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arachidonoyl-CoA. The pH optimum for the reaction was between 7.4 and 10, and the reaction

did not require Ca™ (data not shown). A kinetic analysis was conducted by measuring
acyltransferase activity in the microsomal fraction derived from vector- and
mLPAAT3-transfected CHO-K1 cells, using increasing concentrations (1.5-100 uM) of
[1-"*Clarachidonoyl-CoA in the presence of 50 puM palmitoyl-LPA, or using increasing
concentrations  (6.25-100 uM) of palmitoyl-LPA in the presence of 25 uM
[1-"Clarachidonoyl-CoA (Supplemental Fig. 2A and B). The Km values of mLPAAT3 were
15.9 uM for arachidonoyl-CoA and 26.3 uM for palmitoyl-LPA. The corresponding Vmax

values were 50.4 and 21.8 nmol/min/mg.

The role of the highly conserved motifs NHX.D and EGTR on enzyme activity

We constructed three single point mutants of mLPAAT3 (H96A, DI01A, and E176A.,
arrows in Fig. 1B). Both LPAAT and LPIAT activities of mLPAAT3 were completely
suppressed by these mutations (Fig. 5A). Expression of wild type, HI6A, DI0OIA, and E176A
mutants was confirmed by Western blot analysis (Fig. 5B). These results indicate that the motifs
are critical for the enzymatic activity and that both enzymatic activities (LPAAT and LPIAT)

reside on a single protein.

Age-dependent mLPAAT3 expression and LPA AT activity in the testis

Total RNA of the testis was prepared from C57BL/6] mice at various ages.
Interestingly, mLPAAT3 mRNA level was upregulated significantly until 15 week, then
increased only slightly (Fig. 6A). In another independent experiment, after 15 weeks,
mLPAAT3 expression level decreases slightly (Data not shown). The trend of this
age-dependent mLPAAT3 change was observed in protein level as well by Western blot
analysis (Fig. 6B). Additionally, LPAAT activity of the testis at 2, 8, 45 weeks was checked
using palmitoyl-LPA as an acceptor and arachidonoyl-CoA as a donor. We observed that

LPAAT activity increased in an age-dependent fashion (Fig. 6C).

The effect of sex hormones on mLPAAT3 expression

Since the level of sex hormones changes with age (41-47), we investigated whether
age-dependent mLPAAT3 expression is derived from the induction by sex hormones. In
testicular cell line TM4 cells, mLPAAT3 was upregulated significantly with fp-estradiol

treatment for 24 h (Fig. 6D).
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The substrate selectivity of mLPA AT1

We examined the acyl-CoA selectivity of mLPAAT! using palmitoyl-LPA as an acceptor.
mLPAAT] demonstrated LPAAT activity using palmitoyl-LPA as an acceptor and
palmitoyl-CoA, oleoyl-CoA , and arachidonoyl-CoA as a donor (Supplemental Fig. 3). Thus, at

(m least mLPAAT]1 seems to be different from mLPAAT3 in acyl-CoA preference.
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DISCUSSION

Here we have presented the first detailed characterization of mLPAAT3. mLPAAT3,
previously known as mAGPAT3 is a 43.3 kDa protein with four putative transmembrane
domains and is localized in ER. Interestingly, mLPAAT3 has a clear preference for
arachidonoyl-CoA as a donor in the synthesis of PA through the de nove pathway. Additionally,
the enzyme exhibited LPIAT activity using arachidonoyl-CoA as a donor, suggesting that
mLPAAT3 can function in the remodeling pathway as well. Prior to this report, mouse
acyl-CoA:lysocardiolipin acyltransferase (ALCAT! or LCLAT1) and mLPCAT]I are the known
enzymes that could synthesize phospholipids both by the de novo and remodeling pathways
(25,57). LPT1 (otherwise known as ALE] or SLC4) in veast (58 - 61) and human MBOAT2
(62) are acyltransferases, which can synthesize phospholipids by both pathways in other species.
As enzymes with LPIAT activity, LPT1 (ALE] or SLC4) (58 - 61) and MBOA7 (MBOAT7 or
LPIATI) (35, 62) had been described. The highly conserved motifs NHX;D and EGTR are
important for LPAAT and LPIAT activities of mLPAAT3, since point mutations in either of
these motifs completely suppressed both activities.

