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Abstract Background Toll-like receptors (TLRs) may
play active roles in both innate and adaptive immune
responses in human intrahepatic biliary epithelial cells
(HIBECs). The role of TLR3 expressed by HIBECs,
however, remains unclear. Methods We determined the in
vivo expression of TLRs in biopsy specimens derived from
diseased livers immunohistochemically using a panel of
monoclonal antibodies against human TLRs. We then
examined the response of cultured HIBECs to a TLR3
ligand, polyinosinic—polycytidylic acid (polyl:C). Using
siRNAs specific for Toll-IL-IR homology domain-con-
taining adaptor molecule 1 (TICAM-1) and mitochondrial
antiviral signaling protein (MAVS). we studied signaling
pathways inducing IFN-fi expression. Results The expres-
sion of TLR3 was markedly increased in biliary epithelial
cells at sites of ductular reaction in diseased livers,
including primary biliary cirrhosis (PBC), autoimmune
hepatitis (AIH), and chronic viral hepatitis (CH) as com-
pared to nondiseased livers. Although culured HIBECs
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constitutively expressed TLR3 at both the protein and
mRNA levels in vitro, the addition of polyl:C to culture
media induced only minimal increases in IFN-ff mRNA. In
contrast, transfection of HIBECs with polyl:C induced a
marked increase in mRNAs encoding a variety of chemo-
kines/cytokines, including IFN-fi, IL-6, and TNF-z. The
induction of IFN-fi mRNA was efficiently inhibited by an
siIRNA against MAVS but not against TICAM-1, indicating
that the main signaling pathway for IFN-f induction fol-
lowing polyl:C transfection is via retinoic acid-inducible
gene | (RIG-IYmelanoma differentiation-associated gene 5
(MDAS) in HIBECs., Conclusions TLR3 expression by
biliary epithelial cells increased at sites of ductular reaction
in diseased livers: further study will be necessary to char-
acterize it’s in vivo physiological role.

Keywords Primary biliary cirrhosis (PBC) - Human
intrahepatic biliary epithelial cells (HIBECs) - Interferon
beta (IFN-fi) - Toll-like receptor 3 (TLR3) Toll-IL-1R
homology domain-containing adaptor molecule |
(TICAM-1) - Mitochondrial antiviral signaling protein
(MAVS) - Retinoic acid inducible gene 1 (RIG-I) -
Meclanoma differentiation-associated gene 5 (MDAS)

Abbreviations

BEC Biliary epithelial cell

CK Cytokeratin

dsRNA Double stranded RNA

ER Endoplasmic reticulum

ELISA Enzyme-linked immunosorbent assay

GAPDH Glyceraldehydes-3-phosphate
dehydrogenase

HIBEC Human intrahepatic biliary epithelial cell

HRP Horseradish peroxidase

IFN Interferon
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IL Interleukin

IRF Interferon regulatory factor

MAVS Mitochondrial anti-viral signaling protein

MDAS Melanoma differentiation associated gene-5

MyD88 Myeloid differentiation factor 88

PBC Primary biliary cirrhosis

PBMC Peripheral blood mononuclear cells

Polyl:C Polyinosinic—polycytidylic acid

PRR Pattern-recognition receptor

RIG-I Retinoic acid-inducible gene |

RT-PCR Reverse transcription-polymerase chain
reaction

siRNA Small interfering RNA

TLR Toll-like receptor

TNF Tumor necrosis factor

TICAM-1 Toll-IL-1R homology domain containing
adaptor molecule |

Introduction

Epithelial cells are the first barrier against viral infection.
Such cells typically express retinoic acid-inducible gene
I (RIG-1)/melanoma differentiation-associated gene 3
(MDAS) and Toll-like receptor 3 (TLR3) to sense double-
stranded RNAs (dsRNA), hallmarks of viral replication [1-
3]. TLR3 is localized to endosomes and/or the cell surface in
epithelial cells, while RIG-I/MDAS resides in the cytoplasm
[3-5]. TLR3-expressing epithelial cells are widely distrib-
uted throughout the body, with prominent expression in
intestinal, cervical, uterine, endometrial, bronchial, and
comeal epithelial cells, the central nervous system, and
epidermal keratinocytes [6-16]. The function of TLR3 has
been intensively studied in some of these epithelial cells;
bronchial epithelial cells recognize dsRNA by cell-surface
TLR3 and induce cellular responses. including the secretion
of type 1 interferon (IFN) via the Toll-IL-1R homology
domain-containing adaptor molecule 1 (TICAM-1)-inter-
feron regulatory factor 3 (IRF3) signaling pathway [11, 12].
The imtracellular RNA sensors RIG-I/MDAS also serve as
IFN inducers acting via the mitochondrial antiviral signaling
protein (MAVS)-IRF3 signaling pathway, thus protecting
host cells against the spread of viral invasion |2, 3].

We previously found that the expression of TLR3 and
IFN-fi mRNAs is significantly increased in both the portal
areas and parenchyma of livers diseased with PBC [17].
There was a positive correlation between TLR3 and IFN-f
mRNA levels in both areas, indicating that TLR3-type |
IFN signaling pathway is activated in PBC; the TLR3-
expressing and/or IFN-fi-producing cells, however, remain
unknown [17]. This prompted us to investigate TLR3
expression and [FN-f production in human intrahepatic
biliary epithelial cells (HIBECs).

@ Springer

In this study, we used specific monoclonal antibodies
against TLRs [4] to determine that intrahepatic bile ducts,
but not hepatocytes, in diseased livers strongly express
TLR3. TLR3 protein is found in HIBECs at low levels on
the cell surface and high levels in endosomes. Our results,
however. indicate that the primary signaling pathway for
IFN-f induction activated by dsRNA functions via RIG-1/
MDAS in the cytoplasm but not via TLR3 expressed on the
cell surface or in endosomes. This is contrary to results
obtained for other types of epithelial cells. such as bron-
chial epithelial cells and endometrial cells, in which
surface TLR3 recognizes viral dsRNA to signal the pres-
ence of infection via the TLR3-IRF3-type 1 interferon
signaling pathway [9, 11, 12, 15]. Here we discuss dsRNA-
sensing system functioning in HIBECs and the role of high
expression levels of TLR3 in diseased livers.

Materials and methods

Liver biopsy specimen and immunohistochemical
evaluation

Liver needle biopsy specimens, which were derived from
seven primary biliary cirrhosis (PBC)-affected, five auto-
immune hepatitis (AIH)-affected. and five chronic hepatitis
C (CHC)-affected livers, were frozen in OCT compound
(Sakura Finetechnical Co, Tokyo, Japan) immediately after
the procedure and were stored at —80°C until use. Mouse
monoclonal antibodies to human TLRI (clone TLR1.136,
IgGl, k), TLR2 (clone TLR2.45, 1gGl, k), TLR3 (clone
TLR3.7, 1gGl, k). TLR4 (clone TLR4, 1gG2a. k), and
TLR6 (clone TLR6.127, IgGl, k) were generated in our
laboratory [4]. Among these monoclonal antibodies, the
specificity of anti-TLR3 (TLR3.7) was intensively studied.
Anti-TLR3 monoclonal antibody specifically binds to the
extracellular part of native TLR3 but not to denatured form
of TLR3 or other TLRs, including TLLR2 and TLR4. Fur-
thermore, TLR3.7 inhibits dsRNA-induced TIFN-fi
production by inhibiting the interassociation between
dsRNA and TLR3 [4, 5]. Mouse monoclonal antibodies
specific for cytokeratin (CK) 7 and CK 19 were purchased
from DAKO (DAKO Japan, Kyoto, Japan). Frozen sec-
tions, 4 mm in thickness, were stained with anti-TLR and
anti-CK7 or -CK19 antibodies as described elsewhere [17].
Briefly. frozen sections were first fixed in 50 and 100%
acetone for 30 s and 3 min, respectively, followed by
treatment with Peroxidase Blocking agent (DAKO) for
10 min. Sections were then incubated with anti-TLR
monoclonal antibodies (anti-TLRI, 2. 3, 4, and 6) for
60 min at room lemperature. A standard 2-step method
with ENVISION+ (DAKO) was used to visualize bound
antibody using 3.3'-diaminobenzidine as a chromogen
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(DAKO); samples were also counterstained with Mayer's
hematoxylin (DAKO). Three frozen liver biopsy speci-
mens, which revealed normal histology, were similarly
studied as nondiseased livers.

