype of a neurone to be controlled it may be desirable
for the leve! of neuronal activity to be monitored, and this could
be accomplished by an influx of calcium through activated ion
channels. Indeed, this has been observed for NMDARs
where the level of receplor expression, rather than calcium
permeability of individual receptors, is controlled.”® The
GluR2 subunit govemns more than just calcium permeability
and may influence other mechanisms, For instance, the C-
terminal cytoplasmic tail, which is comparatively short in
GluR2, mediates subunit interactions as well as interactions
with other cytoplasmic profeins which may afiect pharmaco-
logical properties or the trafficking of the receptor to a specific
subcellular location, ®'62)

Is GluR2 a glial gatekeeper too?

In addition 1o neurones, AMPA recepiors are also present in
glia and maybe other cells. Although the major contribution of
astrocyles o the pathophysiology of ALS appears to derive
from dysfunction of glutamate transporters leading o en-
hanced extracellular glutamate levels,'*” damage to glial cells

may combine with dysfunction of neurones through several
non-autonomous cell death mechanisms'®* including regulat-
ing the expression of GIuR2 to control neuronal vulnerability to
excitoloxicity.®* These authors detecled reduced glutamate
transporter activity in synaptosomes prepared from brain from
patients with sporadic ALS. The problem was shown to be
attributable to selective loss of the glutamate transporter
of astroglia, EAAT2. Knockout of EAAT2 in mice leads to
enhanced neuronal activity followed by neuronal death. When
compounded with under-editing of GIuR2, this will no doubt
lead to a synergistic acceleration of excitotoxic neuronal
demise. Kwak and colleagues have shown that there is a
correlation between the extent of editing at various A-to-l sites
and expression levels of ADARs in normal human brains, and
found that GluR2 Q/R site-editing was lower in white matter in
contrast to the complete editing in gray mattec This indicates
that oligodendrocytes express significant amount of Q/R site-
unedited GluR2 mRNA, while neurones express solely /R
site-adited GIuR2 mRNA.®® The presence of calcium-
permeable AMPA receplors was also demonstrated in
astrocyles.®®” It seems likely that glial cells, in contrast to the
majority of neurones, need calcium-permeable AMPA recep-
tors, and GluR2-lacking AMPA receplors are expressed
abundantly in astrocyles whereas unedited GluR2-containing
AMPA receptors are exprassed in oligodendrocytes. Interast-
ingly, a recent report and an earlier study indicate that human
malignant glioma cells express under-edited GluR2!**%" and
provide evidence that ADAR1-ADAR2 heterodimer formation
may be a regulatory factor determining ADAR2 activity at the
GluR2 Q/R site.

Therapeutic prospects for neuroprotection by
sustaining RNA editing and ‘bolting’ the
calcium gate

Pre-mRNA A-| editing is emerging as a major determinant
of neuronal survival, Reduced levels or under-editing of GluR2
renders cells vulnerable to cell death by excitotoxic calcium
influx. To compound this, calcium homeostasis in molor
neurones is destabilised by their low calcium-buffering
capacity“? These developments in understanding RNA
editing and its role in ALS may offer prospects for new routes
to therapy for ALS based on rescuing the lethality caused
by GluR2 under-editing. One such approach might include
drug-induced up-regulation of ADAR2 in motor neurones,
although it remains to be shown whather overexpression of
ADAR2 has its own adverse consequences. More finely
targeted approaches might be possible if the factors affecting
aediting could be determined. One approach to achieving this
goal may be the use of suppressor/enhancer screens to
identify candidate genes affecting ediling. Drosophila in which
the single ADAR gene has been knocked out show marked
neurodegeneration with accompanying retinal degeneration.
Thus, screening EMS mutants or transposon insertions in
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a dADAR™ background for enhanced or reduced retinal
degeneration might identify new genes that regulate editing
or compensate for its absence.

The Q/R site is not the only point of A-l editing in GluR2.

