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Relationship of categonical vanables with delayed recall and finger movement

Categonies (n) Delayed recall Finger movement
Mean S5D. ™ P Mean S.D. " ]

Male (16) T0.3 188 0.4 0719 13.5 6.2 03 0.735
Female (11) 67.6 18.8 125 8.7

Outpatient (12) 70.0 17.3 0.2 0.849 17.0 6.9 2.6 0.014
Inpatient (15) 68.6 199 99 7.0

Familial history+(7) 61.6 15.5 1.3 0.209 14.6 6.6 -0.6 0.559
Familial history=(20) 7.9 19.0 12.6 8.1

* t-test for independent groups; df=2

of the originally grouped subjects (Wilks' 4=0.28,
P=49%10"""), When the correlation between the
delayed recall and finger movement tests was examined
within the patient group, there was no correlation
(Pearson’s r=—0.001, P=1.0).

3.5. Relationship of demographic and clinical variables
with delayed recall and finger movement

The correlations of the demographic and clinical
variables (continuous variables) with the delayed recall
and finger movement tests are shown in Table 4. While
the cducational level was significantly correlated with
the performance in the delayed recall test (r=0.51,
P=0.01), there was no correlation between years of
education and performance on the finger movement test.
No significant correlation was observed for the remain-
ing variables.

Differences in performance in the delayed recall and
finger movement tests between the groups classified by
categorical vaniables (sex, family history, and outpatient
or inpatient status) are shown in Table 5. We found a
significant difference in finger movement between
outpatients and inpatients (t-test, P=0.014). The scores
of outpatients were significantly higher than those of

Table 6
Correlation of motor and cognitive functions with delayed recall and
finger movement

Delayed Finger

recall movement

r P r P
Pegboard -027 0.18 =-0.51 001
Normal drawing -044 002 =032 0.0
Finger movement -000 100 - -
General memory (WMS-R) 088 000 073 072
A and (WMS-R) 045 002 020 0.32
Delayed recall (WMS-R) - - =0.00 1.00
Full scale 1Q (WAIS-R) 065 000 021 030
Completed categories (WCST) 034 012 034 0.11
r = Pearson’s produc | coeflicient

inpatients in the finger movement test, although this
difference was not observed for the delayed recall test. In
regard to sex or family history, there was no significant
difference in the scores in either test.

3.6. Relationship of motor and cognitive functions with
delayed recall and finger movement

The correlations of the motor and cognitive functions
with the delayed recall and finger movement tests are
shown in Table 6. Finger movement was correlated with
pegboard only, while delayed recall was correlated with
many of the variables: normal drawing, WMS-R
indexes, and full scale 1Q.

4. Discussion

By using a series of tests, we confirmed that both
motor and cognitive functions are profoundly impaired
in patients with chronic schizophrenia. The scores of all
of the motor (pegboard, mirror drawing, normal
drawing, and finger movement) and cognitive (WAIS-
R and WMS-R) tests were significantly poorer in the
schizophrenic patients than in the healthy control
subjects even when sex, age, and years of education
were controlled for. A discriminant analysis revealed
that the functions that most successfully distinguished
patients and controls were delayed recall and finger
movement among the tests. Because the finger move-
ment test that we developed is independent of motor
speed, our results suggest that motor dextenty is
intrinsically impaired in chronic schizophrenia. Further-
more, the score of the finger movement test did not
correlate with that of the delayed recall, suggesting that
these two functions are dimensionally different.

In accordance with our results, schizophrenia is char-
acterized by a substantial deficit in memory functions
(Saykin et al., 1991, 1994; Censits et al,, 1997). Among
the WMS-R subscales, the most impaired function in
our patients was delayed recall (index score of 69.2),
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followed by visual memory (73.4), verbal memory (76.6),
and attention and concentration (83.7). This order is not
consistent with previous studies (Wechsler, 1987; Ran-
dolph et al., 1994; Hawkins et al.. 1997). For example,
Gold et al. (1992) studied 45 schizophrenic patients and
reported that the scores on the WMS-R subscales scores
were similarly impaired (attention and concentration:
80.0; verbal memory: §1.8; visual memory: 81.5; delayed
recall: 81.6). The inconsistency between previous studies
and the present study may be atributable to the ethnic
difference or relatively older age of our subjects (mean
age: 44 years). With respect to the WCST, the difference
between patients and controls just failed to reach statistical
significance (P=0.051), although many earlier studies
have shown that deficits on the WCST are prominent in
schizophrenia (e.g. Franke et al.,, 1992; Scarone et al.,
1993). The failure to reach statistical significance may be
attributable to the small sample and relatively large inter-
individual differences (i.e., a wide range of standard
deviations) in the test scores.

In addition to memory functions, motor functions can
be another factor to distinguish schizophrenic patients
from healthy controls. The finger movement test we
developed was found to have a highly discriminative
power between patients and controls; this power might be
even higher than that of the conventional motor tests, such
as the pegboard test. Motor dysfunction in schizophrenia
has been noted since the time of Kraepelin (Kraepelin,
1919; King, 1958; Weaver and Brooks, 1964; Heinrichs
and Zakzanis, 1998). Our present results add further
evidence for this. The majority of previous studies
employed the finger tapping and pegboard tests (Heinnchs
and Zakzanis, 1998). Scores on the latter test are, however,
influenced by not only dexterity but also motor speed
(Rosofsky et al, 1982). Therefore, we developed the
finger movement test to evaluate motor dexterity alone.
There was a highly significant correlation between the
finger movement and pegboard tests, confirming the
validity of the newly developed finger movement test as a
tool to measure motor dexterity. Our observation that the
finger movement test had a highly discriminative power
between patients and controls suggests that impairment in
motor dexterity per se might be a major characteristic of
chronic schizophrenia.

However, it could be argued that impaired motor
dexterity might have been due to undesirable side effects
of the antipsychotic drugs (i.e., extrapyramidal symp-
toms). Finger rigidity, for example, may influence finger
movement test results. Though we found no significant
correlation between daily dose of antipsychotic drugs
and performance in the finger movement test, there
have been conflicting reports concerning the effect of

antipsychotic medication. Some reports showed that
motor deficit was independent of antipsychotics (Saykin
et al.. 1994; Tigges et al., 2000), but others showed that
motor deficit in medicated patients was much worse than
in drug-naive patients (Putzhammer et al,, 2004, 2005),
One plausible explanation was that drug-naive patients
suffer from a primary motor deficit and antipsychotic
medication (especially typical antipsychotic medication)
worsens this primary deficit (Putzhammer and Klein,
2006). In sum, however, the, poor performance observed
in the finger movement test is unlikely to be attributed
solely 1o side effects of antipsychotic medication.

With respect to the mirror drawing task, more than
half of the patients did not complete it. So we excluded
the results on this task from further analysis; however,
the observation that so many patients could not
complete the task may suggest a major difficulty with
visuo-motor coordination in schizophrenia.

There is some evidence that deficits in motor function
or dexterity have a developmental origin and manifest
before the onset of schizophrenia. Cannon et al. (1999)
examined various activities of school age in individuals
who later developed schizophrenia, and found that pre-
schizophrenic subjects performed significantly worse
than control subjects only in nonacademic areas such as
sports and handicrafts. Gschwandwer et al. (2005)
reported that poorer fine motor functions as well as
cognitive functions during childhood were crucial risk
factors for later development of schizophrenia. Such
deficits in motor functions may be related to genetic
factors. Sautter et al. (1997) reported that familial
patients were much worse than non-familial patients
in the domains of motor and frontal lobe function. In
the present study, however, we obtained no evidence
supporting this possibility.

In the present study, the inpatients performed more
poorly on the finger movement test than the outpatients.
In line with this, Weaver and Brooks (1964) reported that
scores in motor function tests were highly associated
with the probability of discharge from the hospital.
Lehoux et al. (2003) studied the relationship of several
cognitive and motor tests with social functioning and
revealed that the best fitting multivanate model to
explain social functioning included fine motor dexterity
and executive functioning. Sota and Heinrichs (2004)
showed that motor dexterity was one of the crucial
cognitive factors which predicted overall quality of life 3
years after initial measurement. These observations may
suggest motor dexterity is related to functional outcome.

