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time was sufficiently short (even in almost cases of L = 3 and K = 5). However, the
elapsed ime was slightly long for small 4. It is reasonable because such a scale-free
network often has more reporter candidates than that with large . This result suggests
that the proposed methods are scalable to realistic size instances. The elapsed time of
IP2 was shorter than that of IP1 for almost all cases. It is reasonable because IP1 has
twice as many integer variables as IP2, and the number of constraints in IP1 is larger
than that in P2,

Table3 Selected proteins as reporters for each L and A’ in the downstream proteins of CASP8

L K 1Pl Reporters

1 1 6 BCL2

| 2 10 BID, CASP7

1 3 13 BCL2, BID, BIRC4

| 10 (1P2) 23 CASPY, RADYB, BCL2, BAK1, DIABLO,
CASP3, DFFA, NUMAL, PAK2, PARPI

2 1 13 BCL2

2 2 18 BCL2, BIRC4

2 3 19 BCL2, DIABLO, NUMAI

2 7(1P2) 23 BCL2, BAK|, DIABLO, DFFA, NUMAL,
PAK2, PARPI

3 | 16 BAD

i 6 (1P2) 23 CASP9, BAK1, DFFA, NUMAL, PAK2, PARPI

4 5(1P2) 23 BAKI, DFFA, NUMAI, PAK2, PARP1

23 | 19 BAKI

23 5(IP2) 23 BAKI, DFFA, NUMAI, PAK2, PARPI

Tabled Elapsed time (sec) of solving IP1 and IP2 for each n, v, L and K

n v L K 1Pl P2
1000 20 [ 1 0.0284183 0.0222008
1000 25 ! 1 0.0147972 0.00932519
1000 30 ! 1 0.0127831 0.00622164
1000 20 3 5 7.87762 0.168065
1000 25 3 5 0.904964 0.0526494
1000 30 3 5 0.114845 0.0205262
5000 20 1 ] 0.15739 0.133003
5000 25 1 1 0.102972 0.0485728
5000 3.0 1 | 0,0936872 0.0322236
5000 22 3 5 272.207 7.84515
5000 25 3 5 2.90922 0.841976
5000 3.0 3 5 0.179411 0.153181

10000 20 1 1 0.423074 0.301631
10000 25 | 1 0.276991 0.101553
10000 30 1 1 0.259448 0.0655794
10000 22 3 5 604.545 430.068
10000 25 3 5 5.62986 401971
10000 3.0 3 5 0.374687 0.392894
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6 Concluding remarks

We have studied the problem of allocating a set of reporter genes that are most
effective for analysing genetic networks and signaling pathways. We proposed two
formalisations Pl and P2 of this problem. P1 selects a set of nodes that covers as many
nodes (genes or proteins) as possible whereas P2 selects a minimal set of nodes that
covers all the nodes in a network. We showed hardness results on approximation of
these problems. On the other hand, by means of reduction to the set cover problem, we
showed that P1 and P2 can be approximated within a factor of /(e — 1) and O(log n),
respectively.

We proposed integer programming-based methods IP1 and IP2 so as to find
optimal solutions for practical instances of P1 and P2, respectively. We applied them
to apoptosis pathway maps, and found that such proteins as TP53, BCL2 and BAX
selected by our methods often correspond to hubs in the network. These proteins
are also considered to play important biological roles. Furthermore, we applied our
methods to artificial scale-free networks with up to 10,000 nodes, and we showed that
our methods can compule optimal solutions for these networks in practical time,

We did not consider specific mathematical models such as Boolean networks
and Bayesian networks since there is no consensus on mathematical models of
biological networks. Instead, biological networks are treated simply as directed and
unweighted networks. However, IP1 and IP2 can be modified for undirected and/or
weighted networks. If more detailed information (e.g., rates of reactions and flux
distribution) should be taken into account, it may be embedded in weights of edges.
Furthermore, we can add various kinds of constraints to IP1 and P2 because these
are based on integer programming. Such a flexibility would be useful for modifying
the proposed methods according to requirements from experimental biologists.
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Abstract

Background: A knowledge-based network, which is constructed by extracting as many
relationships identified by experimental studies as possible and then superimposing them, is one of
the promising approaches to investigate the associations between biological molecules, However,
the molecular relationships change dynamically, depending on the conditions in a living cell, which
suggests implicitly that all of the relationships in the knowledge-based network do not always exist
Here, we propose a novel method to estimate the consistency of a given network with the
measured data: i) the network is quantified into a log-likelihood from the measured data, based on
the Gaussian network, and ii) the probability of the likelihood corresponding to the measured dara,
named the graph consistency probability (GCP), is estimated based on the generalized extreme
value distribution,

Results: The plausibility and the performance of the present procedure are illustrated by various
graphs with simulated data, and with two types of actual gene regulatory networks in Escherichia
coli; the SOS DNA repair system with the corresponding data measured by fluorescence, and a set
of 29 networks with data measured under anaerobic conditions by microarray. In the simulation
study, the procedure for estimating GCP is illustrated by a simple network, and the robustness of
the methed is scrutinized in terms of various aspects: dimensions of sampling data, parameters in
the simulation study, magnitudes of data noise, and variations of network structures.

In the actual networks, the former example revealed that our method operates well for an actual
network with a size similar to those of the simulated networks, and the latter example illustrated
that our method can select the activated network candidates consistent with the actual data
measured under specific conditions, among the many network candidates.

