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Figure 7. Susceptibility of different cells to Fas stimulation. A Immunoblotting analysis was carried out by using anti-caspase 8, anti-caspase 3, and
anti-actin antibodies, and the membrane was then subjected to reaction with peroxidase-conjugated secondary antibody. Immunoreactivity was visualized by
use of enhanced chemiluminescence detection. Loading proteins were obtained from the following cell groups: mock-infected Molt-4 cells; Molt-4 cells infected
with UV-irradiated hepatitis C virus, strain B (UV-SB-HCV); SB-HCV-infected Molt-4 cells from the camoxyfluorescein succinimidyl ester (CFSE)-high group; and
SB-HCV-infected Molt-4 cells from the CFSE-low group, with or without Fas-ligand (FasL) stimulation. Pretreatment with CD44 splicing variant 6 —blocking
antibody (CD44v6 Ab) was camied out for some samples, as indicated. B, Surface expression of Fas and FasL as measured by flow cytometry. C,
Fluorescence-activated cell sorter analysis of annexin V and propidium iodide (PI) staining. Mock-infected cells, Molt-4 cells infected with UV-SB-HCV. and
Molt-4 cells infected with SB-HCV were stimulated with FasL for 24 h and analyzed to detect annexin V—positive, Pl-negative early apoptotic cells. The
percentages of early apoptotic cells in each group are indicated in the dot plots. Iso-type cont., isotype control antibodies.

DISCUSSION

The SB cell line, which was derived from an HCV-positive B-cell
lymphoma, produces lymphotropic HCV particles that can in-
fect and replicate in B cell lines, such as Raji and Daudi cells, as
well as PBMCs [28, 29]. Most recently, we also demonstrated

that SB-HCV could infect T cell lines, such as Molt-4 cells, and
that this system could be used for signaling analysis of T cells [ 5].
Although there has been accumulating evidence indicating that
HCV could replicate in both established T cell lines and primary
T lymphocytes, so far little is known about the extent and bio-
logical significance of T cell infection [39 —41]. The site of infec-
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Figure 8. A proposed mechanism for T cell hyporesponsiveness induced by hepatitis C virus, strain SB (SB-HCV). T cell proliferation activity is strongly
suppressed in SB-HCV infected T cells (thick arrows). A second effect is the induction of apoptosis through Fas. Both pathways lead to T cell
fiyporesponsiveness. The relative effects of these 2 pathways is not clear. CFSE, carboxyfluorescein succinimidyl ester,

tion, as well as proliferative activity and the subset of CD4 cells
involved may be important factors for HCV replication in vivo
[42]. Some authors have suggested that coinfection with human
T cell lymphotropic virus type 1 or HIV might induce HCV
replication in T lymphocytes [43—-45]. Previously, our data in-
dicated that with CD3 and IL-2 stimulation, naive CD4 T cells
could be one of the target cells for HCV [5]. As a result of HCV
infection, changes in the development and activation of
apoptosis-related molecules in T cells may contribute partially to
T cell hypores ponsiveness in some patients with hepatitis C.
The temporal expression of CD44v6 is important for prolif-
eration, activation, and apoptosis in T cells [13, 16]. The sup-
pression of CD44v6 expression or Ras-MEK-ERK signaling by
HCV replication disrupted the positive loop of proliferationin T
_cc[ls [27]. We could not conclude that CD44v6 suppression was
either the result or the cause of Ras-MEK-ERK suppression,
since Ras-MEK-ERK have been reported as upstream regulatory
molecules for CD44v6 expression and CD44v6 could enhance
Ras-MEK-ERK suppression [27]. However, unexpectedly, the
other CD44 splicing variants, for example CD44v3, could not be
suppressed by Ras-MEK-ERK signaling in this Molt-4 cell infec-
tionsystem([13,14]. Our studies further showed that the protein
NS5A is responsible for CD44v6 suppression. One of the possi-
ble mechanisms for this suppression is the stimulation of phos-
phatase 2A activity that can suppress MAPK si gnaling [24].
However, many individual HCV proteins have been reported to
affect MAPK signaling and apoptotic signaling in diverse ways
[25]; our Molt-4 cell HCV replication system showed that HCV
replication, and NS5A protein alone, could suppress CD44v6

expression and MAPK signaling in T cells, Moreover, the results
of Fas signaling experiments showed that suppression of
CD44v6 might contribute to the apoptosis of T cells. However,
some authors have reported that NS3A can inhibit apoptosis in
hepatoma cell lines [46, 47]. One of the explanations for these
contradictory results probably lies in the developmental stages
and characteristics of the naive T cells. During T cell activation,
apoptosis is easily induced, in order to maintain an appropriate
immune response. During this stage, suppression of CD44v6
might strongly affect apoptosis signaling in T cells.