Isolation and culture of human intrahepatic biliary
epithelial cells

Human intrahepatic biliary epithelial cells (HIBECs) were
isolated from noncancerous liver tissues of three patients
who had undergone hepatic resection for intrahepatic chol-
angiocarcinoma [ 18]. Briefly, liver specimens were digested
with type IV collagenase (100 U/ml) (Sigma-Aldrich, St.
Louis, MO). HIBECs were isolated immunomagnetically
using Dynabeads conjugated with an epithelium-specific
antibody, BerEp4 (Dynal Biotech, Norway). HIBECs were
expanded in HIBEC culture medium (DMEM containing
5 pg/ml insulin, 10 ng/ml epidermal growth factor [EGF],
1.0 ng/ml hepatocyte growth factor [HGF], 4 x 107 M
dexamethasone and 10% fetal bovine serum). All experi-
ments were performed using HIBECs between 5 and 10
passages, which were performed using PBS containing
0.05% trypsin and 0.53 mM EDTA.

We obtained three different HIBECs (BEC3, BEC4, and
BECS) from the three different donors: each cultured Hl-
BEC demonstrated spindle to polygonal epithelial cell
morphology, with 100% positivity for CK7 and CKI9 as
determined by immunostaining with anti-CK7 and -CK19
monoclonal antibodies (DAKO).

Immunostaining and flow-cytometric analysis
of HIBECs

HIBECs were cultured to semiconfluence in a tissue cul-
ture-treated 8-chamber glass slides (BD Biosciences,
Bedford, MA) in HIBEC culture medium. Immunostaining
of these cultured cells was then performed in a similar
manner as that described for frozen sections of liver
biopsies [17]. In brief, HIBECs were fixed with acetone,
treated with peroxidase-blocking agent, and incubated with
anti-TLR (anti-TLR1, -2, -3, -4, and -6) and anti-CK7 or
anti-CK19 monoclonal antibodies followed by visualiza-
tion of bound antibodies using a standard 2-step method
with ENVISION+ (DAKO).

For Aow-cytometric analysis, HIBECs were first sus-
pended in PBS containing 0.1% sodium azide and 0.1%
bovine serum albumin before incubating with 5 pg mAb
(clone TLR3.7, 1gGl, k) for 30 min at 4°C. Cells were
washed and counterstained with FITC-conjugated goat
antimouse IgG F(ab'), for 30 min at 4°C. We then deter-
mined fluorescence intensity and mean fluorescence shifts
by flow cytometry (FACSCalibur; Becton-Dickinson).

Stimulation of HIBECs with polyl:C

Polyinosinic-polycytidylic acid (Polyl:C) was purchased
from Sigma-Aldrich and reconstituted in endoloxin-free
PBS. Transfection reagents, Lipofectamine 2000 and
DOTAP, were purchased from Invitrogen (Carlsbad, CA)
and Roche (Basel, Switzerland), respectively.

Twenty-four hours prior to the start of polyl:C stimu-
lation, we changed the culture medium from HIBEC
culture medium to basal medium (1:1 mixture of Ham's
F12 and DMEM supplemented with 10% FBS without
insulin, EGF, HGF, and dexamethasone). HIBECs were
then incubated in the presence of polyl:C (40 pg/ml) or
transfected with polyl:C using Lipofectamine 2000 or
DOTAP according to the manufacturer’s instructions.
Optimal conditions for transfection by Lipofectamine 2000
and DOTAP were 0.8 pg/well and 1.0 pg/well polyl:C,
respectively, in a I12-well plaie (Becton Dickinson,
Franklin Lakes, NJ) (data not shown).

RNA extraction and quantitation of mRNA

Total RNA was isolated from HIBECs using an RNeasy
MiniKit (QIAGEN, Hilden, Germany) according to the
manufacturer’s instructions. Following RNase-free DNase
1 (QIAGEN) treatment, we synthesized first-strand com-
plementary DNAs (¢cDNA) from 1.0 pg total RNA using a
SuperScript First-Strand Synthesis System (Invitrogen).
PCR amplification utilized FAST DNA SYBR Green 1
(Roche), which allows for automated quantification of
amplified products in real-time using a Light-Cycler
(Roche). We purchased primer sets specific for IFN-7, IL-
6, TNF-2, IL-8, and TLR3 from Roche. One microliter of
each reverse-transcribed cDNA was used for real-time PCR
analysis. Initial denaturation was performed at 95°C for
10 min followed by 40 amplification cycles of denaturation
at 95°C for 10 s, annealing at 68°C for 10 s, and extension
at 72°C for 16 5. We performed a standard melting curve
analysis for every quantitation. Results were expressed as
the ratio of cytokine/chemokine cDNA to GAPDH cDNA
copy numbers in individual samples. Changes in mRNA
levels were expressed as fold induction,

Enzyme-linked immunosorbent assay (ELISA)

HIBEC culture superatants were assessed for cytokine/
chemokine secretion using ELISA kits specific for IFN-f
(PBL Biomedical Laboratories, Piscataway, NJ) and
TNF-z, IL-6, and IL-8 (Beckman Coulter, Fullerton, CA),
according to the manufacturers’ instructions. Absorbance
at either 405 or 450 nm was measured using a microplate
reader (Multiskan JX, Thermo electron corporation,
Vantaa, Finland).
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Effect of siRNA on IFN-f mRNA induction by polyl:C

Oligonucleotides used for siRNA knockdown analysis
were purchased from Proligo (St. Louis, MO) (GFP: sense,
geageacgacuucuucaagit, and antisense, cuugaagaagucguge
ugett, MAVS: sense, ccaccuugaugccugugaaca, and anti-
sense, uucacaggcaucaagguggua, TICAM-1: sense, gaccaga
cgecacuccaactt, and antisense, guuggaguggegucuggucit).