Conclusion: The present method shows the possibility of bridging between the static network
from the literature and the corresponding measurements, and thus will shed light on the network
structure variations in terms of the changes in molecular interaction mechanisms that occur in
response to the environment in a living cell.
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Background

The knowledge-based approach to construct biological
network models is recognized as one of the most promis-
ing advances in computational biology [1]. In this
approach, the causal relations between biological mole-
cules are described as a directed graph, based on the inter-
action information extracted from a large number of
previous reports, in a manual or automatic manner |2,3].
Since each relation has been identified by experimental
studies, the existence of edges in the network model is
supported by strong evidence. Due to the high reliability
of each relation, many network models, even those with
large, complex structures, have been constructed for vari-
ous biological phenomena by a knowledge-based
approach [4-6]. Note that a network generated by a
knowledge-based approach is a mixture of molecular rela-
tionships identified by experimental studies under differ-
ent conditions. Indeed, it is well known that the
relationships between the molecules in a living cell
change dynamically, depending on the cellular environ-
ment. Fortunately, an abundance of such information
about molecular interactions under different conditions
has been obtained by measuring them on a genomic scale,
due 1o recent advances in experimental techniques, and
the information about the interactions is available at var-
ious web sites |7]. Thus, we can evaluate the consistency
of the knowledge-based network stnucture by the available
information about the data measured under the different
conditions. Although the inference of static network struc-
tures from the data has been intensively studied by vari-
ous approaches, such as the Bayesian network [8], the
dynamic Bayesian network 9], the Boolean network |10,
and the graphical Gaussian model [11], the consistency
evaluation will be useful to trace the dynamic network
structure variations reflecting the molecular relationships
that change coordinately in response to the cellular envi-
ronment.

The consistency evaluation between the network structure
and the measured data is well known in statistics as the
test for causal hypotheses by using the measured data. The
origin of the test for causal hypotheses is attributed to
path analysis [12]. Unfortunately, the importance of this
comerstone research was not recognized for a long time,
but the natural extension of path analysis has been estab-
lished as the well-known structural equation model
(SEM) [13]. Indeed, the SEM has been utilized recently in
various fields, in accordance with increased computer per-
formance. However, the SEM without any latent variables,
which is a natural assumption for its application to bio-
logical networks, sometimes has difficulties in the numer-
ical calculation of the maximum likelihood for the
observed data. To overcome the problem with this calcu-
lation, the d-sep test [14] has been developed, based on
the concept of d-separation in a directed acyclic graph

5

hitp://www.biomedcentral.com/1752-0509/2/84

(DAG) [15]. Note that the graph consistency with the data
in the d-sep test is considered by focusing on the absence
of edges in the graph [16,17).

Recently, linear regression was applied 1o reconcile the
gene regulatory network with the corresponding data
|18]. This application is based on the concept that the
entire network of gene regulation can be divided into a
few network motifs, with a two-layer relationship
between the transcription factors and their regulated
genes [19]. Indeed, the division of the entire network into
asmall and simple network enables us to utilize the stand-
ard statistical tests in linear regression for the consistency
of the gene relationships with the measured data. Unfor-
tunately, the linear regression is limited 1o the two-layer
relationships, and subsequently, its application is con-
strained to the simple structures of gene regulatory net-
works.

In this study, we propose a new method for estimating the
consistency of a causal graph with the measured data, in
combination with the Gaussian network (GN) [20] and
the generalized extreme value distribution (GEV) [21].
The present study partly exploits the previous swudy [18]
about the consistency between the network motif with
two-layer gene relationships and the measured data. How-
ever, instead of the network motifs with simple structures,
here we consider rationally complicated network struc-
tures based on the graphical model, and its consistency
with the data is expressed as a probability, referred 1o as
the graph consistency probability (GCP). The perform-
ance of the present method is examined by antificial net-
works with various structures and actual data measured in
Escherichia coli. Furthermore, the merits and pitfalls of our
method are discussed in terms of its possible utility with
various actual issues and methodologies, in comparison
with previous methods.

Results and discussion

Calculation of Graph Consistency Probability (GCP)

We will illustrate the procedure for calculating the graph
consistency probability (GCP) with a simple graph, G,
which is a directed acyclic graph with ten nodes and nine
edges, and with the corresponding data that are artificially
generated on the assumption that the data noise follows
the normal distribution. The procedure for calculating the
GCP is composed of five steps, as schematically shown in
Fig. 1 (see details of the mathematical description in the
Materials and Methods and the additional file 1: Details of
the schematic description of the procedure).

At the first step, the given graph, G, is recursively factor-
ized into the subgraphs, according to the parent-descent
relationships in DAG |15]. By recursive factorization, G, is
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(page number nof for citation purposes)



BMC Systemns Biology 2008, 2:84

(Step 1)
Recursive factorization of given graph
given graph G, subgraphs
- S
angnio A5 By | B
Lo [ [
[+] + e O T
[w]
(Step 2)

Likelihood of the given graph by using
Gaussian network (GN)
measured data  subgraphs

=G, ‘_ AN

hittp:/iwww. biomedcentral.com/1752-0509/2/84

(Step 3)

Set of maximums of likelihoods for

generated graphs
generated graphs set of maximum I(G))
. i a0 i = MarflG Gt )Gt}
- Ll i, = Marllo?)ile}) a2 )
e = el Mt}
(Step 4)

Fitting to generalized extreme value
(GEV) distribution model

Pentahliey Pt Ot Pt

iptarn Lo Pt

(Step 5)

Graph consistency probability

Figure |

P(I(Gy))
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text),

rationally divided into 10 subgraphs, based on the parent-
descent relationships in the directed graph.

At the second step, we calculated the log-likelihood of the
given graph, I(G,), with the corresponding data by a Gaus-
sian network model [20]. To calculate I(G,), here, we gen-
erated the data {X,} for each node with 50 sample
dimensions, i.e,, fork=1,2,..,10and ! = 1,2....,50, instead
of the acwual data, by the structural equations (see details
in Methods). The I(G,) of the given graph was then calcu-
lated 1o -31.14. We will estimate the probability of I(G,).
GCP, by the following three steps.

At the third step, we generated the graphs based on the
given graph, and then calculated the log-likelihoods of the
generated graphs according to the two preceding steps.