We have found that our results apply not only to T cell lines,
butalso to primary naive T cells. We could also detect significant
suppression of proliferation after SB-HCV infection (data not
shown). Furthermore, in our ongoing clinical study some clini-
cal samples (PBMCs) from patients with chronic hepatitis C
showed a significant, albeit small, degree of CD44v6 down-
regulation with CD3 stimulation (data not shown).

We conclude that HCV replication in T cells may play a role in
the regulation of proliferation and apoptosis during T cell acti-
vation. The results suggest that NS5A expression induces the
suppression of MAPK signaling and CD44v6 expression in T
cells. Suppression of CD44v6 could enhance susceptibility to Fas
signaling by reducing the binding of Fas and CD44v6. These
biological effects may contribute to the disturbance of T cell
proliferation and activation in individuals with persistent lym-
photropic HCV infection (figure 8). A key issue for future re-
search will be determining what percentage of T cells are infected
with HCV during natural T cell infection.

CD44 Expression in HCV-Infected T Cells
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[Background] Hepatitis C virus (IHCV) is a major factor for liver cirrhosis and hepatocellular
caricinoma, while limited patients with persistent infection can clear HCV by the standardized
interferon with ribavirn protocol. Both drugs are supposed to effect on host-immune responses
during the treatment towards viral eradication. However, little is known about these responses
including natural killer (NK) cells.

[Aim] Examine NK-related population and markers in patients’ blood receiving anti-viral
treatment and discuss the role of NK and its dynamics in the disease status.

[Method] Thirteen patients were enrolled and divided into two groups according to the sub-
group of infected HCV, Group 1 and Group 2 respectively. Heparinized blood was taken from all
patients in the chronic state, and Group 2 was further followed up during and after the 24-week
treatment. NK cells and NKT cells were identified in peripheral blood mononuclear cells by the
surface staining of CD56 and CD3. NKG2D was also stained and analyzed on flow cytometry.

[Results] Frequency of CD56°'#" NK sub-population was higher in Group 1 than in Group 2
and the control group, while that of total NK cells did not differ. Dynamics of NK populations
showed the up-regulation of CD56°7#" NK around the end of treatment and subsequent decrease at
the follow-up point. The expression of NKG2D showed no significant difference between the groups.

[Conclusion] The continuous admission of interferon and/or ribavirin changes the balance of
NK sub-population that may relate to the immune activity in HCV infection.
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ch¥iEE, SRHER AT 5 BRIk O L
*T Yo

WY vEEmER) BB ¥, FITCHMR-7
CD3 #itk (BD Biosciences, San Jose, CA),
APC #E3%-#1 CD56 Fitk (Miltenyi Biotec, Ger-
many), PE %~ NKG2D #if& (BD Bioscien-
ces) ZHRANL, K FHEXT 30 A »F 2—}
Uiz ety 77 —IC TEM LR, 1% /Y7 8
WAFTNMFTE FCEE, 79—H%4 AL Y—
(FACS Calibur, BD Biosciences) = & % ##if %
BI ot 70y bicBir 5, CD3-CD56"
4nR A NK #ifg X L, CD56 FIRAEDE VI L
b, CD56'#tNK & CD564"NK iz L7z, &
72, CD3*CD56* i x NKT #ifg L &L 72 (4
Do

HiEtREATIZ, % ERIEE one-way ANOVA,
post-hoc test iZix Tukey’s multiple comparison
test # b By, p<0.05 2 HEEED D LHEL T,

& R

WHREGNERFRBET — | (&1 :

e BRI RIS 5 T o, R, I ALT i, HCV
RNA B3, BCZRTEBOTHD, wThd,Grl
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BERTEUEATD, 74V AHRE (SVR)
X, #h®h, 43%, 83% THY, BRI O —M R
RIBESHRTH > 72,
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Age Sex ALT HCV RNA i
N mean (range) (M/F) (IU/L) (kcopies/ml) SVR rate
Sero-group 1 7 55 (25-67) 3/4 22212 9-3,700 439 (3/7)
Sero-group 2 6 57 (43-70) 4/2 16-112 670-4,700 83% (5/6)
Control (CHB) 4 47 (36-62) 4/0 42-282 N/A N/A