BEC3 cells (2.5 x 10° per well) were plated on 12-well
plates using basal medium 24 h before siRNA transfection.
On day 0, we transfected each siRNA oligonucleotide into
BECS3 using Lipofectamine 2000. Afier 24 h (on day 1), the
culture medium was replaced with fresh basal medium.
Forty-eight hours after siRNA transfection (on day 2), cells
were stimulated with polyl:C (final concentration 40 pg/ml
in phosphate-buffered saline), Lipofectamine 2000 (0.8 pg/
well in 12-well plates) or DOTAP (1.0 pg/well in 12-well
plates). Six hours after polyl:C stimulation, we purified total
RNA from BEC3 cells using an RNeasy Mini kit (Qiagen).
RT-PCR was performed using M-MLV Reverse transcrip-
tase (Promega, Madison, WA). Quantitative PCR analyses
were carried out on an iCycler iQ Real-Time detection
system (Bio-Rad, Hercules, CA) using Platinum SYBR
Green qPCR SuperMix-UDG with ROX (Invitrogen) using
the following primers; f-actin: forward, cctggeacccagea-
caat, and reverse, gecgalccacacggagtact; IFN-f: forward,
caactigettggaticctacaaag, and reverse, taltcaagecteecatica-
ang; MAVS: forward, ggtacccgagictegtiteet, and reverse,
tgtetticageaaacggeatt; TICAM-1: forward, agegeeticgacaltc
taggt, and reverse, aggagaaccatggeatgea [19]. Quantitative
PCR data was analyzed by the 27**“T methods [20].

Ethics board

This study was approved by the Ethics Board of our
institute. We obtained written informed consent from each
subject for use of their biopsy and operation samples to
advance knowledge on the cause of PBC.

Results
HIBECs strongly express TLR3 molecule in vitro

Previous analysis of the expression of TLRs mRNA in
HIBECs by RT-PCR revealed that mRNAs encoding TLRI,
-2, -3, 4, -5, -6, and -9, but not TLR7 and -8, are consti-
tutively expressed in HIBECs [18]. The expression of TLR
proteins, however, has not been examined. In this study, we
studied the expression of TLR proteins in HIBECs using
mouse monoclonal antibodies against TLRI, -2, -3, -4, and
-6 [4]. TLR3 was strongly expressed on HIBECs (Fig. Ic)
at an intensity comparable to that of CK19, a marker of
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biliary epithelial cells in the liver (Fig. 1f). In contrast,
TLRI, -2, and -4 were weakly expressed on HIBECs
(Fig. 1a, b, d). Flow-cytometric analysis revealed that while
TLR3 was strongly expressed in the cytoplasm (Fig. 2a), it
was only weakly expressed at the cell surface of HIBECs
(Fig. 2b).

Biliary epithelial cells strongly express TLR3 at sites
of ductular reaction in vivo

We examined the expression of TLRs in vivo using frozen
sections of liver needle biopsy specimens using the
monoclonal antibodies to TLRI1, -2, -3, -4, and -6. Again,
TLR3 was strongly expressed by intrahepatic biliary epi-
thelial cells, especially at sites of ductular reaction in all
diseased livers affected by PBC (Fig. 3b), AIH (Fig. 3c),
and CHC (Fig. 3d). TLR3 was only weakly expressed on
small bile ducts in normal livers (Fig. 3a). TLR3 was not
expressed in hepatocytes of either diseased or normal
livers. Minimal expression of TLRI, -2, -4, and -6 was
observed in either diseased or normal livers (data not
shown).

Induction of IFN-f by polyl:C stimulation in HIBECs

We examined the induction of IFN-f by HIBECs cultured
for 24 h in basal medium containing 0-160 pg/ml of
polyl:C, a ligand for TLR3. IFN-f secretion was consis-
tently undetectable in culture supernatants, as determined
by ELISA (data not shown). IFN-ff mRNA copy numbers
were calculated as 0.00024 £ 0.00017/GAPDH (mean
value £ SD, n = 3) in the basal state, which increased by
2.7- to 5.5-fold (0.0012 £+ 0.0010/GAPDH, n = 3) after
4-8 h of polyl:C stimulation (Fig. 4a). The increase in
IFN-fi mRNAs, however, was not statistically significant
(P = 0.195). In contrast, IFN-f mRNA expression was
markedly increased by polyl:C transfection using Lipo-
fectamine 2000 (Fig. 4b). Maximal induction reached
approximately 150-fold 4-8 h after transfection. Approx-
imately 250 pg/ml IFN-fi was secreted into culture
medium over a 24-h period after polyl:C transfection.
These results suggest that TLR3, even when expressed on
the cell surface of HIBECs, does not recognize extracel-
lular polyl:C; instead, TLR3 localized to endosomes and/
or RIG-I/MDAS5 in the cytoplasm sense polyl:C in
HIBECs.

We also examined the induction of other chemokine/
cytokine mRNAs. We observed the potent induction of
mRNAs encoding for IL-6 (basal level 0.019-0.052/
GAPDH) and TNF-z (basal level 0.00072-0.00081/GAP-
DH) to levels 50- and 120-fold greater than baseline,
respectively (Fig. 5b, ¢). We detected 4- to 6-fold induc-
tion of mRNA for IFN-z (basal level 0.0059-0,0128/
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Fig. 1 TLRs immunostaining in cultured human intrahepatic biliary
epithelial cells (HIBECs). BEC3 cells were stained with mouse
monoclonal antibodies: (a) TLR1.136 (diluted 1/80); (b) TLR2.45
(diluted 1/100); (¢) TLR3.7 (diluted 1/100); (d) HTAI125 (diluted 1/

Fig. 2 Flow-cytometeric

analysis of TLR3 in cultured A

060307BECd3cell 001

70): (e) TLR6.127 (diluted 1/80); (f) ami-CK19 (diluted 1/200) for
TLR1, TLR2, TLR3, TLR4, TLR6, and CK19, respectively, as
described in the text. BEC3 cells stained strongly with TLR3,7 but
only weakly with TLR1.136, TLR2.45, and HTA125
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GAPDH), IL-8 (basal level 0.241-0.859/GAPDH), and
TLR3 (basal level 0.0064-0.0081/GAPDH) (Fig. 5d-f).
This upregulation in gene expression is also attributable to
intracytoplasmic polyl:C recognition, since addition of
polyl:C to culture medium did not induce any increase of
mRNA levels for IL-6, TNF-z, IFN-x, IL-8, and TLR3
(data not shown).

Induction of IFN-f# mRNA by polyl:C transfection
depend on MAVS pathway but not on TICAM-1
pathway in HIBECs

To further confirm the functional role of TLR3 in the

induction of IFN-§ mRNA in HIBECs, we performed
knockdown experiments using siRNA specific for TICAM-
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Fig. 3 In vivo expression of
TLR3 in intrahepatic biliary
epithelial cells. TLR3 was
strongly expressed on
intrahepatic biliary epithelial
cells, especially at sites of
ductular reactions, in livers
from patients with PBC (b),
AlH (c), and CHC (d). In
contrast, TLR3 was weakly
expressed on small bile ducts in
normal liver (a)

K g IFN- mRANA B IFN-§ mRNA
: i
E 100 100
E 2
-
32 R
0 0
0 2 4 8 12h 0 2 4 85 12h
polyl:C addition polyL:C transfection

Fig. 4 Induction of IFN-fi mRNA by polyl:C in HIBECs. BEC3 cells
were either cultured in basal medium containing polyl:C (a) or
transfected with polyl:C using Lipofectamine 2000 (h). mRNA
encoding IFN-fi was strongly induced by polyl:C-transfection, while
IFN-f mRNA induction was minimal following the addition of
polyl:C to culture medium

1 or MAVS. We first evaluated the efficiency of knock-
down. Knockdown significantly reduced the mRNA levels
of MAVS and TICAM-1 in HIBECs to approximately 30%
of baseline using the corresponding siRNA (Fig. 6a). We
then examined the effect of MAVS or TICAM-1 knock-
down on the induction of IFN-f mRNA. As more efficient
targeting of nucleotides to the endosomal compartment was
reported by using DOTAP in comparison to Lipofectamine
2000 [21], we utilized DOTAP for the induction of IFN-f
mRNA in knockdown experiments.