(1) We generated 50 random graph sets, {G,}, to form a
data set, in which each graph has the same number of
nodes and edges, but with different connections from
those of G

(2) 50 corresponding log-likelihoods of {G,} were calcu-
lated according to the first and second steps. Among the
50 log-likelihoods, the maximum of the log-likelihood,
(G nay)- is selected.

(3) The above procedure is iterated 1000 times to finally
obtain 1000 values of I(G,,.,). In this step, the dimensions
of the sampling data, the number of graphs in one set, and
that of the iterations to select I(G,,,,) are changeable
parameters, and the robustness of our method with them
will be evaluated in the following sections.
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At the fourth step, we fit the log-likelihoods calculated in
the third step to the GEV model. The maximization of the
GEV log-likelihood leads to the following estimate:

(#.6.£)=(-12658,13.15,-0.148),
for which the GEV log-likelihood is 4063.59. Although

the maximum likelihood estimate for £ is negative, cor-

responding to a bounded distribution, the £ value larger
than -0.5 indicates that the maximum likelihood func-
tioned well for the estimation [21,22]. Furthermore, the
goodness of fit can be visually diagnosed, using the three
diagnostic plots for assessing the accuracy of the GEV
model, fitted to the 1000 log-likelihoods data by the three
parameterizations. Neither the probability plot nor the
quantile plot gave any cause to doubt the validity of the
fitted model: each set of plotted points was nearly linear.
The return-level curve asymptotes 1o a finite level as a con-
sequence of the negative estimate &, and also provides a
satisfactory representation of the empirical estimates. In
addition, the corresponding density estimate seems con-
sistent with the histogram of the data. Consequently, the
four diagnostic plots lend support to the fitted GEV
maodel,

At the final step, we estimated the GCP of the log-likeli-
hood of the given graph based on the fitted GEV distribu-
tion. According to the GEV distribution, the GCP
corresponding to [(Gy) (=-31.14) was calculated to be less
than 10'%. As a result, it is natural that the examined given
graph was highly consistent with the data generated
according to the graph structure.

Rob of the P Method

The high performance of the present method described in
the preceding subsection depends on a few parameters. By
using the same network structure as in Fig, 1, we tested the
robustness of the present method in terms of the dimen-
sions of the analyzed data, the two parameters in generat-
ing artificial graphs for GEV, and the degree of noise in the
data. Furthermore, the robustness of the network structure
variation is tested by using the typical network structure in
biological interactions in the following four subsections.

Robustness in Terms of the Di
Data

We test the robustness of our method in terms of the
number of data samples for one variable (data dimen-
sion) that is smaller than the data dimension ({X,) fori =
1,2,...,50) in Fig. 1. This is because the experimental con-
ditions are frequently limited, due to the technical diffi-
culty of performing experiments for different growth

of the Analyzed
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conditions, Thus, small data dimensions are expected in
the actual data.

We performed the same estimation of GCP as that in Fig.
1, by using the data with 15 and 30 dimensions, and in
both cases, the present method operated well. The GEV fit

well to the data: the estimated & was larger than -0.5: the

estimated £ values are -0.1132 for the 15-dimension data
and -0.1332 for the 30-dimension data. In addition, the
four GEV-diagnostic plots for assessing the accuracy of the
GEV model show the validity of the fitted model in each
case (see additional file 2: Robustness in terms of data
dimensions). By the estimated GEV distributions, the
GCPs in the two cases were less than 104 and 108, respec-
tively. The probability for the 30-dimension data was
smaller than that for the 15-dimension data, Considering
that the probability was 10-19 in the 50-dimension data in
the preceding section, this indicates that the resolution
degree about the consistency is higher with larger dimen-
s10Ns.

Robustness in Terms of Parameters in Generating the GEV
Model

The GCP depends on two parameters in the graph gener-
ation for GEV: the number of graphs for selecting the max-
imum of the likelihood in one set of the generated graphs,
I, and the number of iterations for sampling the maxi-
mum values from each set of generated graphs, n. In Fig.
1,  and n were set to 50 and 1000, and a total of 50,000
graphs were generated for GEV. Here, we examined the fit-
ness of the log-likelihoods 1o GEV based on the graph
shown in Fig. 1, with nine pairs of | and n: | was set to 25,
50 and 100, and n was set to 100, 500, and 1000. The total
numbers of graphs for GEV ranged from 2500 to 100000,
and all of the examinations with the above parameter
pairs are provided in an additional file (see additional file
3: Robustness in terms of the parameters). Here, we
focused on the case when fewer graphs are generated than
the number in the default case. This is because a small
number of generated graphs in each set and iterations may
tend to violate the distribution of GEV, due to some biases
in the graph generation.

In the comparison of (I, n) = (50, 100) and (25, 1000)
with (50, 1000) in Fig. 1, the log-likelihoods calculated in
the two cases were fitted 1o the GEV model. Indeed, the
two & values were larger than -0.5: the estimated £ values
were -0.1545 in (I, n) = (50, 100) and -0.1670 in (I, n) =
(25, 1000), respectively. The two sets of diagnostic plots
for assessing the accuracy also showed the validity of the
fited model in each case (see additional file 3). A closer
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inspection revealed that the f value in the (50, 100) case
was slightly less than that in the (25, 1000) case. This indi-
cated that the number of graphs in each set, [, is more sen-
sitive to the goodness of fitness than the number of
iterations, n, regardless of the total number of generated
graphs. At any rate, the present method operates well,
even in the case of a relatively small number of generated

graphs.