At least seven mouse AGPAT family members exist, but their biological functions
remain to be determined., Al this point, even their biochemical characteristics are not well
defined. Among them, LPAAT activities of mLPAAT] and mLPAAT2 have been relatively
well documented. mLPAATI exhibits LPAAT activity using oleoyl-LPA as an acceptor and
palmitoyl-CoA, oleoyl-CoA, and arachidonoyl-CoA as donors (21). We also demonstrated that
mLPAAT1 exhibits LPAAT activity using palmitoyl-LPA as an acceptor, and prefers
palmitoyl-CoA, oleoyl-CoA, and arachidonoyl-CoA as donors (Supplemental Fig, 3).
mLPAAT2 has LPAAT activity using oleoyl-LPA as an acceptor and oleoyl-CoA as a donor
(37). The human homologue hLPAATI shows the highest activity with linoleoyl-LPA,
palmitoyl-LPA, and myristoyl-LPA as acceptors and linoleoyl-CoA and palmitoyl-CoA as
donors (40). hLPAAT2 exhibits LPAAT activity with palmitoyl LPA as an acceptor and
myristoyl-CoA, palmitoyl-CoA, stearoyl-CoA, and arachidonyl-CoA as donors (34).
Furthermore, mutations in hLPAAT2 cause congenital generalized lipodystrophy (41). To
elucidate the biological roles of AGPAT family members, it will be particularly important to
investigate their tissue distributions and biochemical characteristics,

We found that mLPAAT3 possessed a strong LPAAT activity using
arachidonoyl-CoA and is highly expressed in the testis (Fig. 2A and 2B). This is particularly

interesting because: (i) PA has a low arachidonic acid content at the sn-2 position in most
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tissues (11-13) and (ii) CDP-diacylglycerol synthase 1 is highly localized to the testis and
converts preferably 1-stearoyl-2-arachidonoyl-PA as a substrate to CDP-diacylglycerol, a
precursor of glycerophospholipids including PI (42, 43). Since mLPAAT3 exhibits LPAAT
activity using I-stearoyl LPA and arachidonoyl-CoA, the enzyme may be functionally coupled
with CDP-diacylglycerol synthase 1 to generate PI through the de nove pathway (Fig. 7A).
Considering that mLPAAT3 also exhibited LPIAT activity with arachidonoyl-CoA, it can
possibly help to produce PI effectively through both the de novo and remodeling pathways in
the testis (Fig. 7A). Previously identified LPIAT (mouse MBOA?7) is expressed ubiquitously
including in the testis (Fig. 2C). Therefore, MBOA7 and CDP-diacylglycerol synthase 1 may be
functionally coupled to produce PI effectively as well (Fig. 7B). There might still exist other
enzymes to assist to produce Pl in the testis. Limitation of our study is that the biochemical
characterization of mLPAAT3 was done using over-expression system because the purification
of this enzyme is extremely difficult due to its multiple transmembrane domains.

Additionally, mLPAAT3 expression in the ftestis is enhanced significantly in an
age-dependent manner while relatively young, and then keeps a steady level (Fig. 6A).
[3-Estradiol induces mLPAAT3 in TM4 cells (Fig. 6C). In males, p-estradiol is produced by
aromatization of testosterone. In human, B-estradiol increases initially throughout sex
maturation (50), and then either slightly increases (51), remains steady (52, 53), or even slightly
decreases (54-56) with age depending on studies. The reason for these differences of B-estradiol
levels in various studies are unclear, but may be due to a wide range of p-estradiol level in the
elderly. Considering this induction of B-estradiol in human is similar to that of mLPAAT3,
[B-estradiol may be a main regulator of mLPAAT3 expression.

In conclusion, we have isolated an enzyme, mLPAAT3, which catalyzes PA and PI
production in the de novo and remodeling pathways, respectively. mLPAAT3 is highly
expressed in the testis and exhibits a clear preference for arachidonoyl-CoA. In conjunction
with CDP-diacylglycerol synthase 1, this enzyme may play an important role in PI production
in the testis (Fig. 7A). Additionally, mLPAAT3 expression increases age-dependently while
relatively young, and f-estradiol seems to be its important regulator. Further studies are needed

to elucidate the roles of mLPAAT3 in vivo, in particular in the relationship with B-estradiol.
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Figure legends
Figure I, Phylogenetic tree of AGPAT family members and alignment of mLPAAT, 2. and 3