Interferon-f§ induction following polyl:C stimulation
using Lipofectamine 2000 was largely dependent on
MAVS/IPS-1, but not on TICAM-1 (Fig. 6b left side).
Unexpectedly, similar results were obtained following

@ Springer

polyl:C stimulation using DOTAP (Fig. 6b right side).
These results suggested that the RIG-I/MDAS (sensors of
dsRNA in the cytosol)-MAVS signaling pathway plays a
major role in the induction of IFN-f mRNA in HIBECs.
Abundant expression of TLR3 in endosomes does not
appear to participate significantly in polyl:C-mediated
IFN-f induction in HIBECs,

Discussion

In this study, we provide the first data demonstrating that
TLR3 is expressed in vitro in the cultured HIBECs; in these
cells, IFN-f mRNA is strongly induced by polyl:C trans-
fection, but only weakly induced by extrinsic polyl:C.
Antibody blocking of TLR3 on HIBECs did not result in
abrogation of [FN-f promoter activity, suggesting that cell-
surface TLR3 participates only minimally in IFN-f pro-
moter activation on dsRNA recognition (data not shown).
These results suggested that endosomal, not cell surface,
TLR3 is actively involved in type 1 IFN production by
HIBECs. The results obtained by siRNA knockdown of
TICAM-1 or MAVS, however, indicated that cytoplasmic
RNA sensors like RIG-I/MDAS, not endosomal TLR3, are
the major receptors initiating type I IFN induction in
HIBECs.

To limit the growth of commensal organisms on their
surface and to defend underlying tissues from invading
pathogens, epithelial cells have both innate immune
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Fig. 5 Induction of chemokine/ A IFN- B
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Fig. 6 Effect of MAVS or TICAM-1 knockdown on the induction of
IFN-f mRNA following polyl:C transfection. mRNA levels of
MAVS and TICAM-1 in HIBECs significantly decreased to 30% of
baseline levels by knockdown using an appropriste siRNAs in

antimicrobial functions and the ability to modulate the
recruitment and activity of innate and adaptive immune
system [1, 3]. Human fibroblasts, colon epithelial cells,
lung epithelial cells, corneal epithelial cells and keratino-
cytes, as well as the respective cell lines, express TLR3 on
their cell surfaces [4, 5, 7, 12, 14, 16]. Recent analyses of
TLR3 subcellular localization. however, have suggested
that TLR3 is localized to endoplasmic reticulum (ER) and
early endosomes in most human epithelial cell types [5]. A
similar localization of TLR3 was observed in HIBECs in
the present study; the HIBECs express TLR3 on both the
cell surface and within intracellular organelles.
Unexpectedly, surface TLR3 in HIBECs exerted only a
weak ability to induce type I IFN in response to polyL:C. As
polyl:C must be internalized and delivered to the ER or
early endosomes, in which TLR3 is abundant, to activate
TLR3, it was speculated that the capacity of HIBECs 1o
internalize polyl:C is weak. Intracellular polyl:C that was
internalized into cells by lipofection, however, did not play
a major role in activating the type I IFN promoter via TLR3.
These results indicate that even if the bile fluid contains
dsRNA that may be derived from the gastrointestinal tract
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HIBECs (a). The induction of IFN-ff mRNA in HIBECs after polyl:C
transfection was efficiently inhibited by MAVS but not by TICAM-1
knockdown (b)

via the portal vein, hepatocytes or cholangiocytes infected
with virus, or apoptotic cell debris, bile fluid only minimally
stimulates TLR3 on the surface or in endosomes to induce
type I IFN, although it is also possible that bile fluid may
contain as yet unknown TLR3-ligand to induce type 1 IFN.
Further studies of TLR3 in HIBECs will be needed to
identify the functional specificities of the surface-expressed
and endosome-expressed TLR3.

In this study, we also provide the first evidence that the
expression of TLR3 by intrahepatic biliary epithelial cells
is markedly increased at sites of ductular reaction in dis-
eased livers, including those affected by PBC, AIH, and
CHC. TLR3 protein expression increased in synovial tis-
sues from patients with RA. In addition, cultured RA
synovial fibroblasts were activated by the TLR3 ligand
polyl:C and by RNA released from necrotic synovial fluid
cells, suggesting that necrotic cells may act as an endog-
enous TLR3 ligand leading to the stimulation of
proinflammatory gene expression and autoimmunity
[22-24]). The overexpression of TLR3 in thyrocytes is
associated with the development of Hashimoto's autoim-
mune thyroiditis [25]. TLR3 activation can drastically
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enhance susceptibility to immune destruction of solid
organs, as seen in autoimmune hepatitis [26]. Exposure of
pancreatic ff§ cells to the combination of dsRNA and IFN-z,
-, or -y significantly increases apoptosis [27, 28]. TLR3
can directly trigger apoptosis in human umbilical vein
endothelial cells and cancer cells [29, 30]. TLR3 plays a
role in the development of hepatitis C-associated glomer-
ulonephritis through the induction of mesangial cell
apoptosis [31]. Thus, enhanced TLR3 expression in intra-
hepatic biliary epithelial cells may play a critical role in the
induction and maintenance of inflammation, immune
destruction, and/or biliary epithelial cell apoptosis in vivo
in diseased liver such as PBC, whereas enhanced TLR3
expression in biliary epithelial cells in CHC may play a
critical role for protecting them from hepatitis virus
infection.

TLR3 in the nervous system induces the expression of a
range of neuroprotective mediators and angiogenic factors,
chemokines, and anti-inflammatory cytokines that regulate
astrocyte cellular growth, differentiation, and migration
[32]. Activation of TLR3 protects against DSS-induced
acute colitis [33]. Thus, it is possible that high TLR3
expression in HIBECs at sites of ductular reaction may
protect against cell death or stimulate tissue repair and
regeneration by inducing the production of as yet unknown
protective and/or growth factors. The strong expression of
TLR3 at ductal plate in human fetal liver indicates the
importance of TLR3 in the regeneration and/or develop-
ment of biliary epithelial cells (data not shown). Therefore,
it is also considered possible that as yet unknown TLR3-
ligand is involved in the development of ductular reaction
in diseased livers including PBC, AIH, and CHC.

Enhanced expression of various molecules, including
MHC-class 1 and class Il antigen. adhesion molecules
(ICAM-1, VCAM-1, LFA-3, etc.), chemokines (MCP-1,
SDF-1, Fractalkine, etc.), cytokines (IL-6, IL-8, TNF-z,
etc.), costimulatory molecules (B7, PD-L1, PD-L2, etc.),
and TLR4, have also been reported in biliary epithelial
cells in livers affected by PBC [34-38]. In addition 1o these
molecules involved in innate and acquired immune
response, we here demonstrated for the first time that RIG-
I/MDAS5-MAVS signaling pathway is operative in the
strong induction of IFN-f by dsRNA stimulation in HI-
BECs. TLR3 and RIG-I/MDAS expression increase in the
presence of IFN-x, IFN-f, IFN-y, and TNF-# in vitro [39-
43]. These results may indicate that intrahepatic biliary
epithelial cells are involved as an immunoregulatory organ
in various liver diseases, including PBC, AIH, and CHC. In
addition, the portal inflammation is closely associated with
ductular reaction in periportal areas. As hepatic stem cells
are speculated to reside alongside biliary epithelial cells in
canal of Hering [44, 45], the existence of multiple TFN-
inducing pathways, including TLR3 and RIG-IVMDAS,

&) Springer

may suggest the importance of this innate immune effector
pathway in the protection of putative hepatic stem cells
from viral infection.