Several limitations are present in this study. First, the
sample size was not very large. There is a possibility that
some valid discriminators between patients and controls
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have been missed due to the small sample size (type 11
error). Second, the mean 1Q and memory indices of our
controls were relatively high (around 110); therefore, it
is possible that motor functions might also be relatively
higher in our controls than in the general population.
Thus, the differences in motor functions between
patients and controls may have been overestimated in
our study. Third, we did not administer a test for motor
speed alone; the possibility remains that motor speed
may be an important factor in discriminating patients
and controls. Indeed, deficits in motor speed have been
reported in both patients with schizophrenia and
individuals at risk for the disorder (Niendam et al,
2006). Fourth, scoring of the finger movement test was
performed by a single examiner without monitoring by a
second examiner or objective instrument; thus some
scoring errors might have occurred. Furthermore,
strength of the fixed finger might have had some
influence on the finger movement test score; controlling
for such strength should have been done in the test.

In conclusion, we demonstrated profound impair-
ment in motor dexterity as well as cognitive impairment
in chronic schizophrenia using a newly developed motor
test, the finger movement test. Impaired motor dexterity
is a major characteristic of schizophrenia, which is
relatively independent of cognitive functions.
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Abstract: The p75 neurotrophin receptor (p7SNTR) was originally identified as a low-affinity rtcrpwr for neurotrophins. Recent studies
have revealed thar p7SNTR can promote cell death or survival and neuriie oulgr pending on the ope ligands and
co-receptors. Up-regulation and ligand activation of p7SNTR have been shown to be involved in neuronal l:cll death in cultured cells and
animal models of neurodegencrative discases The levels of proncurowophins, which bind 1o p7SNTR to promote neuronal death, have
been found to be dinp brains of p with Alzh s disease. Funh there is some evidence for the in-
volvement of this molecule in psychiatnc d such as dep and schizoph Mice lacking p7SNTR have been shown 1o have
several alterations in central nervous system and cognitive function. Notably, recemt progress in genome-based drug discovery has en-
abled the identification of peptides and non-peptide small molecules targeting p7SNTR, which may be potentally beneficial i thc treal-

ment of neuropsychiatric diseases In this review, we focus on recent findings on p7SNTR as a

diseases

herap target for

Keywords: p7SNTR, neurotrophin, proncurotrophin, depression, schizophrenia. Alzheimer's disease, drug discovery, knockout (KO) mouse.

INTRODUCTION

p7SNTR was identified as a receptor for neurotrophins, namely,
nerve growth factor (NGF), brain-derived neurotrophic factor
(BDNF), neurotrophin 3 (NT3), and ncurotrophin 4/5 (NT4/5), and
cloned as a type | transmembrane protein, with its molecular weight
of 75 kDa beng gly cosylated through both N- and O-linkages in the
extracellular domain [1-5] N | numerous cel-
lular activities such as pmhﬁ:m:on g:romh dlff:rmuatmn, md
regeneration [6]. The most i y
BDNF, for cumpl: has been u-nphutad in Alzheimer's dlsease [7-
9] and psychiatric d such as depression [10, 11] and schizo-
phrenia [12, 13] It is therefore feasible to speculate that the pan-
ncumuuphm receptor, p7SNTR, might play critical roles in the
of ychiatric di It might be a possible
u.rget ' molecule for the u:ummt of such discases, although little
attention has thus far been paid to p7SNTR

MOLECULAR OUTLINE

Human p75NTR 15 a 427 ammo acid protem contammg a 28
amino acid signal peptide, four extracellular cysteine-rich domains
(CRD1 1o CRD4), an extracellular stalk d , & single trans-
membrane domain, and a 155 amino acid cywoplasmic domain
There is a short splicing variant of p7SNTR, which will be de-
scribed in more detail later (Fig. 1). p7SNTR binds neurotrophins
through interactions with the CRDs, each with six cysteine residues

high-affinity mature neurotrophin binding sites [25]. In forming a
complex with TRK rs (TRKA, TRKB, and TRKC) for the
mature neurotrophins, p7SNTR modulates the affinity and activity
of these kinases that promote neuronal survival [25-30]. The high-
affinity binding of proncurotrophins to p7SNTR is mediated by
interaction of the receptor with a co-receptor, sortilin, which 1s
thought to promote apoptosis [31, 32]. p7SNTR can also bind
ligands other than neurotrophins, for example, amyloid beta [33],
prion peptides (PrPs) [34], and rabies virus glycoprotein (RVG)
[35, 36] Morcover, it interacts with co-receptors other than TRKs
and sortilin, for example, the NOGO receptor (NOGOR) and
leucine rich repeat and |g domain containing 1 (LINGO-1) [37, 38]
Further details are described in recent reviews [24, 39].

pTSNTR
CRDI
() crp2
TSNTR
Exontll | () crD3 £
() crD4 CRDI
Lixon IV Stalk domain

at conserved positions [14, 15]. The extracellular stalk d Is
serine/threonine-rich and contains O-linked glycosylation sites [16]
The cytoplasmic juxtamembrane region, called the chopper domain,
has been found to be necessary and sufficient to initiate neural cell
death [17). The second half of the intracellular domain is the death
domain whose activation induces apoptosis [18, 19]. Signaling
mediators, which are activated nt lo ligand binding to
p75NTR, include ceramide [20], nuclear factor xB (NF-xB) [21],
Akt (also known as protein kinase B) [22], c-Jun N-terminal kinase
(JNK) [23], and caspases [17].

p7SNTR is a receptor for all mature neurotrophins (NGF,
BDNF, NT3, and NT4/5) and immaty phin forms [24]
(Fig. 2). Neither tropomyosin- related kinase A (TRKA) nor
p7SNTR forms a high-affinity binding site when expressed alone,
whereas coexpression of the two receptors results in formation of

* Address to this suthor st the Depantment of Mental Disorder Re-
search, N | institute of | Center of Neurology mnd Peychia-
oy, 4-1-1, Ogee Kodaira, Tokyo, 187-3502, Japan;

TelFax: +81-423-46-1714; E-mul: hkunugi@ncap. go jp

1874-4672/09 $55.00+.00

Chopper domain

Death domain

Fig. (1). The structural schema of p7SNTR

Schematic representation of full-length p?SNTR and its shon splice vanant
(s-p7SNTR)

CRD: cysweine-rich domain

SPLICING VARIANT
Although p7SNTR is mainly expressed as a 75 kDa transmem-
brane glycoprotein, there is a protein isoform of p7SNTR that anses

from altemative splicing of exon 11l (Fig. 1). This isoform is left
intact in a p7SATR mutant mouse line generated by Lee et al. [40,

© 2009 Bentham Science Publishers Lid.
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41] In its extracellular domain, the short p7SNTR vanant (s-
P75SNTR) differs from the full-length p75NTR protein by the ab-
sence of three (CRD2, CRD3, and CRD4) of the four CRDs [42]
Neurotrophins bind to CRD2, CDR3 and CRD4 of p7SNTR [15,
43). Indeed, n HEK293 cells expressing recombinant s-p75NTR,
the receptor did not bind 1o any neurowmophin [40] Reverse tran-
scription-polymerase chan reaction (RT-PCR) analysis performed
on mouse, rat and human cells revealed that s-p75NTR is evolution-
arily conserved and coexpressed with full-length p7SNTR transeript
ot different embryonic stages, generally at substantially lower lev-
els. Although the functions of s-p7SNTR are largely unknown,
some studies suggest that it is a functional molecule in vivo. s-
p7SNTR binds to RVG through CRDI, in contrast to requiring the
other three CRDs for neurotrophn binding [36, 44] R Iy, a
mammalian homologue of p7SNTR, neurotrophin receptor homo-
logue 2 (NRH2), was identified [45-47]. NRH2 contains transmem-
brane and cytoplasmic d homologous to those of s-pTSNTR;
however, it lacks all of the CRDs [45] NRH2 can interact with
p7SNTR and Trks, and mediate death or promote survival signals
[46, 48].