Editing also occurs at the R/G site fo alter desensitization of
AMPA receplors without playing a role in excitotoxicity. 7 How
might differential editing on the same subunit be achieved?
Because some minimal R/G site-editing remains in both
heterozygous ADAR1 KO mice”") and homozygous ADAR2
KO mice,”? editing at this site may be mediated by both
ADAR1 and ADAR2. Alternatively, ADAR2 activity may differ
between different classes of neurons, but with different
threshold levels for Q/R site editing and R/G site editing. Thus,
although ADAR2 activity may vary among motor neurons, it
may be kept above the threshold for complete Q/R site-editing,
the crucial requirement for survival. Assessment of ADAR2
activity in vivo has been hampered by the lack of good markers
for ADAR2 activity and differences in the regulatory mecha-
nismsindifferent call types. However, the recent discovery that
A-l conversion in cyloplasmic FMRP interacting protein
(CYFIP2) mRNA is predominantly mediated by ADAR2, and
that CYFIP2 mRNA is abundantly expressed in CNS® may
be useful for assessing ADAR2 activity in neurons.

The discovery of a gatekeeper role for GIuR editing motor

neuron survival and the link between under-editing and
sporadic ALS opens exciting new avenues for new research
into the disease. In particular, an improved understanding of
the mechanisms controlling editing and the development of
improved cell line and animal models may open the way 1o
the development of new therapies for the treatment of this
devastating disease.
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Point of View

Newly identified ADAR-mediated A-to-I editing positions as a tool

for ALS research
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Among the extensively occurring adenosine to inosine (A-to-I)
conversions in RNA, RNA editing at the GluRZ Q/R site is
crucial for the survival of mammalian organisms. Editing at this
site is incomplete in the motor ncurons of patients with sporadic
amyotrophic lateral sclerosis (ALS). Adenosine deaminase acting
on RNA type 2 (ADAR2) specifically mediates GluR2 Q/R site-
editing, hence, it is likely a molecule relevant to the pathogenesis
of sporadic ALS. Since no m.llcr transcript with ADAR2-mediated
A-to-l positi is abund d in most neurons, the
editors at the newly identified A-to-l positions were investigated.
CYFIP2 and FLNA mRNAs were identified together with mRNAs
having known ADAR2-mediated editing positions in ADAR2-
immunoprecipitates of the human cerebellum, indicating that
these mRNAs probably possessed ADAR2-mediated positions.
Furthermore, an in vitro RNAi knockdown system demonstrated
that the CYFIP2Z mRNA KJ/E site and the BLCAP mRNA Y/C
site were edited predominantly by ADAR2 and ADARI, respec-
tively. CYFIPZ mRNA was ubiquitously expressed and particularly
abundant in the central nervous system. The extent of CYFIP2
K/E site-editing was between 30% and 80% in the central nervous
system. Therefore, the extent of CYFIP2 K/E site-editing may be
an additional marker for ADAR2 activity in neuronal and other
types of cells in vivo, as well as in vitro, and thus is considered to
be a good tool for sporadic ALS research.

A-to-] RNA editing alters the stability, tansport or processing
of RNA, thereby enhancing the diversity of rather limited generic
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information in a region- and even cell type-specific manner. A-to-I
conversion occurs most extensively in vertebrate brains and the vast
majority occurs in non-coding RNA regions, particularly in the
inversely oriented repetitive elements induding Alu sequences.!
The imporant roles of non-coding RNA editing was recently
demonstrated in an miRNA system with the alteracion of miRNA
processing by Drosha-DGCRS and the generation of new miRNA
trgeting mRNAs that were different from those targeted by
unedited miRNA. 24 A-to-] conversion in the coding region of
RNA may alter the propertics of transmitter-gated ion channels by
substituting one amino acid to another as seen in Q/R site-editing
of the gluramate receptor subunit.? In vertebrates, three structurally
related ADARs (ADAR1, ADAR2 and ADAR3) have been ident-
fied as enzymes catalyzing the A-to-I conversion. ADAR1T mRNA
is widely expressed in various organs where both larger (150-kDa)
and smaller (110-kDa) ADARI proteins are produced by altemative
splicing. ADAR] is essential for normal dc\fdc;pmmt and ADARI-
null mice die in the early embryonic suges.® ADAR2 mRNA is
widely expressed, most abundantly in the nervous system (Affymetrix
HG-U133A:203865_s_at)"" ! localized in the nucleus. One ADAR2
protein isoform was detecred in the mouse brain,!! whereas altemative
splicing of the Alu sequence-containing exon g s two isoforms,
ADAR2a and ADAR2b, with a greater abundance in the latter in the
human cercbellum. There are limited numbers of A-to-1 positions
specifically edited by either ADAR1 or ADAR2 in the coding RNA.
An investigation on the brains of heterozygous ADAR1-null mice
and homozygous ADAR2-null mice indicated that ADAR] specifi-
cally mediates A-to-I conversion of the 5HT,, recepror A site, 1314
while ADAR2 specifically mediates that of the GluR2 Q/R siwe
and the SHT,, receptor C and D sites.!?% Recent investigations
on the brains of knockout mice and cultured cells using the RNAi
system added a new ADARI-sclective A-to-I position in BLCAP
mRNA, and the ADARZ-sclective positions in mRNAs of CYFIP2
and FLNA.19-26 ADAR3, a structurally related isoform of ADAR1
and ADAR2, is specifically expressed in the brain but no editing
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activity has been demonstrated in either naturally
occurring or artificial substrates.?”-28