In conclusion, we demonstrated for the first time the
increased expression of TLR3 at sites of ductular reaction
in diseased livers including PBC, AIH, and CHC. Since
cytoplasmic RNA sensors like RIG-I/MDAS, not TLR3,
seem 1o be the major receptors initiating strong type 1 IFN
induction in biliary epithelial cells, we speculate that there
is another important role in TLR3 that is highly expressed
in biliary epithelial cells. Further study will be necessary to
characterize its in vivo physiological role.
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Abstract

Toll-like receptor 3 (TLR3) recognizes viral double-stranded RNA and its synthetic analog polyribomosinic:polyribocytidylic acid (poly(1:C))
and induces type | interferon (IFN), inflammatory cytokine/chemokine production and dendritic cell (DC) maturation via the adaptor protein
TICAM-1 (also called TRIF). TLR3 is expressed both intracellularly and on the cell surface of fibroblasts and epithelial cells, but is localized to
the endosomal compartment of myeloid DCs. Several studies in TLR3-deficient mice demonstrate that TLR3 participates in the generation of
protective immunity against some viral infections. Involvement of TLR3-TICAM-1 in activation of NK cells and CTLs by myeloid DCs suggests
that TLR3 serves as an inducer of cellular immunity sensing viral infection rather than a simple IFN inducer. In this review, we summarize the
current knowledge on TLR3 and discuss its possible role in innate and adaptive immunity.
© 2007 Elsevier B.V. All rights reserved.
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released anti-viral factors [1.2]. Both natural and synthetic
double-stranded (ds) RNAs elicit IFN production [3,4]. Several
studies have suggested that human cells recognize particular
spatial and steric organizations of dsRNA via putative cell
membrane receptors and produce type I IFN [5-7]. Among the
synthetic dsRNAs, polyriboinosinic:polyribocytidylic acid
(poly(1:C)) was found to be the most potent IFN inducer [5].
In in vivo studies in mice, intraperitoneal injection of poly(1:C)
clicited IFN-o/f3 production and NK cell activation [8,9]
However, the mechanisms by which cells recognize dsRNA and
produce IFN-o/f3 remain largely unknown.

At the beginning of this century, Toll-like receptor 3 (TLR3),a
member of the TLR family proteins, was identified as a receptor
for dsSRNA [10,11]. Upon recognition of dsRNA, TLR3 transmits
signals via the adaptor protein Toll-IL-1 receptor (TIR) domain-
containing adaptor molecule-1 (TICAM-I) (also called TIR-
domain-containing adapter inducing IFN-§ [TRIF]). This
activates the transcription factors interferon regulatory factor 3
(IRF-3), NF-xB, and AP-1 (a complex of activating transcription
factor 2 (ATF2) and JUN), leading to the induction of type [ IFN
(especially IFN-f), cytokine/chemokine production and dendritic
cell (DC) maturation [12,13]. Although TLR3 participates in the
dsRNA-induced production of type 1 IFN, TLR3-null cells still
produce IFN-a/ in response to viral infection [14]. Additional
cytosolic dsRNA receptors, retinoic-acid inducible gene-1 (RIG-I)
and melanoma differentiation associated antigen 5 (MDAS),
have been recently identified [14,15]. RIG-1 and MDAS recog-
nize 5'-triphosphate-containing ssSRNA/dsRNA and poly(1:C),
respectively and induce IFN-a/B production [16,17]. Studies
using knock-out mice clearly showed that RIG-I is essential for
the production of IFN-a/f% in response to RNA viruses whose
genomes contain 5'-triphosphate, whereas MDAS is involved in
the detection of picornaviruses [18,19]. Based on the different
subcellular localization of cytosolic RNA receptors and TLR3,
these receptors seem to play distinct roles in anti-viral immune
responses. In this review, we summarize the current knowledge
on TLR3 and discuss its possible role in innate and adaptive
immunity.

2. Properties of TLR3
2.1. Structure of TLR3

Human TLR3 consists of an extracellular domain containing
23 leucine rich repeats (LRRs) and N- and C-terminal flanking
regions, the transmembrane domain, and the intracellular TIR
domain [20]. It possesses 15 putative carbohydrate-binding
motifs in the extracellular domain. Recent structural analyses of
the human TLR3 ectodomain revealed that the LRRs form a
large horseshoe-shaped solenoid of which one face is largely
masked by carbohydrate, while the other face is glycosylation-
free [21.22]. TLR3 molecules are arranged as dimers in the
crystals, and the C-terminal highly-conserved surface residues
and a TLR3-specific LRR insertion at LRR20 forms a homo-
dimer interface [21]. In addition, there are two patches of
positively charged residues on the glgvcosylnlion—free surface
[21]. Bell et al. demonstrated that H™? and N*' in TLR3-

LRR20, located on the glycan-free lateral face, are critical
amino acids for ligand binding and signaling [23]. The posi-
tively charged residues in the two patches and the carbohydrate
moiety are not involved in TLR3 function [23]. Based on these
results together with the structure of dsRNA, a dsRNA-induced
symmetrical receptor crosslinking model has been proposed for
TLR3 [23,24). An LRR-deletion study on TLR3 suggests that
the C-terminal LRRs (LRR20-LRR22) control the receptor
dimerization and signaling [25]. However, it is not yet under-
stood how extracellular receptor-receptor interactions induce
structural reorganization of the cytoplasmic TIR domain,
necessary for TICAM-1 binding and activation.

2.2, Expression and subcellular localization of TLR3

Human TLR3 mRNA has been detected in the placenta,
pancreas, lung, liver, heart and brain [26]. It is also expressed in
myeloid DCs and intestinal epithelial cells but not in monocytes,
polymorphonuclear leukocytes, T, B and NK cells, suggesting a
physiological role in innate immunity [27-29]. In addition, the
second type of DC precursor cell, pre-DC2 (previously known as
plasmacytoid DC precursor), which expresses TLR7 and TLR9
and secretes large amounts of IFN-a in response to ssRNA and
imidazoquinoline compounds (TLR7 ligands) or CpG DNA
(TLRY ligand), does not express TLR3 [30,31]. These observa-
tions suggest that these DC subsets have different roles in anti-
viral immune responses.