KNOCKOUT MICE

Lee er al. [41)] generated mice lacking functional p7SNTR by
targeted disruption of exon 1ll, which encodes CRD2, CRD3 and
CRDA4 (designated henceforth p7SNTR™") p7SNTR™"" " mice
were reported to be viable and fertile, and to develop deficits in heat
sensitivity and skin defects in all ex ities [41]. 1 hi
chemistry revealed a lack of peripheral sensory nerve fibers ex-
pressing calcitonin-related peptide alpha (CALCA) and substance P
[41]. Neonatal sympathetic and embryonic sensory neurons derived
from p7SNTR™™ mice showed reduced sensitivity to NGF and
displayed deficits in developmental and injury-induced apoplosis
[49, 50)

Because both the s-p7SNTR transcript and its encoded protein
are expressed in p7SNTR™" mice, von Schack er al. [40] tar-
geted exon IV to generate a null mutation (designated henceforth
PISNTR™™™) In both p7SNTR""" and p7SNTR™™""" mutants,
alterations in cholinergic neurons in the basal forebrain, hippocam-

a \i--\mnrh-
D=

N\
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pal neurons, and neurogenic precursor cells in the subventricular
zone (SVZ) have been observed (Table 1) [40, 41, 49-74]
pTSNTR™ mice display more severe phenotypes than
p7SNTR™"" mice, particularly in the nervous systems.
Pp7SNTR™™" mice displayed a larger reduction in the number of
dorsal root ganglia (DRG) neurons and Schwann cells, partial peri-
natal lethality, and defects in the vascular system that have nol been
observed in p7SNTRE™" mice [40)

Alzheimer's disease, which causes deficits in leaming and
memory processes, is accompanied by a loss of cholinergic function
[75-77] Some studies have indicated an increase in the number of
cholinergic forebrain neurons in p7SNTR™ " mice [53, 54, 78],
while others reported a decrease [67] or no significant change in the
numbers of such neurons [52] To resolve these conflicting results,
Naumann e/ al. analyzed the numbers of cholinergic neurons in the
medial septal nucleus of p7SNTR™™™ " and p75NTR™™*" mice on
a Sv129/BALB/c genetic background and a back-crossed congenic
strain (C57BL/6). The p7SNTR™ mutation led to a moderate
increase (+13%) in the number of cholinergic neurons only after
back-crossing onto a CS57BL/6 background Interestingly, s-
p7SNTR was present at substantially higher levels in mice with the
$v129 background compared with C57BL/6 mice, which might
help to explain this result. In contrast to the p7SNTR™™" muta-
tion, the p?SNTR"m" mutation resulted in an over 20% increase
n the number of cholinergic neurons, independent of genetic back-
ground They concluded that p7SNTR™™"~" mutation increases the

ber of cholinergic m the medial sep [54)

The p7SNTR™ ~ mutation results in severe ataxia in mice
and precludes detailed behavioral testing [40]. When spatial leamn-
ing was examined in p7SNTR™™"" mice, conflicting results were
observed, depending on test paradigms. Peterson ef al., who found a
markedly reduced ber of cholinergic septal s, reported
deficits in acquisition of the Morns waler maze, inhibitory avoid-
ance, and habituation tasks in adult p7SNTR™"" mice [64]. Such
deficits in p7SNTR™™" mice in the Morris water maze were sub-
sequently supported by Wright er al. [66]. Performance in the
Bames maze, by contrast, was superior in p7SNTR™™"* mice than
in control mice [52]. The Bamnes maze is a dry version of the circu-

Prits

N\

PHNTR

Ll

Survival
Faurite sl gromAh

. R 2

Fig. (2). p75NTR is involved in different biological activities, depending on its different ligands and co-receptors
a). p7SNTR physically interacts with TRK receptors (TRKA, TRKB, and TRKC) and enh their abilities to respond 10

b} Interaction of p7SNTR with sorulin med proapop signals in resp

c). Amyloid beta binds to p7SNTR and promotes cell death

lop phin binding

d) p7SNTR forms a complex with NOGOR that results in growth inhibitory signals 1o be transduced in response to NOGO, myelin-associated glycoprotein

(MAG), or oligodendrocyte myelin-glycop (OMgP)

| for RV

€). RGV binding occurs on CRDI, although this binding is not
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Table |, Neuronal and Behavioral Phenotypes of p7SNTR Knockout Mice
Year | Authors Region KO Phenotypes
1992 | Les KFetal |41 5N {1} Marked decrease in semsory innervation by calcitonin gene-related peptide- and substance P-
! immunoreactive fibers and loss of heat sensinviry

1993 I Davies. AM et al [44] TSN mn Aliered response io NL’I" m trngeminal sensory neurons o

199 | Lee KFetal |30] DRG, SCG 1 Enu;seluucfnkﬁmdscc-mnmun o T

1995 | Cama i ctal [20) | DRG 11} Retrograde sxonal transport of NT-4 and BDNF, but not NGF, was dramatically reduced

1997 | Yea TTaul [33] BFCN m Increase m the pumber, size, actvity, and target nnervation of BFCNs

1997 | Petemson. DA stal [87] BFCN m Den:l:lﬂ n the number of BFCNs o 0l

1997 | Bergmann. | et el [72) Cutaneous SN 1 Red of the epidermal density

1998 | Bamyi SXetal [45] 50G m Sympathenc neuron death was developmentally delayed

1998 | Fem. CCwtal [37] Facul \I!\_ m Significant improvement of survival in the adult KO mice, compared to WT, following injury

1999 | Brennan, C ;i (L] s0G 1] I_mr'-'i\'TR = MGF mice, SCG neuron number was restored to WT levels (NMGF™ mice had 50% fewer
SCG neurons. )

1999 | Petcmon DA ctal [64] BFCN 1] Imparments in severa! learnmg and memory tasks, such as Morms water maze, mhibntory svodance, motor
acuivity, and habimation tasks

1999 | Yemashoa T etad [71] SN, MN m Reduced outgrowth of sensory and motor mons

1999 | Frade IMetal [38] Retina Spinal cord 1] In p7SNTR ™ embryos, cell death was reduced in the retina and m the spinal cord

2000 | Bentiey. CActal [$1] DRG m Abnormalities of axon growth, arbort and Sch cell during development

2000 | Greferath, U ctal 152] BFCN m Inerease in the number of BFCNs, marked increase of the size of BFCNs, and better spatial learnmg
performance

zﬁ Coubon, Eletal |65] DRG m Rn;mu for cell death after withdrawal from cultured medium

2001 | von Schack et al [40] DRG v Larger reduction in the number of DRG neurons and Schwann cells ___||

2002 | Maumann, T ctad [34] BFCN 1, v Incrense in the number of BFCNs {medial septum), compared with controls

2002 | Troy. CMeial [30] HN m Marked reduction in the number of dying neurons afier induced seirures

2004 | Wght IW eral [66] (Behavior) m m Morms water maze tash

2008 | Zagrebelsky, M e sl [39] HN HL v Postnatal hippocampal pyramidal cells in both mutant lines had & higher spine denuty and greater dendrinc

i than WTmice

2005 | Rosch. M ctal [80] HN ) L, v Hippocampal LTD was impaired in both o7 SNTR-deficient strains

2005 | Woo NHetal [81] HN 1 Impairment of the NMDA receptor-dependent LTD and a decrease n the expression of NRIS

2005 | Scom ALMetal [73] Spinal cord m In rhizotomy-treated p7INTH mice, I sp g was significantly mugs d

2006 | Smo, Teral |62) SGN, HCs 1 Progressive hearing loss, degeneration of SGNs, and severe loss of HCs

2006 | Volosm M etal [84] BFCN 1] %% decrease in the number of dymg neurons in the medial septum and 80% decrease m the disgonal band
compared with ilve WT mice |day after kainic acid treatment

2007 | Young. KMetal |61] NPC n SVZ m 70% reducnion genic p 1 im vitrn, fi b af numbers of PSA-NCAM positive
SVZ neuroblasts in vive, and a lower OB weight

2007 | Jsmsen. Poeal [14) 5CG 1 Significant increase in the number of sympathetic neurons and p aguinst age d cell death

In the KO column, 111 and 1V represent p7SNTR == and p7SNTR™™ ", respectively
BFCN. Basal forebrain cholinergic neuron, CNS: Central nervous system, DRG: Dorsal roof ganglia, HC: Ear haw cell, HN. Hippocampal newrons, LTD
Motor newron, NMDA - N-methyld

cell ndhesion molecule, SCG Sm;rmul panglion, SG

type

Long-term hon, MMN
cells, NR2B: Nomethy)-D-asparute receptor 28, OB Olfactory bulb, PSA-NCAM: Polysialic acid neursl

, NPC: !