(A) A phylogenetic  tree was drawn by using  ClustalW, DDBIJ
(http://www.clustalw.ddbj.nig.ac.jp/top-j.html). Sequences of mouse acyltransferases are
available in DDBJ/EMBL/GenBank databases. mLPAAT3 is circled. (B) mLPAATI,
mLPAAT2 and mLPAAT3 sequences were aligned using Genetic-Mac software. Conserved
putative catalytic motif NHX4D and binding motif EGTR are underlined. Mutated amino acids
are indicated by arrows (See Fig. 5). The accession numbers are shown as follows: GPATI
(NP_032175), GPAT2 (NP_001074558), GPAT3 (NP_766303), GPAT4 (NP _061213),
LPAATI (NP _061350), LPAAT2 (NP 080488), LPAAT3 (AB377215), LPGATI
(NP_758470), ALCATI (acyl-CoA:lysocardiolipin acyltransferase 1, also called as LCLATI)
(Q3UNO02), LPCAT1 (BAE94687), LysoPAFAT/LPCAT2 (BAF47695), LPAATS
(NP_080920), LPAATe (NP_081068), LPA ATy (NP_997089), and AT Like 1B (NP_081875).

Figure 2. Expression profile of mLPAAT3 and mMBOA7 (LPIATI) in mice
Expression levels of mLPAAT3 mRNA (A) and mMBOA7 (LPIAT1) mRNA (C) in 21 tissues

from C57BL/6] mice were analyzed using quantitative real-time PCR. (A) mLPAAT3 was
expressed predominantly in the testis, whereas (C) mMBOA7 (LPIAT1) was ubiquitously
expressed, Similar results were obtained in a separate independent experiment. (B) Expression
of mLPAAT3 was analyzed in protein level by Western blot using anti-mLPAAT3 antiserum.
3pug of 100,000 x g pellets from various tissues were loaded in each lane. Br, Lu, Li, Sp, Ki, and
Te stand for brain, lung, liver, spleen, kidney, and testis, respectively. mLPAAT3 was highly
expressed in the testis. High expression was noted in the liver and kidney as well. The results

are representative of three independent experiments.

Figure 3, Subcellular localization of FLAG-mLPAAT3 in CHO-KI cells and endogenous

mLPAATS in TM4 cells

(A) At 48 h post-transfection, proteins from CHO-K1 cells were subjected to Western blot
using anti-M2 FLAG antibody. Expression of FLAG-mLPAAT3 was confirmed by Western
blot. Homogenates of pCXN2.1 vector or FLAG-mLPAAT3-pCXN2.1 transfected CHO-K1
cells were separated by differential centrifugation using an ER extraction kit (Sigma) as

described in Materials and Methods. 2 pg of 9,000 x g pellets (indicated as Mito), 100,000 x g
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pellets (ER) were loaded in the lanes indicated. Molecular sizes are indicated on the lefi in kDa.

Results are representative of two independent experiments. (B) As a marker of mitochondria,
anti cytochrome ¢ oxidase antibody was used. Molecular sizes are indicated on the left in kDa.
Results are representative of two independent experiments. (C) Subcellular localization of
endogenous mLPAAT3 in testicular cell line TM4 cells was confirmed by Western blot. 1.5ug
of 9,000 x g pellets (Mito) and 100,000 x g pellets (ER) were loaded in the lanes indicated.
mLPAAT3 was detected using rabbit anti-mLPAAT3 antiserum. Results are representative of
two independent experiments. (D) As a marker of mitochondria, anti cytochrome ¢ oxidase
antibody was used. Molecular sizes are indicated on the left in kDa. Results are representative

of two independent experiments.

Figure 4. Substrate selectivity of mLPAAT3

(A) Lysophospholipid preferences of mLPA AT3 were determined. Acyltransferase activity was

examined using 2 pg protein (100,000 x g pellet), 25 uM [1-"*CJarachidonoyl-CoA (33,000

dpm), and 50 puM lysophospholipids. Data are shown as mean + S.D. of triplicate measurements.