In general, the optimized values of [ and n depend on the
size of the examined graph, and may be expressed as the
fraction 1o the total number of possible graphs with the
same numbers of nodes and edges as those of the exam-
ined graph. Although the number of possible graphs com-
posed of arbitrary numbers of labeled nodes and edges
can be estimated asymptotically under some constraints
on the edge connectivity [23], unfortunately, the total
number of possible graphs, in which all of the nodes are
connected 1o form one graph, is not still obtained. In the
present stage, we should heuristically define I and n by
diagnosing the goodness of fit to the GEV model.

Robustness in Terms of the Magnitude of Noise in the
Analyzed Data

We estimated the GCP in various noise ranges. For this
purpose, the value of the standard deviation in the struc-
tural equations for daa generation (o= 0.1 in Fig. 1) was
changed to three values (o = 0.5, 1.0, and 2.0). By the
same procedure as that in Fig. 1, we calculated 100 GCPs
for the three ranges of standard deviations. Finally, the
probabilities of the generated graphs were calculated.

Frequency
&

4 2 3 4 5 6 -7 -B -9 -10
oglGCP)

Figure 2

Robustness in terms of the noise in measured data.
GCP(=P(I(Gy))) for the graph in Fig. | was calculated with sim-
ulated data with distinct standard deviations, and the fre-
quencies of GCPs are plotted against the probability degree.
The horizontal axis indicates the log(GCP) value, and the ver-
tical axis is its frequency: black-colored bar, o= 0.5; gray-
colored bar, o= |.0; and boxed bar, o= 2.0.

http:/iwww.biomedcentral.com/1752-0509/2/84

The histograms of the GCPs in the three ranges of standard
deviations are shown in Fig. 2. In this figure, 100 GCPs
were plotted against the number of connections in the
generated graphs that were different from those in the
examined graph in the respective cases of standard devia-
tions. In the cases of the two small standard deviations (o
= 0.5 and 1.0), less than 10°'% of the GCPs emerged most
frequently, but the most frequent GCP was found at 104
in the case of the largest standard deviation (o = 2.0). In
the former two cases, the largest GCP was 10%in o= 0.5
and 10%in o= 1.0. Although some exceptional GCPs were
also found, the present method operates well within the
range of the two noise levels. In contrast, the last case
shows the limitation of our method, in terms of the noise
of the measured data, Careful preprocessing of the meas-
ured data may be required to apply our method to actual
data. Note that the noise is amplified as the number of
parents grows in the present simulation. For example, the
standard deviation is (a2 + a;? + 1)o, when a descent has
two parents and a is the path coefficient between the
descent and the i-th parent. At any rate, the limitation of
the present method in terms of the data noise can be
examined by describing the histogram of the GCP, and
was estimated between 1.0 and 2.0 for the graph in Fig. 1.
In addition, we assumed that the distribution of the data
noise also follows uniform and gamma distributions, and
obtained similar results in terms of the robustness about
the data noise (see additional file 4: Robustness in terms
of the noise according to the gamma and uniform distri-
butions).

Robustness Regarding the Variation of the Network
Structure

We applied the present method to the three network struc-
tures shown in Fig. 3. The three networks are analogous to
the typical structures of biological networks; the first is
analogous to part of a chain reaction in a metabolic path-
way, the second represents the simple structure of a gene
regulatory network, and the third depicts a cascade in a
signal transduction pathway. According to the connectiv-
ity in the network, the data were generated with the corre-
sponding struciural equations, and the present method
was applied to estimate the graph consistency with the
generated data.

The present method operated well in all of the network
structures. Indeed, the log-likelihoods in the three net-
works fit well to the GEV (see statistics in the legend of Fig.
3, and additional file 5: Robustness regarding the network
structure variation). In addition, the GCPs were very
small: The GCPs of the three networks were less than 100
1, 104, and 107, respectively. Interestingly, the magni-
tudes of the GCPs may be related to the network struc-
wures. The GCP in Fig. 3B is relatively larger than the GCPs
in Figs. 3A and 3C. This is because the present path coeffi-
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(A)

(B)
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Figure 3

Robustness regarding graph structure variation. The calculation is composed of five steps (see details in the text), Three
networks with typical structures in biology are examined in (A), (B), and (C). To generate the simulation data by structural
equations, we set the standard deviation to 0.1 in all three graphs, and the path coefficients between the variables are as fol-
lows: (A) @, = 0.6, @;;= 03, @;,= 0.1, a4, = 0.7, g, =08, a;,=09, a;5=02, ag5= 05, and oz ;= 04; (B) ¢, = 0.1, 74
=02, ¢,,=03, &,5=04, &= 05, 2 ;= 06, @, 5= 0.7, @, =0.8,and @, ;o= 0.9;and (C) @, = 0.5, &, , = 0.7, ., = 0.4,
=08, a, =06, a;;=03, a,5=02, ag4= 0.1, ag4= 1.0, and a; ;= 0.9. The value of log-likelihood and the parameters of
GEV distribution in the respective networks are as follows: (A) (Gy) = 163.4805, 4 = 89.8375, o= 12.9694, and £=-0.1743;
(B) H(Gg) = 61,6096, u = 3.0217, o= 12.5220, and &= -0.1314; and (C) I(Gy) = 124.8894, 1 = 46.9002, o= 12.1395, and &= -
0.1406. See also the corresponding GEV plots at additional file 5: Robustness regarding the network structure variation.

cients between the 10 nodes were set at different values,
but in the same order of digits. This indicates that the
most similar data for respective variables were generated
in Fig. 3B, and caused pseudo-correlations between the
variables with no edges in the network in Fig. 3B.
Although the performance for estimating the graph con-
sistency may slightly decrease, depending on the number
of two -layer relationships in the examined data, this sim-
ulation shows that the present method can be applied to
various structures of networks.