N S;'nl ganglion neuron. SN: Sensory neuron, SVZ: Subventricular zone, TSN: Trigeminal sensory neuran, WT: Wild-

associated with a loss of cholinergic neurons resulting in profound

lar water maze that provides a spatial cue to permit navigation to a
safe location. Unlike the study of Peterson et al. [64, 67), Greferath

memory disturbances and imeversible impairment of cognitive
function [75-77, 79-81]. In the postmoriem brains of patients with

e al. [52] did not find a markedly reduced ber of chol 1c
septal neurons, and reported that cholmergic cells in p?SNTR"l'
mice were significantly larger than those in control mice in the
medial septal area and in the diagonal band of Broca. They dis-
cussed that the improved performance of p7SNTR™""*" mice in the
Bames maze correlates with their hypertrophied cholinergic neu-
rons. Taken together, these findings suggest that p7SNTR may act
as a negative regulator of cholinergi in the forebrain.

p7SNTR and Neurodegenerative Disease

Alzh 's di is pathologically characterized by exten-
sive neuronal cell death, synaptic loss, intracellular neurofibrillary
tangles, and extracellular senile plaques and, as described above, is

Alzheimer's disease, the levels of proneurotrophins, which bind to
p7SNTR and promote neuronal death, have been found to be in-
creased in several studies [82-86]. In cellul dels of d

generative diseases, up-regulation and ligand activation of p75NTR
have been shown to mediate neuronal cell death [31, 32, 69]. Sorti-
lin, 2 member of the vacuolar protein sorting 10 protein (Vps10p)
domain receptor family, was shown to form a receptor complex
with p7SNTR as an essential component for transmitting proneu-
rotrophin-dependent cell death signals [31, 32]. Sonmilin KO
{Sortl” ") mice were shown 1o be resistant lo age I degen-
eration of sympathetic neurons [74] In p7SNT " mice, protec-
tion against age-associated cell death was also observed, supporting

the possibility of a fi b p7SNTR and




PPSNTR and Neuropsychiatric Diseases

sortilin in this process [74]. OF note, amyloid beta peplides, the
major constituents of senile plaques, have been characterized as
ligands for p7SNTR [33, 87, 88]. Although this signaling in vivo is
still unclear, a number of reports have suggested that p7SNTR s
mvolved m the promotion of cell death signaling by amyloid beta
peplides m viro [89-95). A recent study provided evidence of a
direct link between p7SNTR signaling and amylowd bets-induced
toxicity in hippocampal neurons i vitro and in cholinergic basal
forebrain neurons in vivo [88] Both proneurotrophin- and amyloid
beta-regulated signaling pathways involving p7SNTR i vive scem
promising in order to understand the etiology of Alzheimer’s dis-
case and to develop novel therapeutic drugs.

p7SNTR in Neuropsychiatric Diseases

A ber of stud d 1hn n:umtrnphms also play an
impaortant role in such as depression and
schizophrenia uevzewed in [T -13, 96]). Therefore, p75NTR, as a
pan neurotrophin receptor, might play a key role in neuropsy-
chiatric diseases. As the first study examining a possible association
between p7SNTR and psychiatric discases, we reported that a mis~
sense polymorphism (S205L) in p7SNTR was associated with de-
pressive disorder and attempted suicide in a Japanese population
[97]). The fn:qu:nq of mutant-type (L205) was significantly de-
creased in d with ¢ Is (P < 0.05, odds ratio
0.54, 95% CI 031-0 94] suggesting that this vanani may have a
protective effect against the development of major depression. Fur-
thermore, this association was more strongly observed in patients
with a history of attempted suicide than in those without such a
history. A recent study in 8 North American population, however,
failed to obtain evidence for an association between p7SNTR poly-
morphisms, including S205L, and a nsk of childhood-onset mood
disorder (COMD) or suicide attempt in COMD [98]. In order to
clarify the relationship between p75NTR and depressive disorder
and suicidal behavior, further studies in large samples are required.

Many lines of evidence indicate that early neurodevel tal
abnormalities contribute to the pathogenesis of sclnmph:mla [99-
101]. Schizophrenia is also characterized by adult-onset subcortical
dopaminergic hyperactivity (see, for example, [102, 103]) and dis-
rupted prepulse inhibition (PPI) of acoustic startle (see, for exam-
ple, [104-107]). p7SNTR is widely expressed in the developing
central and peripheral nervous systems during the period of synap-

genesis and de I cell death [108]. Rats treated with
neonatal injections of p7SNTR antibody conjugated to saporin into
the developing prefrontal corlex showed impaired PPl and behav-
ioral changes characteristic of adult-onset dopaminergic hyper-
responsivity [109]. It hls been suggested that prenatal vitamin D3
depletion can lead 1o ¢ in many fi of brain develop-
ment, including morphology, cellular proliferation and phin
systems, which suggr_m a pol:nllll nsk-modifying factor for
schizophrenia. 1 gly, this change induced by vitamin D3
depletion includes a8 marked decrease in the expression of p7SNTR,
and vitamin D3-responsive elements are present in the promoter
region ofp?SNTR [110]. Recently, the early growth response (Egr)
trans | regulators, Egrl and Egrl, were identified as direct
modulators of p?.iNTR expression [111]. Egrl and Egr3 bind to and
transactivate the p7SNTR promoter i vitre and i vivo [111]. EGR3
was wdentified as a potential susceptibility gene in schizophrema by
a recent genetic association study and postmortem brain analysis
[112].

Numerous studies have found subregional l.'lmnnnlhtles of the
brain in f with schizophrenia, including smaller hipp pal
volume, Ia:ger ventricles, sma]!cr cerebral voll.lm: reversed asym-
metry in the superior temporal gyrus, and smaller volume of the
medial temporal lobes (reviewed in [113-115]), and in those with
major depression, including reduced volumes of hippocampus,
amygdala and anterior cingulate (reviewed in [113, 116, 117])

Current Molecular Pharmacology, 2009, Vol 2, No. | T3

There are several lines of evidence suggesting alterations of oli-
godendrocytes in schizophrenia, for example, lowered density of
oligodendroghia [118, 119]. Possibly pertinent to this, proneurotro-
phins induce death of oligod yles expl g p7SNTR [31]
Taken together, these findings suggest that p7SNTR might play an
important role as a key molecule in such volume changes of the
brain in patients with neuropsychiatric diseases.

DRUG CANDIDATES

Agomsts or antagomsts for p7SNTR would contamn structural
determinants of one or more neurotrophin active sites that interact
with p7SNTR. Longo et al. [120] revealed that a peptide corre-
sponding to the region between amino acid residues 28 and 38 of
NGF inhibits its neurotrophic effects on DRG neurons. Subse-
quently, short synthetic peptides corresponding to the beta-hairpin
loop of NGF were designed, blocking neuronal death in culture
[121]. This NGF-inhibitory activity was p7SNTR dependent, re-
quirng both peptide cyclization and dimenzation [121]. Tumer
er al [122] showed that application of a cyclic decapeptide
P7SNTR anlagonist, conlaining amyloid beta residues 28-30 (Lys-
Gly-Ala), protects against NGF-induced death signaling in cultured
NSC-34 cells

Recently, Massa et al. [123] identified several small molecules
as novel ligands of p75NTR, including a derivative of caffeine,
LMI11A-24, These compounds are non-peptidyl mimetics of the
neurotrophin loop 1 domain identified by tandem in silico and in
vitro screening. LM11A-24 bound to p7SNTR, exerted potent neu-
roprotective effects through one or more p75NTR-dependent
mechani and stimulated survival pathways in hippocampal
neurons. It also prevented p7SNTR-dependent apoptosis induced by
proNGF in oligodendrocytes [123] Subsequently, Pehar ef al [124]
showed that LM11A-24 was able 1o inhibit p7SNTR-dependent
motor neuron death induced by NGF. Intriguingly, the apparent
potency of LMI1A-24 was considerably higher than that of the
above-mentioned peptide-based antagonist containing amyloid beta
residues 28-30 (Lys-Gly-Ala) in motor neuron-like NSC-34 cells
1123, 122]. LM11A-24 and its related derivatives capable of cross-
ing the blood-brain barrier are expected 1o become leading candi-
dates in the development of therapeutic strategies targeting
p7SNTR