Statistical significance was analyzed using ANO VA with Tukey post hoc pairwise comparisons.
* represents P < 0.05. (B) The preference of mLPAAT3 for various LPA acceptors was
examined using oleoyl-CoA or arachidonoyl-CoA as a donor. Acyltransferase activity was
examined using 2 pg protein, 25 pM [I-'*Cloleoyl-CoA (33,000 dpm), and SO uM
lysophospholipids. Data are shown as mean + S.D. of triplicate measurements. Statistical
significance was analyzed using ANOVA with Tukey post hoc pairwise comparisons. Only for
stearoyl-LPA group, t test was used for analysis. * represents P < 0.05. (C) The acyl-CoA
selectivity of mLPAAT3 was examined using palmitoyl-LPA as an acceptor. Acyltransferase
activity was examined using 2 pg protein, 25 uM acyl-CoAs (33,000 dpm), and 50 uM
palmitoyl-LPA, with the exception that 100 uM acetyl-CoA (111,000 dpm, 185MBq / mmol)
was used. Data are shown as mean + S.D. of triplicate measurements. Statistical significance
was analyzed using ANOVA with Tukey post hoc pairwise comparisons. * represents P < 0.05.
(D) The acyl-CoA selectivity of mLPAAT3 was examined for LPIAT activity. Acyltransferase
activity was examined using 2 pg protein, 25 uM arachidonoyl-CoA (33,000 dpm), and 50 uM
LPL The concentration of acetyl-CoA used was 100 M (111,000 dpm, I85MBq / mmol). Data
are shown as mean + S.D. of triplicate measurements. Statistical significance was analyzed

using ANOVA with Tukey post hoc pairwise comparisons. * represents P < 0.05. In (A-D),
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results are representative of two independent experiments.

Figure 5. The role of highly conserved motifs NHX:D and EGTR in LPLAT activity of
mLPAAT3

We constructed H96A, DI01A, and E176 A mutants of mLPAAT3 by mutating single amino
acids in highly conserved motifs NHX4D or EGTR (Fig. 1B). (A) The acyltransferase activity of
mLPAAT3 wild-type and three mutants was measured using 2 pg protein (100,000 x g pellet),
50 uM palmitoyl-LPA, or LPI as an acceptor and 25 uM arachidonoyl-CoA (33,000 dpm) as a
donor. Data represent mean + S.D. of triplicate samples measurements. Statistical significance
was analyzed using ANOVA with Tukey post hoc pairwise comparisons. * represents P < 0.05.
The results are representative of two independent experiments. (B) Expression of mLPAAT3
wild-type and three mutants was confirmed by Western blot analysis. The resulis are

representative of two independent experiments.

Figure 6. Age-dependent expression of mLPAAT3 in the testis and mLPAAT3 induction in

testicular cell ling

(A) mLPAAT3 mRNA expression in the testis at various ages was compared using real-time Q-
PCR. mLPAAT3 mRNA expression is enhanced significantly in an age-dependent manner until
15 week of age. The results are representative of two independent experiments. (B) mLPAAT3
protein expression in the testis at different ages was compared by Western blot using
anti-mLPAAT3 antiserum. 4ug each of 100,000 x g pellets at different ages were loaded.
Results are representative of two independent experiments. (C) LPAAT activity of 2, 8, 45
weeks testis was examined using | pg protein (100,000 x g pellet), 25 uM arachidonoyl-CoA
(33,000 dpm), and 50 uM palmitoyl LPA. Data represent mean + S.D. of triplicate samples
measurements. The results are representative of two independent experiments. (D) Testicular
cell line TM4 cells were treated with either mock, 100nM f-estradiol, DHT, or testosterone for
24h. mLPAAT3 mRNA level was compared using real-time Q-PCR. p-estradiol induced
mLPAAT3 significantly. Data represent mean + S.D. of three independent experiments.
Statistical significance was analyzed using ANOVA with Tukey post hoc pairwise comparisons.

* represents p < 0.05.

Figure 7. Proposed model for PI production in the testis
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At least, mLPAAT3 and MBOA7 (LPIAT1) may be an important enzyme to produce Pl in the

testis, (A) Both mLPAAT3 (Fig. 2A) and CDP-diacylglycerol synthase 1 (41, 42) are highly
expressed in the testis. CDP-diacylglycerol synthase | prefers 1-stearoyl-2-arachidonoyl PA as
a substrate and mLPAAT3 shows LPAAT activity using stearoyl-LPA as an acceptor and
arachidonoyl-CoA as a donor. Since 1 -stearoyl-2-arachidonoy! species are major components of

PI, we hypothesized that in the testis, mLPAAT3 helps to produce PI effectively through both

the de novo and remodeling pathways. (B) Also in the testis, CDP-diacylglycerol synthase | (41,

42) and MBOA7 (LPIAT1) (Fig. 2C) may generate Pl effectively through the de novo and
remodeling pathways, respectively. In (A) and (B), the de nove and remodeling pathways are

enclosed in dotted lines.
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Figure 3
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