Examinations of Actual Grophs
We examined the performance of the present method
with two sets of actual networks in Escherichia coli and the

corresponding actual measured data. One set is a regula-
tory network for the SOS response system with the expres-
sion degrees of the constituent genes measured by
fluorescence |24), and the other is 29 networks classified
by gene functions, with the expression degrees under
anaerobic conditions measured by microarray [25]. The
former examination is a verification of the present
method for an actual network with a size similar to the
networks shown in Fig. 1, and the latter is a demonstra-
tion of a high-throughput search of network candidates,
consistent with the data measured under particular condi-
tions.
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Verification for a Simple Network

The gene network in the SOS system is schematically
shown in Fig. 4A. The SOS DNA repair system in
Escherichia coli is a well-characterized transcriptional net-
work [26,27]. One of the SOS proteins, RecA, acts as a sen-
sor of DNA damage, and a master repressor (LexA) binds
sites in the promoter regions of these operons. The corre-
sponding data to the constituent molecules in the net-
work are the transcriptional activity of genes measured

(A)

http./iwww.biomedcentral.com/1752-0508/2/84

with real-time monitoring by means of low-copy reporter
plasmids, in which a promoter controls green fluorescent
protein |24].

The GEV plots with the likelihood values and the statistics

are shown in Fig. 4B. The value of & was larger than -0.5,
and the GEV plots were quite similar to those in Fig. 1.
Indeed, each set of plotted points was nearly linear, and

recA

(B)
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Figure 4

Evaluation of the transcriptional network of the SOS DNA repair system in Escherichia coli. The network is sche-
matically shown in (A), and the corresponding GEV plots and the box-plot are also shown in (B). The value of log-likelihood
between the examined network and the measured data is -1 1 68.453, and the parameters of GEV distribution are as follows: x,
-1179.079, &, 4.957; & -0.236. The data for the promorter activities of eight genes in the SOS system are cited from [24].
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the return-level curve asymptotes to a finite level. In addi-
tion, the corresponding density estimate seems consistent
with the histogram of the data. Consequently, the good-
ness of fitness in the actally measured data lends suppon
to the GEV model,

The GCP of the SOS network with the comresponding
measured data was estimated as 0.049, and the network
structure was estimated o be consistent with the data
measured from the examined network. However, the GCP
was large in comparison with the GCPs in the simulation
studies in the preceding sections. This is partly because the
cyclic relationship of RecA is neglecied in the examined
network, and partly because most of the relationships in
the examined network are composed of 2-layer relation-
ships, due 1o the production of similar degrees of expres-
sion data, as in the situation in Fig. 3B. At any rate, the
performance of the present method was verified by a well-

http:/imww . biomedcentral.com/1752-0509/2/84

known network, with a size similar to that in the simula-
tion, and with the corresponding data measured by an
experimental study.

Demonstration for an Actual Network Set

We further tested the performance of our method for
selecting the networks consistent with the data measured
under specific conditions from many network candidates.
Here, we arranged 29 regulatory networks in Escherichia
coli and the corresponding gene expression profiles meas-
ured under anaerobic conditions (for details about the
examined network reconstruction and the profile data, see
Methods).

Table 1 shows the analyzed networks and the correspond-
ing graph consistency probabilities of the 29 networks
(see additional file 6: the 29 network structures analyzed
in the present study). When we set the significance proba-
bility to 5%, only two networks (Nos. 14 and 28) in Fig.

Table 1: Consi y of the y-nine ks with expression profiles d under b diti in Escherichia coli
No. ID Description node edge GCP
I 9333 detoxification 6 8 1,000
2 Co448 amino acids 6 9 1.000
3 C9449 carbon compounds 6 9 1,000
4 C9426 colanic acid (M antigen) 6(7) 911 1,000
5 C9509 operon &(7) 9(11) 1.000
[ C9448, C9462 amino acids, formyl-THF biosynthesi 7 10 1.000
[ 9449 carbon compounds 8(9) 7(8) 1.000
B c9311 maotility, chemotaxis, encrgytaxis 9 8 0.998
9 C9340 fageila 9 B 0.647
10 C9362 nucleoproteins, basic proteins 9 8 0.925
1 C9401 tryptophan 9 8 1.000
12 C9449 carbon compounds 9 8 1.000
13 9376 cytoplasm 10 9 1.000
14 C9449 carbon compounds 10 9 0.006
15 C9449 carbon compaunds 10 1 0976
16 C9337 SOS response 1 10 0.127
17 C9354 DNA repair 1] 10 0.068
1B C9383 arginine 1l 10 1,000
19 C9474 nucleotide and nucleoside conversion " 15 0.378
W C9493 fermentation 1] 10 1.000
2l C9376 cytoplasm 12 1 0.302
2 C9393 isoleucine/valine 13 12 1.000
23 C9%420 purine biosynthesis 13 12 1.000
214 C9394 leucine 4 17 1.000
25 C9504 phosphorous metabolism Fk} n 1.000
26 C9528 repressor 52(53) T179) 1.000
7 C9513 activator 58(59) 92(93) 1.000
B CM%0 anaerobic respiration B9(91) 161(162) 0.016
9  C9In Transcription related 91(93) 143(146) 0772

GCP values with less than 5% significance probability are indicated in bold type. The ID in the classification scheme by EcoCyc [44] and the
corresponding gene function are denoted in the second and third columns, respectively. Two networks in the functions C9448 and C9462 are
compased of the same constituent genes with the same connectivity. In the following columns, mtnmvhondnodumdoquofmm

h

i lboutd'u the transcription factor and

networks are denoted: the original network was constructed based on the

its regulated genes in EcoCyc, and the analyzed network was constructed from the

mnorkbynchndbvgdupmdmmmhmdin

mnpmsbnpwllkdauthCBlGEO(;:MMMGSEHO?)DS].TMW“MMldguo(mmalnmhm

4 "
d in par

The graph

y probability (GCP) is denoted in the last column,
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5, which are composed of regulatory gene pairs related 10
carbon compounds and anaerobic respiration, were
selected among the 29 networks. As seen in the figure, the
network structures are quite different. The network related
to the carbon compounds in Fig. 5A shows a relatively
simple structure that is a two-layer relationship between
one TF and its nine regulated genes. In contrast, the other
network related 1o anaerobic respiration in Fig. 5B has a
highly complicated form, with 89 nodes and 161 edges.
The selection of the two networks can be interpreted in
terms of biological functions, as described below.