SVR, sustained viral response ; CHB, chronic hepatitis B ; N/A, not available
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High incidence of tuberculosis and malignancies in hemodialysié patients suggests the distur-
bance of cellular immunity in these patients. The high prevalence of hepatitis C virus infection has
also been reported in hemodialysis units. In this report, we evaluate natural killer cells in
hemodialysis patients with hepatitis C virus infection. Nine hemodialysis patients were included in
this study ; 5 were hepatitis C virus RNA positive (mean age, 50.4 years) and 4 patients were negative
for hepatitis C virus RNA (mean age, 65.0 years). Natural killer cells were detected by flow
cytometry after staining with fluorescence-conjugated monoclonal antibopdies (anti-CD3 and anti-
CD56). Populations of total CD3-CD56%, CD3-CD56*™ in lymphocyte fraction were 17.5+11.0%,
15.5+10.8% in hepatitis C virus-positive patients, and they were significantly lower than those in
uninfected patients (35.0+14.09% and 34.3+14.2%). However, there was no statistical difference in
CD3-CD56Prisnt population between the groups. Up-regulation of CD69 expression after stimulation
with anti-CD16 was ohserved and there was no statistical difference between the two groups.
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Cytokine production after anti-CD16 stimulation was not statistically different between the two
groups. In conclusion, although hepatitis C virus infection may affect natural killer cell population
in hemodialysis patients, the functions of natural killer cells as evaluated by the activation and
cytokine production were well maintained in patients with hepatitis C virus infection.
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Analysis of the Entire Nucleotide Sequence of
Hepatitis B Causing Consecutive Cases of Fatal
Fulminant Hepatitis in Miyagi Prefecture Japan
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We encountered five consecutive patients with
fulminant hepatitis induced by acute hepatitis B
virus (HBV)infection in 2000-2001 in Japan. They
had nothad previouscontacteach other, and were
referred to us from different hospitals. Although a
69-year-old woman could be rescued by inten-
sive internal treatment, the four patients died.
We analyzed the partial (nt 278-646) and entire
nucleotide sequences of the HBV obtained from
them, and their divergences were 0-0.3% and 0-
0.2%,respectively. Theresultssuggested thatthey
had beeninfected with the same HBVisolates. The
isolatesbelonged to genotype B and subgenotype
B2 on the phylogenetic tree analysis (AB302942-
AB302946). As for the nucleotides sequences of
them, previously reported mutations of G1896A,
A1762T, and G1764A were present. Amino acid
analysis revealed that previously reported 11e97-
Leu and Pro130Non-Pro in the core region and
Trp28Stop in the precore region were present.
As for the entire nucleotide sequences among
B2, AB302942 showed low divergences with
AF121245 and AB073834 (1.7%), and X97850 from
patients with fulminant hepatitis (3.2%). We com-
pared the two consensus nucleotides derived
from AB302942 and X97850 (fulminant hepatitis)
versus AY121245 and AB073834 (non-fulminant
hepatitis), which revealed a difference in nt1,504
located in the P and X region. Nucleotide 1,504
was C for isolates from fulminant hepatitis and G
for non-fulminanthepatitis, and it wasrecognized

among mostoftheisolates belonging to B2 regis- -

tered on GenBank. Further studies could disclose
the mechanism of severe inflammation of liver
that finally leads to fulminant hepatitis. J. Med.
Virol. 80:967-973, 2008. 2008 Wiley-Liss, Inc.

KEY WORDS: hepatitis B virus; genotype B;
subgenotype B2; fulminant

hepatitis
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INTRODUCTION

Hepatitis B virus (HBV) infection has a wide spectrum
of clinical presentations, including self-limited acute
hepatitis, fulminant hepatitis, liver cirrhosis and
hepatocellular carcinoma [Lee, 1997]. The clinical
manifestations of HBV infection are related to inter-
actions between the virus and host immune responses to
HBV antigens [Chisari and Ferrari, 1995].

HBYV is each characterized according to the genotype
based on the comparison of entire genomes, with inter-
group divergences of more than 8% [Okamoto et al.,
1988]. The distribution of genotypes throughout the
world includes eight different genotypes of HBV, named
A to H, that have been determined to date [Okamoto
et al., 1988; Norder et al., 1992]. Recently, HBV strains
have been shown to be composed of subgenotypes
[Norder et al., 2004]. For example, genotype B (HBV/
B) is divided into five subgroups, B1-B5, according to
the countries where they are found [Norder et al., 2004;
Nagasaki et al., 2006]. Thus, HBV needs to be examined
with regards not only to its genotype but also to its
subgenotype.