CONCLUSION

We focused on recent findings concerning p7SNTR in relation
to neuronal function, its possible relevance to neuropsychiatric
discases, and progress in genome-based drug discovery targeting
p7SNTR. p7SNTR associates with many kinds of co-receptors and
ligands, and ransd VArous Is, which complicate the un-
derstanding of the role of p7SNTR i vive. However, in p7SNTR
KO mice, an increase in the number and size o!’chollnm:c wurons
in the medial septum and protection ag
cell death were observed, \shldl raises the posslhlllry that p?iNTR
might regulate choli gatively in the foret
P7SNTR. as a mediator ufdcath signaling in both neurons and olp
godendrocytes, might oonmhutc to the morphological :hmgcs in
the brain and subseq de of
Thus, suppression of pTSNTR m:ght be a possible therapeutic sirat-
egy. Recently, virtual screening in si/ico has been put to practical
use in drug discovery and some small molecule ligands for p7SNTR
have been identified (for example, LM11A-24). Studies on such
small ligands for p7SNTR with respect 1o their therapeutic and
protective effects in neuropsychiatric diseases are warranted

3. :
v hiatric
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Impaired Secretion of Brain-Derived Neurotrophic Factor and Neuropsy-

chiatric Diseases
Naoki Adachi and Hiroshi Kunugi*
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Psychiatry, Tokyo 187-8502, 4-1-1, Ogawahigashi, Tokyo, 187-8502, Japan

Abstract: Recent studies have elucidated mechanisms of brain-derived neurotrophic factor (BDNF) secretion, and im-
paired secretion of BDNF may be involved in the pathogenesis of several neuropsychiatric diseases. The huntingtin gene,
for example, has been shown to regulate vesicular transport of BDNF, which may play a role in the neurodegeneration
present in Huntington's diseasc. In animal studies, mice lacking calcium-dependent activator p for secretion 2
(CADPS2), which is involved in the activity-dependent release of BDNF, showed several phenotypes including autistic
behavior. A single nucleotide polymorphism that results in an amino-acid change (Val66Met) in the BDNF gene has been
shown 1o cause a decline in the function of BDNF vesicular sorting and has been reported to be associated with behavioral
and intermediate phenotypes (e.g.. episodic memory) in humans. In this review, we introduce recent progress in the mo-
lecular mechanisms of BDNF secretion and discuss its possible role in the pathophysiclogy and treatment of neuropsy-

chiatric diseases.

INTRODUCTION

Brain-derived neurotrophic factor (BDNF), a member of
the neurotrophin family, has been implicated in a broad
range of processes that are important for neuronal survival
and synaptic plasticity in the central nervous system (CNS)
[1-3). Early in the 1950s, nerve growth factor (NGF) was
discovered by Levi-Montalcini and Hamburger and Cohen
[4.5] as a soluble factor that induced fiber outgrowth of
chicken sympathetic neurons. Subsequently, Barde ef al. [6]
isolated BDNF, which was later found to be homologous to
NGF |7], from pig brain as a neuronal survival factor. These
discoveries motivated homology-based searches for addi-
tional family members of which there are currently a total of
four in mammals — NGF, BDNF, neurotrophin-3 (NT-3) and
neurotrophin-4/5 (NT-4/5). Additional members are con-
served in fish — neurotrophin-6 (NT-6) and neurotrophin-7
(NT-7) [8.,9]. All neurotrophins are secreted from neuronal
(partially glial) cells and bind to their receptors in an
autocrine/paracrine manner, In the last two decades, a bulk
of studies have suggesied that neurotrophins, especially
BDNF, are involved in the pathophysiology of neuropsy-
chiatric diseases through their role in the regulation of syn-
aptic efficacy (synaptic plasticity) and synaptogenesis in the
CNS. In this review, we focus on recent findings of secretion
mechanisms of BDNF and their relationship with neuropsy-
chiatric diseases.

1. BIOLOGICAL FUNCTIONS OF BDNF
i Survival and Synaptic Plasticity

Neurotrophins exert their biological effects through the
binding of secreted homodimeric neurotrophins to two types

*Address correspondmce to this author at the Department of Mental Disor-
der R h of N N | Center of Neu-
rology and Psychiatry, Tokyo 187-8502, 4-1-1, Dgaw.hlgashl Tokyo, 187-
8502, Japan; TelFax: +81-42-346-1714, E-mail. hkunugi@ncnp. go.jp

1874-0820/08

of transmembrane receplor proteins: the tyrosine kinase Trk
(tropomyosin-related kinase) receptors and the low affinity
common neurotrophin receptor (p75NTR). Neurotrophins
are expressed in a precursor form (pro-neurotrophins) and
are proteolytically processed to a mature form. Mature neu-
rotrophins preferentially bind to their specific Trk receptor:
NGF 10 TrkA, BDNF and NT-4/5 to TrkB and NT-3 1o
TrkC. Pro-neurotrophins, however, bind to p75SNTR with
higher affinity than mature neurotrophins, although they
have a lower affinity for Trk receptors [10]. Binding of ncu-
rotrophins to Trk receptors immediately generates receptor
dimerization and autophosphorylation of tyrosine residues in
the intracellular kinase domain. Trk receptor phosphoryla-
tion activates intracellular signaling regulated by mitogen-
activated protein kinase (MAPK), phosphoinositide-3 (P13)-
kinase/Akt and phospholipase C~y (PLC-y) pathways as well
as several small G proteins, including Ras, Rap-1, and the
CDC-42-Rac-Rho family [11-13]. These intracellular signal-
ing cascades modulate expression of genes and are responsi-
ble for most of the long-term effects of neurotrophins related
to ncuronal growth, survival, and differentiation [14]. On the
other hand, binding of pro-neurotrophins to p75NTR leads to
antagonistic effects to Trk receptor signaling. Several of
these p73NTR-dependent signaling are pro-apoptotic and
can be suppressed by Trk receptor-initiated signaling
[15.16]. The first evidence of a significant relationship be-
tween neurotrophins and synaptic plasticity was obtained by
Lohof et al. [17]; exogenous BDNF and NT-3 increased syn-
aptic efficacy at the Xenopus neuromuscular junction. Sub-
sequently, these neurotrophins were shown to facilitate glu-
tamatergic synaptic transmission, even in the hippocampus
of the mammalian CNS [18-20]. There is now substantial
evidence implicating BDNF in activity-dependent long-term
synaplic plasticity [21,22]. The neurotrophin-binding Trk
receptor activates many kinds of signaling pathways that
promote neuronal survival and synaptic efficiency, although
it is still unclear how the complex signaling pathways are
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systematically integrated to generate many biological func-
tions.

ii. Activity-Dependent Expression of Neurotrophins

Among neurotrophins, BDNF shows the most ubiquitous
expression in the developing and adult mammalian brain.
BDNF expression levels are increased dramatically during
the first few weeks of postnatal development. Expression of
neurotrophins in neurons is linked to neuronal activity.
BDNF and NGF mRNA levels are rapidly increased by sei-
zure activity in the hippocampus and the cerebral cortex [23-
25]. In contrast, blockade of visual input causes rapid down-
regulation of BDNF mRNA in the rat visual cortex of dark-
reared animals [26]. A similar phenomenon has been found
in cultured neurons. The introduction of glutamate with high
concentration potassium-induced depolarization increase
levels of BDNF and NGF mRNA, while blockade of neu-
ronal activity with yaminobutyric acid (GABA) decreases
such levels [27,28].

iii. Processes of BDNF Secretion

BDNF is synthesized as a 32 kDa precursor protein
(proBDNF) and proteolytically cleaved to generate the ma-
ture BDNF (13 kDa). The synthesis of the pro-BDNF occurs
at the rough endoplasmic reticulum (ER). Following this,
pro-BDNF is transported to the Golgi apparatus and concen-
trated in membrane stacks of the trans-Golgi network
(TGN). Finally, BDNF-containing vesicles bud off the TGN
to eventually transport to the releasing sites. Recent studies
clarified some of the details of BDNF vesicular sorting. Spe-
cifically, the pro-region of BDNF has been implicated as a
regulator of BDNF sorting to secretory vesicles [29].
Moreover, fusing the pro-region of BDNF to NT-4, which is
rarely sorted into secretory vesicles, allowed NT-4 to sort
more efficiently into specific vesicles [30]. These data sup-
port the importance of the BDNF pro-region as a potential
target to help guide secretory granules. Furthermore, binding
of BDNF to the lipid-raft-associated sorting receptor car-
boxypeptidase E (CPE) in the TGN is also important for
sorting into secretory vesicles of the regulated pathway [31].
Sortilin, a trans-membrane protein, has also been implicated
in the sorting of BDNF to secretory glanules, Sortilin is ex-
pressed in secretory granules and interacts specifically with
the pro-region of BDNF. Interestingly, the truncated form of
sortilin results in missorting of BDNF to the sccretory vesi-
cles [32].