The first network (No. 14) is composed of malT and its
regulated genes. malT is involved in maltose transport
[28]. Besides the malT-regulating network, four networks
related to carbon compounds (Nos. 3, 7, 12 and 15) were
also included in the examined networks, but they showed
no significant probability: the TFs in each network are
araC, galR, gutM, and exuR, and they regulate products

(A)

Figure 5

MNetworks with 5% significance probability in graph consistency search. By corr

http:/Awww.biomedcentral.com/1752-0509/2/84

related to the transpont of arabinose, galactose, glucitol,
and hexuronate, respectively [29-32]. Among the four net-
works, the galR and exuR-regulating networks (Nos. 12
and 15) are coordinated in terms of their products: the
exuR regulatory gene product controls the expression of
the galacturonate pathway operons (exuT, uxaC, uxuA, and
uxaB) |33|. Interestingly, galaciose was the least efficiently
utilized under anaeorbic conditions, among glucose, lac-
tose, galactose, maltose, maltotriose, and maltohexaose
|34]. This fact may be one of the reasons why our method
revealed the consistency of network No. 14 with the data,
and the lack of consistency of two of the networks, Nos.
12 and 15. In the remaining two networks, Nos. 3 and 7,
there are no reasons for their lack of consistency with the
present data. Thus, the detection of the network related to
maltose metabolism is reasonable, at least in comparison
with the galactose- and hexuronate-related networks,

=

Hm

ding b the regulatory

relationships and the gene functions in EcoCyc [44], 29 regulatory networks were reconstructed, and their consistency with
the expression profiles measured under anaerobic conditions (accession number GSEI 107 in NCBI Gene Expression Omnibus

(GEQ), 3

[25] was examined. Among the 29 regulatory networks, two networks showed 5%

htpil/wwrw.ncbinlm.nih.gov/geol)
significance probability: the network related with carbon compounds (EcoCyc ID: C9449_1 1) (A) and that with anaerobic res-
piration (EcoCyc ID: C9490_1) (B). The details of the network structures of the 29 regulatory networks are shown in the addi-
tional file 6: the 29 network structures analyzed in the present study.
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As for the second network (No. 28), the biological func-
tion is defined as anaerobic respiration, and its detection
is clearly reasonable. The gene encoding the transcription
factor in the network is fnr, one of the seven global regu-
lators in E. coli [35], and the modular controlled by its
product, Fnr, encodes proteins involved in cellular adap-
tation to growth in anoxic environments [36-38]. Since
the network is related 10 adaptations 1o environmental
changes, many genes are comprehensively associated with
each other, and the network structure is complex, as seen
in Fig 5B. Thus, the consistency of the far-regulating net-
work with the present data demonstrates the validity of
the present method for searching a large-size network con-
sistent with data measured under particular cellular con-
ditions.

It may seem overly strict to estimate the network consist-
ency by the present method. Some other networks besides
the two detected networks might be operating under
anaerobic conditions. However, the striciness of the con-
sistency estimation is one of the prerequisites for explor-
ing unknown networks. The falsely detected networks
should be excluded as much as possible, and the detection
of a few definite network candidates may serve as the ini-
tial step for investigating the unknown networks that are
unexpected, in terms of biological knowledge. In addi-
tion, the strictness for consistency estimation is easily
modified by setting the selection degree with a signifi-
cance probability. As a result, the present method reveals
the strictly consistent networks with the expression pro-
files measured under specific conditions, and will be use-
ful 1o find the activated network candidates among many
given networks.

Merits and Pitfalls of the Present Method

The present method successfully evaluates the consistency
of a network with the antificial and actal data, which is
expressed as a probability, GCP. The GCP of each known
network is estimated from one set of data in which the
constituent molecules of the network were measured
under one particular condition. Although a large amount
of noise prevents a confident estimation of the GCP, the
present method is robust in terms of the data sampling
dimensions, the parameters in the method, and the net-
work structure variation, The plausibility of the structure
variation and scale is illustrated by the detection of actual
networks for the simple network of the SOS response and
the large and complicated network for anaerobic respira-
tion. Thus, the present method is feasible to evaluate the
consistency of the networks with a set of data measured
under particular conditions.

The present method may be further applied to various
analyses of biological issues. One example is a simple
extension of the demonstration shown in the preceding

http://www.biomedcentral.com/1752-0509/2/84

section, as follows. Assume that we know more than two
distinctive cell stages, and that we can measure the data of
the constituent molecules in different stages. Then, we
evaluate the consistency of a set of known networks with
the respective data. By this evaluation, we may detect the
activated networks, among the known networks that are
specific to the respective cell stages. For example, the
present method may address the problem of which
known networks are activated in progressive diseases and
in cell differentiation processes. Thus, the present method
will be useful 1o investigate the network vanation in vari-
ous cell stages responding to different environments.
Another example is a utilization of the graphs generated
in GEV modeling, Assume that we know a network model
for a biological phenomenon, and that a few molecules
have been newly detected, and are responsible for the phe-
nomenon. Then, we face the issue of how the newly
detected molecules should be connected to the previous
network. In this situation, our method may present a solu-
tion. A new network is tentatively constructed, by con-
necting the newly detected molecules into the previous
network with the full use of biological knowledge, and
then the consistency of the tentative network is estimated
with the data measured under the conditions where the
relationship of the new molecules with the phenomenon
was found. If the GCP shows the significance probability,
then the network is a promising model for the phenome-
non. If not, then we can list some network candidates with
the significance probability that commonly share the
structure of the previous network, among the generated
networks for the GEV distribution. Note that the present
method aims to evaluate the consistency between the
known network structures and the measured data. Thus,
the network inference without any given network struc-
tres is beyond the present study. At any rate, these wo
examples will be demonstrated by appropriate networks
and data in the near future.