It has been shown using flow cytometry with anti-human
TLR3 mAb (TLR3.7) that human fibroblasts and epithelial cells
express TLR3 both intracellularly and on the cell surface while
monocyte-derived immature DCs and CD11¢” blood DCs only
express TLR3 intracellularly [11,31]. TLR3.7 mAb inhibits poly
(I:C)-induced IFN-f production by fibroblasts, indicating that the
cell-surface TLR3 participates in the poly(I:C) recognition [31].
However, in both fibroblasts and myeloid DCs, TLR3 signaling
arises in the intracellular compartment, requiring endosomal
maturation [31]. Immunofluorescent staining and confocal micro-
scopic analysis of myeloid DCs and human embryonic kidney
(HEK) 293 cells stably expressing human TLR3 revealed that
TLR3 localizes to specific unidentified intracellular vesicles [32].
More recently, it has been shown that some TLR3 molecules
localize to the early endosome in epithelial cell lines [33,34]. The
structural motifs determining the intracellular localization of
TLR3 are located in the ‘linker® region between the transmem-
brane domain and the TIR domain of TLR3 [32,35]. This differs
from the regulatory mechanism of intracellular TLR7 and TLRY
[35,36]. Interestingly, murine embryonic fibroblasts (MEFs) do
not respond to exogenous addition of poly(I:C), suggesting that
cell-surface expression of TLR3 is species-specific in fibroblasts.

In macrophages, DCs and epithelial cells, TLR3 expression
is up-regulated by viral infection and exogenous addition of poly
(I:C) or type 1 IFN [37-39]. In addition, TLR3 expression in
human astrocytes is increased by poly(I:C) stimulation [40.41].
The IFN-responsive element (ISRE) located at approximately
~30 bp on the human TLR3 promoter region is responsible for
viral- and poly(I:C)-induced TLR3 gene expression [38,39].
Released IFN-a/fs acts on DCs in an autocrine manner through
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IFN-a/f3 receptor to induce TLR3 expression. Even in this case,
TLR3 expression is up-regulated intracellularly but not on the cell
surface in DCs. Importantly, the regulation of murine TLR3
expression is somewhat different from that of human TLR3 [38].
Although lipopolysaccharide strongly induces TLR3 expression
in mouse macrophages and DCs [10,38], this effect is not
observed in human cells. The sequences of the proximal promoter
regions as well as the non-coding 5'-exons are different in these
two species [42]. Despite the overall characteristic difference in
TLR3 promoter sequences, mRNA expression of TLR3 is induced
by type I IFN in both mice and humans.

2.3. TLR3 ligands

TLR3 recognizes both in vitro-transcribed dsRNA and poly
(1:C), suggesting that the RNA duplex and not 3'-triphosphate is
critical for TLR3 activation [10,11,43]. Since TLR3 is
predominantly expressed intracellularly, ligands are often
transfected into the cells with cationic liposomes such as lipo-
fectin or DOTAP. dsRNA-liposome complexes are thought to
be delivered to the endosome where they activate TLR3. Under
such experimental conditions, bacterial total RNA and in vitro-
transcribed ssRNA but not mammalian total RNA, which is
abundant in modified nucleosides, activate HEK293 cells
expressing TLR3 [44]. By using modified RNAs, it has been
shown that the recognition of in vitro-transcribed ssRNA by
TLR3 is suppressed by modification of nucleotides such as
methylation probably due to destabilization of RNA duplexes
[44]. Although TLR3 appears to recognize the dsRNA structure
formed in unmodified RNA, the possibility that the RIG-I/
MDAS pathway participates in the recognition of these RNA
cannot be excluded. It would be interesting to determine
whether viral RNA derived from negative-stranded or positive-
stranded ssRNA viruses are recognized by TLR3. Precise
studies using null cells are necessary for identification of natural
ligands for TLR3.

2.4. Delivery of dsRNA

TLR3 is activated by extracellular dsRNA. The mechanisms
by which extracellular dsRNA is delivered to the TLR3-
containing organelle remain unknown. A recent study demon-
strated that CD14 enhances dsRNA-mediated TLR3 activation by
directly binding to poly(1:C) and mediating cellular uptake of poly
(1:C) [45]. The intemalized poly(1:C) colocalizes with CD14 and
TLR3. Since the extracellular domain of CD14 consists of LRRs
[46], poly(I:C) might be transferred from CD14 to TLR3. In
human fibroblasts, cell-surface TLR3 is involved in the recog-
nition of dsRNA [11]. Since CD14 is expressed on the fibroblast
cell surface, it may cooperate with TLR3 to internalize dsRNA.
On the other hand, in the case of CD14-negative myeloid DCs,
extracellular dsRNA must be internalized with the putative uptake
receptor. Remarkably, uptake of dsRNA largely depends on the
dsRNA structure. Among various synthetic dsRNAs, poly(I:C) is
preferentially internalized and activates TLR3 in myeloid DCs
[43]. High dose of poly(l:C) reportedly activates MDAS and
induces type | IFN production [18,19]. However, it is not known

how poly(1:C) reaches the cytosol. Physiologically, TLR3 may
encounter viral RNAs in the endosome where viruses enter
through the endocytic pathway or by uptake of the apoptotic
bodies derived from virally infected cells. Cells infected by
positive-stranded RNA viruses and DNA viruses contain virus-
derived dsRNA [47]. Indeed, Ebihara et al., recently reported that
myeloid DCs phagocytosed the apoptotic bodies derived from
Hepatitis C virus-infected cells containing HCV-derived dsRNA
and induced innate immune responses including IFN-f produc-
tion [48].

3. The TLR3-mediated type I IFN signaling pathway

Among the TLR family members, only TLR3 does not use
myeloid differentiation factor 88 (MyD88) as a signaling adaptor
[49]. TLR3 mediates signals via the adaptor protein TICAM-1/
TRIF [12.13] (Fig. 1). TICAM-1 activates the transcription
factors IRF-3, NF-sB and AP-1, leading to the induction of type
1 IFN, eytokine/chemokine production and DC maturation. The
TIR domain of TLR3 is responsible for signaling and recruiting
the adaptor protein. A substituted mutant A795H, in which an
alanine residue in the B—B loop of the TIR domain of TLR3 is
replaced with a histidine residue [50], does not activate NF-xB
and the IFN-B promoter in HEK293 cells upon poly(1:C)
stimulation because of its failure to bind TICAM-1 [12]. In
addition, phosphorylation of two specific tyrosine residues
(Tyr™ and Tyr***) in the TIR domain of TLR3 is essential for

Fig. 1. TLR3-TICAM-1-mediated type 1 IFN signaling pathway. In myeloid
DCs, TLR3 is exp i in the end | compartments and recognizes
extracellular viral dsRNA and its synthetic analog poly(1:C). Once TLR3 is
dimerized by imtemalized dsRNA, it recruits the adaptor protein TICAM-1/
TRIF. After the transient association of TLR3 with TICAM-1 through the TIR
domains, TICAM-1 dissociates from TLR3 to form a speckle-like structure
containing RIP1, TRAF3 and NAP1 where TICAM-1-mediated signaling 1s
initiated. RIP1 associates with TICAM-1 via the PHIM domain in the C-terminal
region and acts as an NF-xB acti and di in TICAM-1-
mediated signaling. TRAF3 and NAPI puucrpm in the recruitment and
activation of the IRF-3 kinases TBKI1 and IKKe. Phosphorylated IRF-3
translocates into the nucleus and together with NF-xB and AP-] induces IFN-
gene transeription. The TICAM-1-mediated AP-1 activation pathway is unclear,
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dsRNA-induced signaling [51]. Phosphatidylinositol 3-kinase
(PI3-K) is recruited to these residues, and is required for full
phosphorylation and activation of IRF-3. TLR3 also associates
with c-Src tyrosine kinase on the endosome in response to
dsRNA [52]. dsRNA-induced IRF-3 activation is abolished in
Sre kinase deficient cells, suggesting a critical role for Src kinase
in dsRNA-TLR3-mediated signaling [52). The Src kinase
inhibitor markedly inhibits dsRNA-elicited phosphorylation of
Akt, a downstream target of PI3-K. Although these data suggest
that IRF-3 activation via the PI3-K-Akt-pathway is dependent
on ¢-Sre, the precise role of ¢-Sre requires further elucidation.