Diseases Associated with Anomalous RNA
Editing

A-to-] conversion occurs most extensively in
the central nervous system, thereby regulating the
expression and properties of recepror/ion channels
and the activites of neuronal circuits. Therefore,
anomalous RNA editing may result in an abnormal
phenotype leading to animal or human diseases
affecting the central nervous system.

RNA editing at five A-wo-l positions in the
5-hydroxyuryptamine 2c (5-HT),_) recepror changes
the G-protein-coupled signal transduction in the
downstream of the recepror activation and an
increase of the extent of editing at the A or the
E site has been demonstrated in patients with
major depression and in a rat model of depres-
sion,16:17.1929.30 The editing of A-to-l positions
in the 5-HT,_ receptor was observed to increase in
the victims of suicide among patients with depres-
sion or schizophrenia, thus suggesting that 5-HT,_
receptor mRNA editing may be associated with
changes in mood but not with comorbid psychi-
atric illnesses.?! Indeed, the extent of RNA editing
at these sites differs among mouse strains and was
altered after the administration of antidepressants or exposure © a
stressful envire in normal IJI'-‘iI‘ILIG'u‘SS

An A-to-l conversion of glutamare recepror subunits markedly
alters the channel propertics of glutamate receptors and hence, the
neuronal excitability as a whole. In particular, mutant mice deficient
in Q/R site-RNA editing of the AMPA recepror GluR2 subunit
exhibit refractory epilepsy and those deficient in Q/R site-editing
of the kainate recepror GluR6 subunits become suscepdble tw
cpilepsy, as a consequence of an increase of neuronal excitability due
to increased Ca?* permeability of these receptors. 3% However, no
consistent results have been demonstrated as to alteration in editing
at these sites in the brains of patients with refractory temporal lobe
cpilepsy: 3637

Several mutations have been identfied in the ADARI gene
in association with family members affected with dyschromatosis
symmetrica herndunna, 2 dermarologic di with auec Iy
domi t 38 However, whether this skin-affecting
disease is induced by a los.s of ADARI editing function or by a gain
of function of the mutated ADAR1 gene has not been demonstrated.
Indeed, homozygous ADAR1-null mice die at early embryonic stage
and heterozygous ADAR1-null mice are phenotypically normal.®

In contrast, motor neurons of patients with sporadic amyotrophic
lateral sclerosis (ALS) express Q/R site-unedited GluR2 mRNA in
variable proportions in a disease-specific and motor neuron-selective
mzrlncr‘”

ALS is the most common adult-onset motor neuron disease,
characterized by progressive weakness and muscle wasting leading
to death within a few years after onset due 1o the degeneration
of both the upper and lower motor neurons. ALS affects healthy
subjects abrupdy in their mid-life with an incidence of around 1-3
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Brain ischemia
hippocampus