It is still controversial as to where and how pro-
neurotrophins are processed into mature neurotrophins in the
CNS. Originally, it had been thought that pro-neurotrophins
arc prototypically cleaved by furin and pro-protein conver-
tases (PCs) in the TGN or in secretory granules before secre-
tion [33]. However, recent studies have indicated that a con-
siderable amount of BDNF is secreted in the pro-form from
neurons. Released pro-BDNF is subsequently processed to
mature BDNF extracellularly by proteases such as plasmin
or matrix metalloproteinases [34,35). More recently, how-
ever, it was shown that pro-BDNF is rapidly converted into
mature BDNF intracellularly and almost all BDNF was se-
creted as the mature form from hippocampal neurons [36].

Adachi and Kunugi

iv. Constitutive and Regulated Secretion

Secretion of neurotrophins is classified into “constitu-
tive” and “regulated” pathways, depending on whether the
secretion occurs spontancously or in response to neuronal
activity, respectively. In hippocampal neurons, BDNF ap-
pears to be sorted primarily into the regulated pathway [37-
39). In the regulated pathway, BDNF-containing vesicles are
transported into either presynaptic axon terminals or post-
synaptic dendrites along microtubules for activity-dependent
secretion [40-43]. Recently, Lessmann and colleagues con-
ducted an elegant study that provided the long-awaited un-
derstanding of BDNF secretion. The activity-dependent
postsynaptic secretion of neurotrophins critically depends on
Ca’" influx via ionutrogic glutamate receptors or voltage-
gated Ca’* channels, Ca’ release from internal stores, acti-
vation of Ca’ /calmodulin-dependent protcin kinase Il
(CaMKII), and intact protein kinase A (PKA) signaling, Trk
signaling and activation of Na’ channels, on the other hand,
are not required for BDNF secretion [44-46]. Furthermore,
recent reports suggest that the Golgi apparatus exists in den-
drites as well as the cell soma, and have gone so far as to
identify a local BDNF secretory pathway in neuronal den-
drites [47,48]. Future works may reveal more details con-
cerning the secretory systems of neurotrophins at the subcel-
lular level and that may be more complex and dynamic than
we can presently imagine.

1. IMPAIRED SECRETION OF BDNF AND NEURO-
PSYCHIATRIC DISEASES

i. Huntington's Disease

Huntington's disease (HD) is a fatal, dominantly inher-
ited, neurodegenerative disease that usually presents during
midlife. It is characterized by relatively selective degenera-
tion of striatal neurons which lead to psychiatric, cognitive
and motor dysfunction. Polyglutamine expansion (polyQ) in
the protein huntingtin (htt) is thought to be the principal
mechanism for the neuronal toxicity in HD. Recently, evi-
dence has indicated the possible link between HD and
BDNF. Wild type hu plays a role as a transcription factor
and facilitates expression of BDNF [49]. Furthermore, htt
has been implicated in BDNF-containing vesicle transport.
Mutant (PolyQ)-htt perturbs post-Golgi trafficking of BDNF
in the regulated secretory pathway, though it does not influ-
ence the constitutive pathway [50,51]. Conversely, the ex-
ogenously transfected BDNF gene generated increased
BDNF levels and TrkB signaling in the striatum, which re-
sulted in improved symptoms in HD model mice [52]. These
findings suggest that mutation of htt reduces levels of BDNF
in the striatum by inhibiting gene expression and perturbing
anterograde transport of BDNF-containing vesicles from
cortex to striatum. Therefore, the development of therapies
focused on the reduction of BDNF release should be impor-
tant for future studies.

ii. Rett Syndrome

Rett syndrome (RTT) is an X-linked disorder character-
ized by arrested neurological development and subsequent
cognitive decline. Methylation of DNA in vertebrates occurs
preferentially on cytosine residues of dinucleotides in which
the cytosine is followed by a guanine residue (CpGs). Meth-
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ylated CpGs bind a variety of proteins. One of these proteins,
methyl-CpG binding protein 2 (MeCP2), has been implicated
in the long-term silencing of gene expression. Inactivating
mutations in MeCP2 is caused in the majority of cases with
Rett syndrome. Chen er al. showed that MeCP2 selectively
binds to the BDNF promoter Il and represses expression of
BDNF [53]. Membrane depolarization triggers the calcium-
dependent phosphorylation and release of MeCP2 from the
BDNF promoter II1, thereby facilitating transcription [54]. A
conditional BDNF transgene increased BDNF expression in
the MeCP2 mutant brain, which resulted in rescue of loco-
motor defects, recovery of electrophysiological deficits, and
extension of lifespan in MeCP2 mutant animals [55]. Al-
though MeCP2 null mice exhibited a slightly decreased con-
tent of BDNF in some brain areas, mutant neurons demon-
strated equivalent secretion levels of BDNF compared to
wild-type in response to high-frequency electrical stimula-
tion [56]. Furthermore, BDNF expression in MeCP2 null
neurons was significantly improved by chronic ampakine
treatment, which was administered to facilitate AMPA re-
ceptor activation [57]. These results suggest that the expres-
sion of BDNF is still plastic in the MeCP2 null condition and
manipulating the BDNF level or the BDNF signaling path-
ways may provide therapeutic opportunities for RTT pa-
lients.

iii. Autism

Autism is a severe neurodevelopmental disorder with a
childhood onset, characterized by profound disturbances in
socialization, language skills, communicative, and behav-
ioral functions. BDNF is expressed abnormally in individu-
als with autism and, as a result, may be involved in the
pathogenesis of autism [58,59]. Elevated levels of BDNF
and NT4/5 measured by archived neonatal blood samples of
autistic patients were reported [60], Elevation of BDNF was
also reported in a study of 18 Japanese children with autism
compared with controls [61], These findings suggest that
excess BDNF during childhood may be involved in the neu-
robiological abnormalities observed in autism. The specific
molecular mechanisms involving BDNF and autism remain
unknown, though one report suggests that genetic changes in
autistic individuals may account for altered neurotrophin
levels [62]. Ca**-dependent activator protein for secretion 2
(CAPS2/CADPS2) is a secretory granule-associated protein
that is abundant at the parallel fiber terminals of granule cells
in the mouse cerebellum and is involved in the release of
BDNF and NT-3. The human CAPS2/CADPS2 gene is lo-
cated on chromosome 7q31.32 within a critical autism sus-
ceptibility locus 1 (AUTS1). CAPS2 knock-out mice demon-
strate autistic-like behavioral phenotypes and deficient re-
lease of BDNF and NT-3. Moreover, phosphorylation of Trk
receptors is decreased in the cerebellum, which may play a
role in the pronounced impairment of cerebellar development
and function, including neuronal survival, differentiation and
migration of postmitotic granule cells, that these mice ex-
hibit [63]. Although there have been few reports suggesting
the relation between autism and BDNF secretion, further
investigation may result in novel insights.

iv. Epilepsy

Epilepsy is a neurological disorder characterized by re-
current and unpredictable scizures. Various studies have
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shown that BDNF increases neuronal excitability and is up-
regulated in areas implicated in epileptogenesis. Seizure ac-
tivity increases expression of BDNF mRNA and protein, and
recent studies have shown that interfering with BDNF signal
transduction inhibits the development of the epileptic state in
vivo [64]. Half of all drug-resistant individuals experience
seizure control with dietary manipulation, such as isocaloric
substitution of carbohydrates with fats and protein referred to
as the 'ketogenic diet'. Daley er al. reported that an inhibitor
of glycolysis is shown to have antiepileptic effects in the rat
kindling model, which may be related 1o NADH-dependent
regulation of BDNF expression [65]. This result may explain
how the 'ketogenic diet’ treatment works. Although it is un-
clear whether the up-regulation of BDNF is the cause or the
consequence of epilepsy, the reduction of BDNF cxpression
or BDNF signaling can be a useful tool for the treatment of
epilepsy.