TICAM-1 consists of an N-terminal proline-rich domain, a
TIR domain and a C-terminal proline-rich domain. The TIR
domain of TICAM-1 is essential for binding to the TIR domain of
TLR3 and also to the TLR4 adaptor TICAM-2 (also called TRIF-
related adaptor molecule [TRAM]) [53,54]. Once TICAM-1 is
oligomerized, the serine-threonine kinases, TANK-binding
kinase 1 (TBK-1; also called NAK or T2K) and IxB kinase-
related kinase ¢ (IKK-¢; also called IKK-i), are activated and
phosphorylate IRF-3 [55,56]. Phosphoprylated IRF-3 translo-
cates into the nucleus and induces [FN-§ gene transcription [57].
The N-terminal deletion mutant of TICAM-1 abolishes the IFN-§
promoter activation while sustaining the NF-xB activating ability,
suggesting an important role for the N-terminal region in TICAM-
l-mediated IRF-3 activation [12]. It is reported that NF-xB
activating kinase (NAK }-associated protein 1 (NAP1) participates
in the recruitment of IRF-3 kinases to the N-terminal region of
TICAM-1 [58]. In addition, TRAF3 is involved in the TLR3-
TICAM-1-mediated IRF-3 activation [39,60]. Cells lacking
TRAF3 are defective in I[FN-f3 production but not NF-xB acti-
vation in response to poly(1:C). Although both NAP1 and TRAF3
associate with TICAM-1 and serve as a critical link between
TICAM-1 and downstream IRF-3 kinases, there is no evidence
that they bind directly to TICAM-1.

Whereas the N-terminal region is crucial for TICAM-1-
mediated IRF-3 activation, the C-terminal region of TICAM-1 is
involved in NF-xB activation and apoptosis. Receptor-interact-
ing protein 1 (RIP1), a kinase containing a death domain,
associates with TICAM-1 via the RIP homotypic interaction
motif (RHIM) domain in the C-terminal region and acts as an
NF-B inducer and apoptosis mediator in TICAM-1-mediated
signaling [61-63). TRAF6 has also been implicated in NF-xB
activation by TICAM-1 [64]. TRAF6 directly binds to the N-
terminal region of TICAM-1 through the TRAF domain. Al-
though TRAF6 is required for NF-xB activation in MEFs [65],
poly(I:C)-induced NF-kB activation is not impaired in TRAF6-
deficient macrophages [66]. The participation of TRAF6 in
TICAM-1-mediated signaling may depend on the cell types.

Recently, Funami et al. reported subcellular localization
of TICAM-1 and its dynamics in response io dsRNA [33].
TICAM-1 alters its distribution profile from diffuse to a
speckle-like structure in response to poly(I:C) stimulation.
TICAM-1 is transiently recruited to the endosomal TLR3 in
response to poly(1:C), and thereafter moves away from TLR3 to
form speckle-like structures. The downstream signaling mole-
cules RIP1 and NAP! are also recruited to the TICAM-1-
positive speckles. Hence, TICAM-1-mediated signaling events

are closely associated with the spatiotemporal mobilization and
speckle formation of TICAM-1.

TLR3-TICAM-1-mediated signaling is negatively regu-
Jated by a fifth TIR adaptor protein SARM [67]. SARM and
TICAM-1 have been shown to interact and SARM strongly
suppresses NF-xB activation as well as IRF-3 activation by
TICAM-1.

4, Anti-viral function

Viral infections result in the stimulation of IFN-o/j and IFN-
inducible genes, which play a critical role in anti-viral host
defense [68]. Since TLR3 responds to a synthetic dsRNA, poly
(1:C), and viral dsRNA and induces IFN-8 gene transcription, it
is thought that TLR3 plays a key role in anti-viral immune
responses. However, a study in TLR3-deficient (TLR3™") mice
showed that the immune response to different viruses including
lymphocytic choriomeningitis virus (LCMV, a positive sense
single-stranded (ss) RNA virus), vesicular stomatitis virus
(VSYV, a negative sense ssSRNA virus), murine cylomegarovirus
(MCMV, a dsDNA virus) and reovirus (a dsRNA virus), was
unaffected compared to wild-type mice [69] (Table I). In
contrast, Wang et al. demonstrated the important role of TLR3
in infection by West Nile virus (WNV, a positive sense ssRNA
virus) [70]. TLR3™" mice had impaired cytokine production
and enhanced viral load in the periphery, whereas in the brain,
viral load, inflammatory responses and neuropathology were
reduced compared to wild-type mice [70] (Table 1). TLR3-
mediated peripheral inflammatory cytokine production is
critical for disruption of the blood—brain barrier, which fa-
cilitates viral entry into the brain causing lethal encephalitis.

Table |

Representative results from TLR3-deficient mice studics on viral infection

Virus  Genome Phenotype in TLR3™™ mice Reference

structure

MCMV  dsDNA Survival % [76)
Vial load in spleens T
IFN-a/@, IL-12 and [FN-y in serum |
NK and NKT cell activation |

LCMV  ssRNA (-) MNormal CD4" or CDE" T eell [69]
responses
(IFN-y production)
Normal T ¢ell memory function

VSV ssRNA () Normal CD4", CD8 T cell responses
(IFN-y production)

MCMV  dsDNA Normal CD4°, CDE” T cell responses
(IFN-v production)

Reovirus dsRNA CNS injury, monality (no difference)

WNV  ssRNA (+) Survival 1 [70]

Viral load in blood T
IL-6, TNF-a, IFN-p |
Viral load in brain |

Neuropathology |

RSV ssRNA (-) Pulmonary mucus production [73)
Pul vy IL-13 expression T

AV ssRNA (-) Survival 1 [74]

Viral load in lungs 1
IL-6, [L-12 and RANTES |
CD8" T clls in lung |
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Therefore, TLR3™™ mice are more resistant to lethal WNV
infection. In this case, TLR3 responds to viral infection but does
not display a protective role.

In other RNA viral infections such as respiratory syncytial
virus (RSV), influenza A virus (IAV), and phlebovirus, TLR3-
dependent inflammatory cytokine and chemokine production
also appears to affect the virally induced pathology and host
survival [71-75]. TLR3™" mice infected by IAV had reduced
inflammatory mediators leading to increased survival [74]. It is
notable that these experimental conditions that use higher viral
doses may lead to over-production of inflammatory cytokines
and chemokines.

Interestingly, a TLR3-mediated anti-viral response has been
demonstrated in MCMV infection [76). TLR3™ mice are
hypersusceptible to MCMYV infection. Cytokine (type I IFN, IL-
12p40, and IFN-y) production, and NK cell and NKT cell
activation are impaired in TLR3-deficient mice. Thus, the role of
TLR3 in the anti-viral response appears to be dependent on the
viral genome structure, entry route into the cells, viral affecting
sites, and property of the host anti-viral effector functions.