Fatal epilepsy

Slow neuronal death

Figure 1. ADAR2 and GluR2 Q/R siteediling. AMPA receplors consist of lelromeric assembly
of four subunits and their majority is imp
included in its assembly. ADAR2 specifically edit the Q/R site of GluR2 pre-mRMNA, ond a reduc-
tion of its activily upregulote Ca?*
which is toxic to neurcns. ADAR2 knockout mice exhibit fatal epilepsy, but focal deficiency of
ADAR2 activity induces slow neuronal death as seen in motor neurons of sporadic ALS patients
and hippocampal pyramidal cells in rats after focal brain ischemia.

ble to Ca?* b Q/R siteedited GluR2 is

permeable AMPA receplors with Q/R sileunedited GIuR2,

in 100,000 every year. The majority of ALS cases are sporadic, with a
variety of phenotypes including limb-onset classical ALS, progressive
bulbar palsy (PBP) and ALS with dementia (ALS-D or FTD-MND).
About 5-10% of ALS cases are familial, including Cu/Zn super-
oxide dismurtase gene (SOD1)-associated familial ALS (ALS1) that
accounts for about 20%, but none of the currendy identified gene
mutations has been demonstrated to be involved in sporadic ALS.
The motor neurons of sporadic ALS patients express various propor-
tions (ranging from 0% o 100%) of GluR2 mRNA lacking A-to-1
conversion at the Q/R site.?? Because inosin in mRNA is read as
guanosine during translation, an A-to-I conversion in the Q/R site
of GluR2 results in conversion of glutamine (Q:CAG) 1o arginine
(R:CGG), thereby reducing the Ca** permeability of AMPA recep-
tors containing GluR2 in their tetrameric subunits.® The majority
of neurons express only Q/R site-edited GIuR2 under normal
conditions and if A-to-1 conversions at this site are incomplete or
abolished in anificial conditions, neurons became easily excitable due
to an increase in Ca®* influx through AMPA receprors and animals
exhibited fatal status epilept (Fig. 1). Furthermore, mice
transgenic for GluR-B(N), an artificial gene encoding GluR2 with
asparagine (N) at the Q/R sire, developed motor deficit with a loss
of motor neurons after 12 months of age.* Because GluR2 with N
ar the Q/R sire works as Q/R site-unedited GluR2 in rerms of Ca?*
permeability,*! the results indicate thar a substantial increase of Ca?*
permeability of AMPA receptors may induce slow progressive death
at least in motor neurons (Fig. 1).

Although AMPA recepror-mediated neuroroxicity may play a role
in ALS1 as well, %4243 the underlying mechanism is not an increase
of Q/R site-unedited GluR2-containing Ca®* permeable AMPA
receprors™ (Table 1) unlike in sporadic ALS, bur is likely due w0 an

2008; Vol 5 Teme 4



RNA editing and ncuronsl desth in ALS

Toble 1 GluR2 Q/R site-editing in diseases

GluR2 mRNA Q/R site Corfex (%)  molor newrons (%)  cbl/Purkinje cell (%)  hippocompus/pyromidal cells (%) WM /glial cells (%)
notmal human brain?25.39 95-100 100 98-100 100 65-99
spotadic ALS253% 95-100 0-100 98-100 ND ND
SBMALL ND 100 ND ND ND

SCD [DRPLA /MSA)20.3% ND ND 98-100 ND ND
malignant gliomad' 62 ND ND ND ND 69-88
normal rattd 52 100 100 100 100, 97 100
mSOD1-ransgenic rafGP3A, HA4R)44 ND ND 100 ND ND

rat ransient forebrain lschemia®? ND ND ND 7-98 ND

increase of GluR2-lacking Ca?* permeable AMPA receptors. Because
GluR2 knockout mice did not display any neuronal death,*® an
increase of GluR2-lacking AMPA recepiors per se cannot induce
neuronal death and may be an exacerbating factor of excitotoxic
neuronal death.%6 Neurotoxicity in mice deficient in GluR2 Q/R
site-editing is likely due to an increased density of functional Ca?*
permeable AMPA receptors on the synaptic surface resulting from
the facilimtion of Q/R site-unedited GluR2-containing recepror
wrafficking, 7+4%