v. Psychiatric Disorders

Mood and anxiety disorders are the most common psy-
chiatric diseases. BDNF has been implicated in these disor-
ders, because decreased levels of BDNF in the hippocampus
are correlated with stress-induced depressive behaviors [66].
Other studies also showed decreased plasma levels of BDNF
in patients with major depression [67]. Many classes of anti-
depressants, including selective serotonin reuptake inhibi-
tors, significantly increase BDNF mRNA expression in the
hippocampus and prefrontal cortex [68,69]. The time course
of such increase is consistent with the slow onset of thera-
peutic effects of antidepressants. More recently, striking evi-
dence for the involvement of TrkB-dependent neurogenesis
in the antidepressant effect has been reported. Mice lacking
TrkB in the hippocampal neuron progenitor cells had im-
paired neurogenesis and proliferation induced by antidepres-
sant treatment. These mice also demonstrated increased
anxiety-like behavior and decreased sensitivity to antidepres-
sants [70,71]. Taken together, BDNF may play a key role in
the brains of recovering patients during antidepressant treat-
ment [72,73].

Many reports have isolated the possible association be-
tween BDNF levels and schizophrenia in several brain re-
gions [74]. However, results from these studies are contra-
dictory in that some demonstrate decreased BDNF levels in
the postmortem brain or serum, while others report that the
BDNF level in patients was not significantly different from
that in normal controls [75]. Morcover, samples used in each
experiment differ in age, species (rodents, primates, human)
and regions (i.e., hippocampus, frontal cortex, CSF and
blood) [76]. Although there have been many studies examin-
ing the possible role of BDNF in schizophrenia, integrated
knowledge concerning this has not been produced. Despite
this, the neurobiological vulnerability paradigm remains an
altractive concept, supporting that increased susceptibility
may be a consequence of reduced expression of BDNF (neu-
rotrophins) at a certain point of life [77).

In the region encoding BDNF's pro-region, a SNP was
identified at amino acid 66 (Val66Met). Egan and colleagues
reported that the met allele was associated with decreased
episodic memory and abnormal hippocampal activation as
assayed with fMRI in human subjects [29]. Furthermore,
neurons transfected with met-BDNF-GFP showed lower
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depolarization-induced secretion, while constitutive secretion
was unchanged. Met-BDNF-GFP failed to localize to secre-
tory granules or synapses [29]. Following this, a number of
association studies of this polymorphism with psychiatric
disorders have been done. Unexpectedly, the Met66 allele,
which reduces BDNF release, has been suggested to be pro-
tective against developing bipolar disorder (78], although
this association was not confirmed by large-scale studies
[79,80]. The Met66 allele has also been implicated in other
disorders like anorexia [81]. Future research is required to
assess how the Val66Met is associated with particular psy-
chiatric disorders.

CONCLUSIONS

The biological mechanisms of neurotrophins are criti-
cally important for neuronal functions that affect brain func-
tions and behavior. Growing evidence has implicated BDNF
in the pathophysiology of many neuropsychiatric diseases.
Genetic variations leading to deranged expression or secre-
tion due to altered transcription, vesicular sorting, vesicular
trafficking and secretion of BDNF seem to play an important
role in several neuropsychiatric diseases and related behav-
ioral phenotypes. In order to develop treatment strategies for
these diseases through targeting neurotrophins and their re-
ceptors, however, clarification of more detailed mechanisms
is needed. Studies that reveal not only an increase/decrease
in expression of neurotrophins, but also accurate spatiotem-
poral secretion profiles of neurotrophins are necessary.
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Abstract Previous studies suggested that genetic varia-
tions in the 5 region of Epsin 4, a gene encoding
enthoprotin on chromosome 5q33, are associated with
schizophrenia. However, conflicting results have also been
reported. We examined the possible association in a Jap-
anese sample of 354 patients and 365 controls. Seventeen
polymorphisms of Epsin 4 [3 microsatellites and 14 single
nucleotide polymorphisms (SNPs)] were selected. A
microsatellite marker (D551403) demonstrated a signifi-
cant difference in the allele frequency between patients and
controls (uncorrected P = 0.04). However, there was no
significant difference in the genotype or allele frequency
between the two groups for the other microsatellites or
SNPs. Haplotype-based analysis provided no evidence for
an association. The positive result at D551403 no longer
reached statistical significance when multiple testing was
taken into consideration. Our results suggest that the
examined region of Epsin 4 does not have a major influ-
ence on susceptibility to schizophrenia in Japanese.
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Introduction

Schizophrenia i1s a debilitating psychiatnc disorder that
affects approximately 1% of the world’s population (Fen-
ton et al. 2003; Hyman 2000). Patients may suffer from
delusions, hallucinations, disorganized speech and behav-
ior, as well as impairment in short-term verbal and non-
verbal memory. The complete etiology of the disease
remains unknown, though twin and adoption studies have
demonstrated that schizophrenia is highly heritable (esti-
mated heritability of >80%) (Cardno et al. 1999). While
the contributing genes and pathophysiological mechanisms
remain elusive, identifying the susceptibility genes is
essential in discovering the true pathogenesis of schizo-
phrenia. The mode of schizophrenia transmission is
complex and is thought to be polygenic (Owen et al. 2004),
Thus far, linkage and association studies have been suc-
cessful approaches in searching for complex disease genes,
discovering such candidate genes as neuregulin 1, dysbin-
din, G72, and p-amino acid oxidase (DAAO). Through
such analysis, several chromosomal regions have been
identified and investigated as potential sources for schizo-
phrenia susceptibility genes (Chumakov et al. 2002;
Stefansson et al, 2002; Straub et al. 2002a), As a result, the
long arm of chromosome 5q has been identified as a
putative chromosomal region of interest and subsequently
investigated for susceptibility loci (Lewis et al. 2003;
Straub et al. 2002b),

An association study of English, Irish, Welsh, and
Scotush populations found Epsin 4 on chromosome 5q33
as a strong candidate for schizophrenia susceptibility
(Pimm et al. 2005). Four associated polymorphisms were
discovered at the 5' end of Epsin 4, a gene encoding the
clathrin-associated protein enthoprotin. These included
two microsatellite markers, D551403 and AAATII, and
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two  single-nucleotide-polymorphism  (SNP)  markers,
rs10046055 and rs254664. Enthoprotin plays a critical role
in the formation, transport and stability of clathnn-coated
vesicles (CCVs) and is therefore thought to regulate the
transport and storage of neurotransmitters in the brain
(McPherson and Ritter 2005, Wasiak et al. 2002). Neuro-
nal CCVs are critical in the insertion and recycling of
neurotransmitier receplors at the postsynaptic membrane
and have been implicated as a regulatory mechanism for
synaptic plasticity (Blanpied et al, 2002; Wang and Linden
2000). Specifically, CCVs facilitate AMPA receptor traf-
ficking on the postsynaptic me.abrane, therefore affecting
overall glutamatergic neurotransmission (Malinow and
Malenka 2002; Man et al. 2002). Dysfunction of entho-
protin could, therefore, stimulate disturbances in
glutamatergic brain signaling as well as synaplic plasticity,
both postulated to be integral components of schizophrenia
pathophysiology (Christison et al. 1989; Carter et al.
20006). Moreover, it has been demonstrated that enthopro-
tin interacts with the soluble N-ethylmaleimide-sensitive
factor attachment protein receptor (SNARE) complex
found in hippocampal pyramidal cells (Antonin et al. 2000;
Chidambaram et al. 2004). This suggests a possible role for
enthoprotin in calcium-mediated vesicle fusion of excit-
atory neurotransmitters released from the hippocampus. If
the SNARE complex does not function properly in this
way, abnormal neural connectivity may result, which is
another characteristic of schizophrenia (Honer et al. 2002).