5. Induction of adaptive immunity
5.1. Induction of cross-priming by TLR3

Selective TLR3 expression in myeloid DCs but not in
plasmacytoid DCs raises the possibility that TLR3 may play a
key role in the anti-viral response by induction of the adaptive
immune responses rather than primary [FN-a/f production.
Myeloid DCs are the best professional antigen presenting cells
having several antigen processing and transporting pathways
[77]. One of the most notable features of myeloid DCs is
a cross-presentation of exogenous antigens to CD8™ T cells
(Fig. 2). This pathway is important for effective host CTL
induction against viruses that do not directly infect DCs. DCs
take up cell-associated antigens and afier processing, present
peptides bound to MHC class 1 molecules to CD8" T cells.
Several mechanisms have been proposed to explain cross-
presentation [78]. Virus-induced type 1 IFN also promotes
cross-priming of CD8" T cells through direct stimulation of
DCs, although the downstream signal involved in this pathway
is unknown [79]. Datta et al. demonstrated that TLR3 and TLR9
ligands induced cross-presentation by bone marrow-derived
DCs in a transporter associated with antigen processing (TAP)-
dependent manner [80]. Using TLR3-deficient mice, Schiltz
et al. clearly showed that TLR3 has an important role in cross-
priming [8$1]. Murine CD8a” DCs, which express TLR3 and
have a central role in cross-presentation, are activated by
phagocytosis of apoptotic bodies from virally infected cells or
cells containing poly(I:C) in a TLR3-dependent manner. Fur-
thermore, immunization with virally infected cells or cells
containing poly(I:C), both carrying ovalbumin (OVA) antigen,
induces OVA-specific CD8" T cell responses, which are largely
dependent on TLR3-expressing DCs [81). In this study virus
that could not infect APCs and release vial progeny from
infected cells was used to avoid direct CTL priming and the
effects of virus-induced IFN-a/f in vivo, In many cases, virally

infected cells produce IFN-a/ft which activate DCs to promote
CD8" T cell cross-priming [79]. Thus, both TLR3- and IFN-c/
p-mediated signaling are likely implicated in licencing DCs for
cross-priming of CD8™ T cells.

5.2. TLR3-TICAM-I1-mediated NK activation

CTL and NK cells are principal effector cells in anti-viral and
anti-tumor immunity. Contribution of TLR3 and TLR9 in anti-
viral responses has been shown in MCMV infection [76,82],
which partly relies on NK cell activation for virus clearance.
Production of type I and type Il IFNs as well as NK cell
activation afler MCMYV infection is impaired in TLR3™" mice
and TLRY mutant mice, suggesting that TLR3- and TLR9-
mediated type I IFNs activate NK cells. Recently, a critical role
of CD11¢"#" DCs in NK cell activation has been demonstrated
in vivo [83]. Recruitment of NK cells to local lymph node after
TLR3 stimulation and IL-15 released by DCs in a IFN-a/f3-
dependent manner are necessary and sufficient for the priming
of NK cells, resulting in IFN-y production and cytotoxicity
against target cells [83]). Akazawa et al. subsequently showed
that the TLR3 adaptor TICAM-1 is essential for poly(l:C)-
induced NK cell-mediated tumor regression in a syngeneic
mouse tumor implant model [84]. Remarkably, production of
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Fig. 2. dsRNA-induced TLR3-TICAM-1-mediated cellul 7 in
myeloid DCs. Mycloid DCs take up extracellulur poly(1:C) or apoptotic bodics

from virally infected cells and induce type | TFN and cytokine production, NK
cell activation and CTL induction via the TLR3-TICAM-1 pathway.

Extracellular poly(1:C) also acti the ¢y lic RNA heli MDAS and
mduces robust type 1 IFN production. Type | IFN pamicipates in NK cell
activation and promotion of cross-priming resulting in the CTL inducti




810 M. Matsumoto, T Seva / Advanced Drug Delivery Reviews 60 (2008) 805-812

IFN-a is not impaired in TICAM-1"" mice compared to wild-
type mice, afier in vivo poly(l:C) injection or in vitro mDC
stimulation, whereas IL-12 production is completely dependent
on TICAM-1, consistent with previous reports [18]. Further-
more, NK cell activation requires cell—cell contact with mDCs
preactivated by poly(1:C) but not IFN-a or IL-12. Thus, the
TLR3-TICAM-1 pathway in mDCs facilitates the mDC-NK
cell interaction following NK cell activation (Fig. 2). Poly(1:C)-
induced TICAM-1-independent IFN-a production, which does
not contribute to NK cell activation in this case, probably relies
on the cytosolic dsRNA receptor MDAS. It is not presently
known whether the RIG-I/MDAS-signaling is implicated in
mDC-mediated NK cell priming. Further, identification of
putative NK cell activating molecules inducible on mDCs by
TICAM-1-signaling remains undetermined.

5.3, Application of the TLR3 ligand to adjuvant vaccine therapy

Until now, application of the TLR3 ligand to adjuvant vaccine
therapy has been tried in a syngeneic mouse tumor implant model
or in a viral infection mouse model [84-87], Selective expression
of TLR3 in mDCs and TLR3-TICAM-l-induced immunc
responses (type 1 IFN, cytokine/chemokine production, DC
maturation, CTL and NK cell activation) arc advantages
associaled with using TLR3 ligands as an adjuvant. However,
several issues remain unresolved including a suitable transport
system for TLR3 ligands. Poly(1:C) intraperitoneally injected in
mice activates both TLR3 and MDAS [18.84], indicating that
extracellular poly(1:C) is delivered to endosomal TLR3 and
further to cytosolic MDAS in murine cells. The mechanism of
intracellular transport of poly(I:C) has not been analyzed. In
human monocyte-derived immature DCs, IFN-f3 production in
response to extracellular dsSRNA largely depends on the dsRNA
structure [43]. Extracellular addition of DCs fails to produce IFN-
/5 in response to in vitro-transcribed dsRNA, suggesting that the
internalization of dsRNA in mDCs depends on the dsRNA
structure, Thus, the dsRNA structure and targeting approach of
dsRNA to the endosomal TLR3 in mDCs are important matters
for generating the innate and adaptive immune responses
by TLR3 ligands. Goen et al. showed that poly(1:C;,U) induces
IFN-f4 in a TLR3-dependent and MDAS5-independent manner,
and exhibits protective anti-viral effects in mice [87]. Identifica-
tion of the putative dsRNA uptake receptor is crucial for
analyzing the intracellular transport of dsRNA. Furthermore,
clarification of the difference between the RIG-I/MDAS-
mediated and TLR3-TICAM-1-mediated signaling pathways is
important for assessment of the dsRNA-induced immune
responses.

6. Conclusion

Numerous studies on TLR3 have been performed in the past
10 years. Although it is clear that TLR3 recognizes extracellular
dsRNA and induces TICAM-1-mediated innate and adapiive
immunity, the in vivo role in anti-viral responses is still
controversial. In addition, the mechanisms by which endosomal
TLR3 and intracellular MDAS recognize extracellular dsRNA

are not fully understood. Identification of the TLR3-TICAM-1-
mediated signaling cascades different from those of RIG-U/
MDAS, ligand repertoire of TLR3, and dsRNA transport system
provides new insights for understanding the TLR3 function in
vivo, as well as for development of the TLR3-related vaccine
adjuvant for tumor and/or infectious discases.
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