RNA editing at the GluR2 Q/R site is specifically catalyzed by
ADAR2 in vertebrates.!® ADAR2-null mice exhibit faral starus
cpilepticus’® as do the mutant mice deficient in GluR2 Q/R
site-editing,* bur these mice display normal behavior when Q/R
site-edited GluR2 without ADAR2 activity is expressed by crossing
with mutant mice carrying the genetically engineered GIuR2 gene
encoding arginine (R) instead of glutamine (Q)."* Thercfore, the
epileptogenic role of deficient ADAR2 seems to be solely due o
deficient editing at the GluR2Z Q/R site among various A-to-1
positions in both coding!®4%5! and non-coding RNAs.* A reduction
of ADAR2 activity in a subset of neurons induces slow progressive

| death as d rated in the delayed neuronal death of rat
hippocampal pyramidal cells after transienc ischemia® and in the
slow progressive death of motor neurons in a conditional ADAR2
knockout mouse.”® Therefore, the reduction in GluR2 Q/R site-
editing in motor neurons of sporadic ALS is likely due to ADAR2
underactivity.? Indeed, the expression level of ADAR2 mRNA rela-
tive to GluR2Z mRNA, a determinant of ADAR2 activity in human
white matter,'® is markedly reduced in the spinal ventral gray matter
of sporadic ALS patients, %% thus indicating a reduction of the
ADAR2 activity in motor neurons. To demonstrate ADAR2 under-
activity in motor neurons of sporadic ALS, a reduction in more than
one A-to-l positions that are specifically mediated by ADAR2 may
be necessary. However, other than the GluR2 Q/R site, no ADAR2-
specific A-to-1 position has yet been identified in mRNAs expressed
abundantly in the motor neurons.

Novel A-to-1 Positions and their Editors
approaches and bioinfor-

Recendy, comp

matics screening have demonstrated novel A-to-I conversions in
four different mRNAs; cytoplasmic fragile X mental retardadion
protein interacting protein 2 (CYFIP2), filamin A (FLNA), bladder
cancer associated protein (BLCAP) and insulin-like growth factor
binding protein 7 (IGFBP7).% These mRNAs were investigated for
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specifically ADAR2- or ADARI-mediated positions because
determination of editors at novel A-to-I positions would be uscful
for analyzing ADARs activities in vivo. An immunoprecipitation
(IP) method and an in viro RNAi knockdown system of ADARI
and ADAR2 demonstrated that the K/E site in CYFIP2 mRNA and
the Y/C site in BLCAP mRNA are edited predominandy by ADAR2
and ADARI, respectively, and the Q/R site in FLNA mRNA is
possibly edited by ADAR2.'? In brief, CYFIP2, FLNA, GluR2 and
kvl.l mRNAs but not B-actin, BLCAP or IGFBP7 mRNA were
recovered from an ADAR2-immunoprecipitate of the nudear frac-
tion of human cerebellum. Because GluR2 and kvl.] mRNAs, but
not b-accin mRNA, have ADAR2-mediated editing positions, these
results suggest that CYFIP2 and FLNA mRNAs, but not BLCAP
or IGFBP7 mRNA, have ADAR2-mediated positions. Indeed, in
vitro knockdown experiments indicated thar the K/E site in CYFIP2
mRNA and the Y/C site in BLCAP mRNA are catalyzed mainly
by ADAR2 and ADARI, respectively (Table 2). Janwsch’s lab also
reported consistent results from the analysis of the extent of editing
by sequencing of cDNAs derived from ADAR2-null mouse brain and
primary neuronal culture of ADAR1-null and ADAR1/ADAR2-null
mice?® (Table 2). In accordance with the prediction, they showed
that the extent of FLNA Q/R site-editing in ADAR2 null mousc
brains is lower than that in control mice. The consistency between
the two reports using different methodology strongly suggests that
ADAR?2 predominantly mediates CYFIP2 K/E site- and FLNA Q/R
site-editing and ADAR1 predominanty mediares BLCAP Y/C site-
and IGFBP7 K/R site-editing,