Thus far, two replication studies have been conducted
in the Han Chinese population (Liou et al. 2006; Tang
et al. 2006). Both swudies found no association between
the four markers previously reported (D551403, AAATI I,
rs10046055, or rs254664) and schizophrenia. Tang et al.
(2006), however, did detect haplotypes near the 5’ end of
Epsin 4 (252T consisted of AAATII1 and rs10046055,
global P = 0.0021: T/T of rsl1145603 and rs254664,
P = 0.0033) showing an association with schizophrenia in
Han Chinese family trios. Liou et al. (2006) analyzed nine
SNPs on Epsin 4 in a case—control design and found a
significant difference in the allele frequency of a SNP on
the 5’ upstream region of Epsin 4 (rs1186922); however,
this difference was not significant after multiple testing.
These conflicting results prompted us to examine Epsin 4
for an association with schizophrenia in a Japanese
sample.

Materials and methods
Subjects

Subjects were 354 patients with schizophrenia [212 males,
mean age of 44.0 years (SD 13.7)] and 365 healthy controls
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[113 males. mean age of 39.7 years (SD 14.1)]. All sub-
jects were biologically unrelated Japanese and recruited
from the same geographical area (Western part of Tokyo
Metropolitan). Consensus diagnosis by at least two psy-
chiatrists was made for each patient according to the
Diagnostic and Statistical Manual of Mental Disorders, 4th
edition (DSM-IV) criteria (American Psychiatric Associa-
tion 1994) on the basis of unstructured interviews and
information from medical records. The controls were
healthy volunteers recruited from hospital staffs and their
associates. Control individuals were interviewed and those
with a current or past history of psychiatric treatment or
regular use of psychotropic agents were not enrolled in the
study. Participants were excluded from both the patient and
control groups if they had prior medical histories of central
nervous system disease or severe head injury, or if they met
criteria for alcohol/drug dependence or mental retardation.
The study protocol was approved by the ethics committee
at the National Center of Neurology and Psychiatry, Japan,
After description of the study, written informed consent
was obtained from every subject.

Genotyping

Venous blood was drawn from the subjects and Genomic
DNA was extracted from peripheral leukocytes using the
Wizard Genomic DNA Purification System kit (Promega,
Madison, WI, USA) based on the solution-based method
according to the manufacturer's instructions, Fourteen
SNPs (rs1186922, rs10046055, rs1894962, rs6556290,
157735412, rs1145585, rs1186930, rs1145603, rs1186934,
rs11744778, rs1145602, rs1 186998, rs17055032, rs254664)
and three microsatellites (D551400, D551403, AAATI11)
were genotyped. Five SNPs (rs1186922, rs10046055,
rs1186930, rs1145603, rs254664) were selected based on
previous studies conducted by Liou et al. (2006), Tang et al.
(2006), and Pimm et al. (2005). The three microsatellites
demonstrated to be significantly associated with schizo-
phrenia by Pimm et al. (2005) and Tang et al. (2006) were
selected in order to replicate their positive findings. The
other nine SNPs (rs1894962, 156556290, rs7735412,
rs1145585, rs1186934, rs11744778, rs1145602, rs1 186998,
rs17055032) were selected from the international HapMap
project (http://hapmap.org/index.html.en) using Paul de
Bakker's Tagger algarithm in the Haploview V 3.32 pro-
gram. The 17 studied polymorphisms cover approximately
193 kb of Epsin 4 from the §' upstream region to intron |
{Fig. 1.

The SNPs were genotyped using the TagMan 5"-exonu-
clease allelic discrimination assay. TagMan probes of the
assay on demand (rsl186922, rs10046055, rs6556290,
rs7735412, rs1145585, rsl 186930, rs1145603, rs1186934,
rs] 1744778, rs1145602, rs1 186998, rs17055032, rs254664)
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Fig. 1 The genetic structure of
Epsin 4 and location of studied
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and assay by design (rs1894962) with Umversal PCR
Master Mix were obtained from Applied Biosystems (Fos-
ter City, CA, USA). Thermal cycling conditions for
polymerase chain reaction (PCR) were one cycle at 95°C
for 10 min followed by 50 cycles of 92°C for 15 s and 60°C
for 1 min. After amplification, the allelic specific fluores-
cence was measured on ABI PRISM 7900 Sequence
Detector Systems (Applied Biosystems, Foster City, CA,
USA). Genotype data were read blind to the case—control
status. Ambiguous genotype data were not included in the
analysis.

Prnimer sequences for PCR amplification of the micro-
satellite markers D551400 and D551403 were obtained
from the uniSTS database in NCBI (hup://www.ncbi.
nim.nih.gov/), while the primer sequence of microsatellite
marker AAATI1 was obtained from Pimm et al. (2005).
PCR amplification of microsatellite markers was per-
formed using primers fluorescently labeled with Beckman
dyes. PCR products were subject to electrophoresis on
Beckman CEQ 8000 (Beckman Coulter, Fullerton, CA,
USA). As the PCR fragments of microsatellites were not
the same length as those in the original work. we adjusted
the sizes of our PCR fragments to Pimm et al. (2005).

Statistical analysis

Deviations of genotype distributions from Hardy-Wein-
berg equilibrium were assessed with the y° test for
goodness of fit. Genotype and allele distributions of each
SNP were compared between patients and controls by
using the ¥* test for independence. These tests were per-
formed with the SPSS software ver. 11 (SPSS Japan,
Tokyo, Japan). The allelic association of microsatellite
markers with schizophrenia was examined by use of the
CLUMP program (Sham and Curtis 1995), which assesses
the significance of departure between the observed and
expected values in a 2 x N contingency table using a
Monte Carlo approach. The standardized measure of
linkage disequilibrium (LD), (DY) and r*, were estimated
using the online software SHEsis (hup//202.120.7.14/
analysis/myAnalysis.php). Haplotype-based association
analyses were examined with the COCAPHASE software
ver, 2.4 (htp://www.mrc-bsu.cam.ac.uk/personal/frank/
software/unphased/) (Dudbridge et al. 2000). The expec-
tation—-maximization (EM) and “droprare” options were

W
T\
ShPba | NP 1L NP 12
SKP 13

SNPE SNFRE SNP 1D

used. Haplotypes with frequencies less than 3% were
considered to be rare,

Results

All investigated SNPs and microsatellite markers for case
and control groups resulted in distributions that did not
significantly deviate from Hardy-Weinberg Equilibrium.
LD estimates of pairwise markers, expressed in D’ and 7%,
are presented in Table 1. Pairs in LD are represented as
gray-shaded values, with estimates of D' > 08 and
#* > 0.8. Pairwise LD analysis and haplotype block deter-
mination demonstrated that there were two blocks across
the studied genomic region (Fig. 2). Measurement of pair-
wise LD showed that the middle seven SNPs (rs1145585,
rs1 186930, rs1 145603, rs1186934, rs11744778, rs1145602,
and rs1186998) were in strong LD with each other and were
located in the sample block (haplotype block 2). The
remaining block, haplotype block 1, consisted of threec
SNPs (rs1186922, rs10046055, and rs1894962) in the 5’
upstream region. In the haplotype-based analysis, the
haplotypes in the two blocks were analyzed separately.

In the single-marker analysis, the microsatellite 2 mar-
ker (D551403) demonstrated a significant difference in
allele frequency between case and control groups (Table 2:
Allele 203, > = 4.26, df = 1, P = 0.04 from the “T3"
analysis of CLUMP). The remaining microsatellite markers
and SNPs did not show any significant allelic association
with schizophrenia (Table 2, all P > 0.05). The obtained
evidence for an association at microsatellite 2 with
schizophrenia was weak and non-significant when multiple
testing was taken into consideration.

Results of the haplotype-based analysis are also pre-
sented in Table 2, None of the haplotypes showed a
statistically significant difference between case and con-
trol groups. Even when haplotypes were examined
according to the groupings established by Pimm et al.
(2005), no evidence for an association was obtained. Tang
et al. (2006) reported a highly significant transmission of
haplotypes consisting of AAATI1 and rs10046055
(P = 0.0048) in addition to rs254664 and rs1145603
(P = 0.0047) 10 affected offspring in Han Chinese trios.
Our results, again, failed to provide evidence to support
this finding,

@ Springer

— 208 —