In terms of the methodology, the present method is a
rational extension of the previous study based on linear
regression [18], by the combination of the Gaussian net-
work and the extreme value distribution. Indeed, the
application range on the network structure is expanded,
from simple networks with two-layer relationships to
more complex networks with multiple-layer relation-
ships, In addition, the present method is complementary
with the d-sep test; the graph consistency is estimated for
the associations between variables (existence of edges in
the graph) in our method, and in contrast, no associations
between variables (no edges in the graph) are considered
in the d-sep test [14). However, the d-sep test failed to
select the activated networks: when we set the significance
probability to 5%, 27 networks among the 29 networks
were consistent with the data measured under specific
conditions, and only two networks were not (see addi-
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tional file 7: d-sep test and SEM for 29 network struc-
tures). Interestingly, SEM also failed (see also the
additional file 7): 27 networks among the 29 networks
were consistent with the data, and one of the two remain-
ing networks could not be evaluated, due to a numerical
calculation violation. Thus, our method may be appropri-
ate for tightly estimating the graph consistency in compar-
ison with the d-sep test and SEM. Furthermore, our
method differs from the d-sep test in a strict sense. The
present method is based on the generation of anificial
graphs in the estimation of graph consistency with the
measured data, while the d-sep test is based on the direat
hypothesis of a population distribution [14,16]. Thus, our
method is an asymptotic approach, and is similar to vari-
ous methods for model selection in network inference,
such as various Bayesian network models [8,9]. Note that
the present GCP is an occurrence probability, and defi-
nitely differs from the model selection procedure by using
the scores that show a relative difference.

The consistency of a model with the observed data also
reminds us of the identifiability problem in the compan-
mental models for tracer kinetics [39]. The identifiability
problem addresses the issue of whether the unknown
parameters can be determined uniquely or non-uniquely
from the tracer data. Although a systematic algorithm for
the identifiability problem was proposed regardless of the
model structure [40), its application is limited to the ideal
context of noise-free data. Recently, we have partially
exploited the identifiability problem algorithm to treat
data including noise [41]. Indeed, a network including a
cyclic relationship has been examined to estimate the con-
sistency with noisy data. Although this method has a lim-
itation of the network size to smaller than 10 nodes and
15 edges, another method with a symbolic approach may
partly compensate for the statistical approach presented
here for the limitation of the network structure.

Conclusion

We have proposed a novel method to estimate the consist-
ency of a given network with the measured data as a prob-
ability (GCP: graph consistency probability), based on the
Gaussian network and the generalized extreme value dis-
tribution. The performance of the present method was
validated by application to antificial graphs with simu-
lated data and actual graphs with measured data from
Escherichia coli. The plausible evaluation of the consist-
ency between the network structures and the correspond-
ing measured data promises to help reveal the network
structure variations depending on the environments in a
living cell, as well as to form a bridge between the static
network from the literature and the corresponding meas-
urements.

http://www.blomedcentral.com/1752-0509/2/84

Methods

Data Generation for Simulation

We generates the numerical data according to a standard
statistical procedure |16]. The data for 10 nodes with 50
sampling dimensions, {Xy for k = 1,2,..10, and | =
1,2,...50}, are generated by using the following structural
equations that comrespond to the parent-descent relation-
ships in Fig. 1:

Xy = N(0,0)

Xz =N(0,0)

Xy =N(0.0)

Xq=ay4Xy +N(0.0)
Xy=a;sXy + N(0,0)

Xg =ayeXy +ayeXy +N(0,0)
Xy =ay;Xq +N(0,0)

Xy =ayXq+N0,0)

Xyo = agoXg +a; X5 + N(0,0)
X010 = @ty 30X g + N(0,0)

(1)

where N(0, @) means a value that follows a normal distri-
bution with a zero mean and a standard deviation of o
and g, is a path coefficient relating variables i and j. Here,
we set @ to 0.1, and the following parameterization was
used: a;; = 0.5. Thus, we obtain a graph and examine the
corresponding data to estimate their consistency with the
graph. Note that the above data generated by linear equa-
tions may not precisely reflect the measured data underly-
ing various non-linear relationships. Here, we adopted
the linear relationships as the first approximation to test
the performance of the present method. The performance
for the complex relationships will be tested by actually
measured data.

Recursive Factorization of Causal Graph

Suppose a causal graph is a directed acyclic graph (DAG),
G(V,, E), where V,is a vertex (i = 1, 2, ..., m,} and E is an
edge (j= 1, 2, ... n,) in the graph. The DAC can be factor-
ized into subgraphs according to the parent-descent rela-
tionships [15]. Then, the joint density function f{X)),
corresponding to V, for the graph G, can be factorized into
the conditional density functions according to the graph,
as follows:

106 X X ) = [ [ A ey, (@)

where pa{X,} is the set of variables corresponding to the
parents of V,in the graph.
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Gaussian Network (GN)

The causal graph meets the measured daia based on the
Gaussian network model [20]. On the assumption that
the probability variable X, is subjected to a multiple nor-
mal distribution, each conditional function in equation
(2) is obtained by linear regression for the measured data
of the constituent nodes (molecules) measured at m
points, i.e,

2
1 -1 % <
f1X; | pafXi}) = expl —5 Qlxa— D Bixp | |
Jmo? | 202 Z,"{ § "t*]
(3)
where x;; is the measured value of X,, at the k-th point, and
n;is the number of variables corresponding to the parents
of V,, Thus, the joint density function in equation (2) is
expressed by the regression for the measured data in equa-
tion (3). Finally, the logarithm of the likelihood of the
equation (3) is calculated for the measured data as

HCy) = |..]:[nx, [palX,})= —}Z;I’—'z 5.;,-[“ —S__:',B.xa I +ln 2w"]}
(4)

Thus, the GN allows us to quantify a given network into
the corresponding numerical value from the measured
data, according to the network form. Note that the calcu-
lation of likelihood itself requires no assumptions on the
relationships between variables, Indeed, the likelihood
can be calculated in the case of non-linear regressions,
such as spline regression.