A Tool for Sporadic ALS Research

Although normal human motor neurons express only Q/R site-
edited GluR2 mRNA* the relative abundance of ADAR2 mRNA
markedly differed among neurons,'® thus suggesting that GluR2
Q/R site-editing may be preserved even in neurons with a relatively
low ADAR2 activity. Because the downregulation of the ADAR2
activity is likely an inducer of neuronal death, markers representing
a wide range of ADAR2 acuivity may be a uscful wol for detection
of the disease onset and evaluation of the efficacy of therapy by
ADAR2 upregulation. CYFIP2Z mRNA is ubiquitously expressed
and is particularly abundant in the central nervous system including
motor neurons in the spinal cord (unpublished observation). The
extent of CYFIP2 K/E site-editing are in the range of about 30% to
85% in the human brains and spinal cord.!® Therefore, the extent
of CYFIP2 K/E site-editing may become an additional marker for
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Table 2 MNovel A-to-1 positions

normal mouse ADART+ mouse ADARZ"* mouse human ADART siRNA' (%)  ADARZ siRNA'® (%)
brain® (%) primary broin™ (%) cersbellum'® (%)
CYFIP2 K/E site 90 - m B4 i 0
BICAP Y/C sie 50 i 335 ~30 0 -
FINA Q/R site 16.5 - $113.5 0 ND ND
ADAR?2 acuivity in neuronal and other rypes of cells in vivo, as well as References

in vitro. Furthermore, since BLCAP mRNA is abundantdly expressed
in human brain tssue, the extent of BLCAP Y/C site-editing may
become a marker for ADARI activity in vivo,

However, The extent of CYFIP2 K/E site-editing and ADAR2
mRNA expression level isnotnwm:ilymthzdmnghm
tissues.’® ADAR2 activity is influenced by several factors including
the subcellular localization of ADAR2 protein,*® inositol phm—
phate 6 (IP-6)*? and glu:uc concentration.® ADAR2 actvity on
the GluR2 Q/R site-editing is reduced in human malignant glioma
cells®!62 in which ADAR]1 overexpression might reduce the number
of active ADAR2 homodimers facilitaing inactive ADAR1/
ADAR2 hetero-dimer formation.%%4 These results suggest that
there may be cell type-specific and sul ific mechanisms
underlymg the regulation of ADAR2 activity, However, why ADAR2

is downregulated in motor neurons of sporadic ALS remains to be
elucidated.

Recently, abnormally processed TAR DNA-binding protein
43 (TDP-43), a member of hnRNP playing a regulatory role in
pre-mRNA splicing,5%%? was demonstrated to accumulate in cyto-
plasmic inclusion bodies of motor neurons of patdents with sporadic
ALS as well as in the cortical neurons of those with frontotemporal
lobar degeneration (FTLD),”7! but not in cytoplasmic inclusion
bodies of motor neurons of patients with SOD! a:snaawd familial
ALS.7273 Therefore, it is likely that the mechanism
underlying sporadic ALS may be different from thar underlying
SOD1-associated familial ALS. On the other hand, scveral different
missense mutations in the TDP-43 are found in patients with
SOD1-unassociated familial ALS that is clinically and neuropatho-
Iogcﬂiyvcrymrularwapomdncﬁlsﬂ'fhcﬁndmgthudux
mutations were detected only in a small proportion of sporadic
ALS cases”*7® suggests that, although the mechanism underlying
aberrant TDP-43 processing is different from TDP-43 gene muta-
tion, the TDP-43 dysfunction resulting from cither aberrant protein
processing or gene mutation may induce a common neuronal death-
inducing cascade. Due to the critical roles that the aberrant TDP-43
processing and ADAR2 under-activity played in the death of moror
neurons, the elucidation of a link berween these molecular abnor-
malities may provide a clue to the pathogenesis of sporadic ALS.

The upregulation of ADAR2 activity with normalization of
GluR2 Q/R site-editing may become a strategy for ALS therapy,
which includes drugs samulating ADAR2 actvity and ADAR2
gene transfer. In such settings, an analysis of RNA editing at newly
demonstrated A-to-I positions in CYFIP2 and FLNA mRNA may
become a useful wool for evaluating ADAR?2 activity and the efficacy
of the therapy in vivo, hence a key for opening the door w a cure that
has been elusive for patients during the nearly 150 year-long history
of ALS research.
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