Generalized Extreme Value Distribution (GEV)

Next, we estimate the probability of I(G,) by using the
generalized extreme value distribution [21]. First, the log-
likelihoods of an ensemble of n networks generated
according to the GN are calculated, and then the maxi-
mum log-likelihood is selected from them. The above
procedure is iterated | times, i.e.,

Iy = Mnx{!{ G} ).4( 64 )G ]]
By = Max{l[cf).l(c:;).....:[c:f, )}
* (5)

-

e = Mae{1(G1).1(64) .1 (1 )}

The distribution of the maximum values by [ iterations is
expected asymptotically to be a generalized extreme value
distribution, i.e,,

http:/iwww biomedcentral.com/1752-0509/2/84

G“mn):ﬂp{'[l‘*é[{m&::g]]d”] (6)
defined on the set,

it B

where the parameters satisfy - <y <, 0> 0, and ¢ < <
«. The model has three parameters: g, o, and £ are a loca-
tion parameter, a scale parameter, and a shape parameter,
respectively. Maximization of the log-likelihood of equa-
tion (6) with respect to the parameter vector (u, o, £) leads
to the maximum likelihood estimate for any given data-
set, using standard numerical optimization. In the present
study, the R extRemes package |42] was used to fit the data
to the GEV distribution.

Note that the standard likelihood ratio test [43] cannot be
applied straightforwardly 1o a Gaussian network in the
present case. This is because the density function of the
population and the degrees of freedom in the likelihood
ratio test are unclear when maximizing the likelihoods of
the generated graphs. In the present method, the GEV dis-
tribution of the maximum values of likelihoods in the
blocks of generated graphs is adopted analogically,
instead of the maximum likelihood in the likelihood ratio
test, The utilization of the GEV distribution requires the
model fitting to the data, but allows us to set the signifi-
cance probability arbitrarily, as usual in statistical tests.

Graph Consistency Probability (GCP)

If the goodness of fitness of the maximum values from the
generated graphs is ascentained, then the occurrence prob-
ability of a given graph (GCP: graph consistency probability)
can be directly estimated by corresponding the I(G;) in
equation (1) to the probability density function of GEV
obtained in (6), i.e.

F(l[(.‘,_,)):J.[:}C[Im“ )l 7

Thus, the present method expresses the consistency in the
form of a probability. The probability examines the possi-
bility of whether the tested known networks are activated
in the environment where the data were measured. If the
probability is small, which corresponds to a large likeli-
hood value, then the data are generated, according 1o the
molecular relationships in the network.
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Actual Networks and Data for High-Throughput

Consistency Search Additional file 2

We first classified a transcription factor (TF) and its regu- mﬁl ::l;!ﬂnu ;’M ’br ng diay “pﬁuﬁz
t iy the uanii . the returm: curve, @ -

clasiiation scheme of gene functions R/ org/ | %71 (PDF i) e shoe o he 15 0 0 dimesind 1o

ECOLl/class-treeZabject=Genes. Using the gene sets of the m here for file

TF and the regulated genes in each function, we next [http:/fwwew b icentral com/ fsuppl y/1752-

reconstructed the networks: respective networks were 0509-2-84-52.pdf]

reconstructed, so as to form the network structure with as

many connections between the genes as possible. Thus, Additional file 3

we obtained 130 regulatory networks that are character- Robustness in terms of the parameters. Four GEV plots (PDF file) are

ized by biclogical functions. Since some networks were ’jm‘::::"um" ::";gamsg'“’:;‘:’a'g““ Lymat oot 19 25,30 dnd

characterized by more than two functions, the 130 regula- Click here fl::’ﬁle =S

tory networks were redundant in terms of the connectivity [hup://www blomedcentral.com/conteny/supplementary/1752-

and the constituent genes. Then, 29 networks were kept., 0509-2-84-53.pdl]

after excluding the redundancy and the small networks

with less than 8 edges (see Table 1 and additional file 6: | Additional file 4

29 network structures analyzed in the present study). Robustness in terms of the noise uccording to the gamma and uniform
distributions. GCP(=P(1{G,))) for the graph in Fig. 1| was caloulated
= i with simulated data according o the gamma and uniform disiribunons,
The consistency of each of the 29 networks was estimated and the frequencies of ch::u pm:; against the p{vbabmny degree.

with one set of expression profiles m. d under 22 dif- The horizontal axis indicates the log{ GCP) value, and the vertical axis is
feremt anaerobic conditions (GSE1107) [25] cited from its frequency: black-colored bar, )= 1 in gamma distribution; gray-colored
NCBI GEO |45]. The expression profiles were standard- bar, k= 3; stripid bar, & = 5; and boxed bar, between 0 and 1 in uniform

ized by the average and the standard deviation in each 2‘1“"::"""-{ ”
et " ck here for file
condition, as pl_fprocml_ng of the measured data. In a few |http://www.biomedcentral.com/conteny/supplementary/1752-
nodes (genes) in the original network constructed from 0509-2-84-54.pdf]
the information in EcoCye, the corresponding expression

profiles were not found in the analyzed data (GSE1107), Addit]onal ﬁ]e 5

and the corresponding parts in the network were g the k wariation. GEV plots (PDF
excluded. file) are shown for the three types of metwork structures in Fig. 3.
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