Clinically, there have been some reports that the
outcomes vary according to the HBV genotype or
subgenotype. For example, as for HBV/B and genotype
C (HBV/C), which are commonly found in Asia, HBV/B
has been found to cause HBe-seroconversion more
frequently than HBV/C, and chronic infected patients
with HBV/B appear to have better prognoses [Kikuchi
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et al., 2000]. Furthermore, as for HBV/B, B1 is known to
show a good clinical prognosis compared with B2—B5.

Fulminant hepatitis is an often fatal complication of
acute HBV infection or acute exacerbation of chronic
HBYV infection. The pathogenesis is not completely
understood and it shows high mortality without liver
transplantation. Virologically, the association between
of the precore stop mutation (G1896A), the core
promoter mutations (A1762T and G1764A) and fulmi-
nant hepatitis induced by HBV infection has been
recognized [Carman et al., 1989; Aritomi et al., 1998;
Friedt et al., 1999]. Similarly, an association between
the amino acid 1le97Leu and Prol30Non-Pro in the
core region and Trp28Stop in the precore region was
previously reported [Kosaka et al.,, 1991; Aye et al.,,
1994].

We encountered five consecutive patients with
fulminant hepatitis induced by acute HBV infection in
2000-2001. They were all residents of Miyagi prefecture
inJapan. We investigated entire nucleotide sequences of
the HBV detected in their serum samples and compared
them with those of previous reports.

METHODS
Patients

The clinical characters of five patients are shown in
Table I. The criteria for fulminant hepatitis induced
by HBV infection were the development of hepatic
encephalopathy, prolongation of the prothrombin time
during the course of hepatitis, and immunoglobulin
M antibedy to hepatitis B core antigen [Perrillo and
Aach, 1981]. They were all referred to our hospital from
other clinics or hospitals. They were Japanese and had
not had contact with known each other. They had never
been abroad, had not met nor had with sexual contacts
with foreigners, nor were they intravenous drug
abusers. None of them had had prior hepatitis. The 66-
yvear-old male patient (FH-3) had been administered
medication for hyperlipidemia and hypertension, and
the 71-year-old female patient (FH-4) had been adminis-
tered medication for hypertension.

Thereafter, all but one patient (FH-4) died despite
treatment in the intensive care unit due to multiple
organ failure, including liver. We obtained serum
samples from them and analyzed their HBV-DNA.

None of these five patients were positive for anti-
hepatitis C virus antibody or for serum HCV-RNA
(RT-PCR assay, Amplicor gualification assay, Roche
Japan, Tokyo, Japan), the presence of which could worse
the outcome of hepatitis B virus infection [Feray et al.,
1993; Sagnelli et al., 2002; Liaw et al., 2004]. In addition,
other serum markers related to acute infection of
hepatitis A virus, EB virus, and Cytomegalovirus were
all negative.

Assays of HBV Related Markers

HBeAg, anti-HBe, and anti-HBc were detected by
immunoassays (Abbott Laboratories, N. Chicago, 1L).
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TABLE I. Clinical Characters and Data of Present Five Patients With Fulminant HBV Infection

IgM

HBeAg anti-HBe anti-HBc anti-HBc HBV-DNA

(COomn

Qutcome

(hospital day)

ALT

T-Bil
(mg/dl)

(%) (COD (LGE/ml)

(%)

PT (%) HBsAg anti-HBs

(IU/L)

Therapy

Onset Symptom Admission

Patients Age Sex

+(98.5) + (2.81)
+(99.0) + (3.04)
+(98.9) + (2.50)
+(82.7) +(2.95)

- (0.57) + (98.5)
- (0.48) +(97.3)
- (0.62) +(97.1)
- (0.53) +(97.0)

|k =il

8.0
38.0
15.0
27.0

3,945
2,715
6,950
3,380

10.2
16.8
13.9

9.4

Died (2)
rescued (50)

Died (2)
Died (44)

PE
PE, CHDF, mPLS

June 2, 2000
August 3, 2000

November 6, 2000
January 4, 2001

Fever, anorexia
Epigastralgia

2000

July 26, 2000 Fever
December 12,

M October 24, 2000 Fever

F

May 29, 2000

September 1,

M

69 F
71
66
71

Lo

fasfuaganies
By B B By

nt  +(2.32) 6.2

—(0.71) +(70.0)

7,884 24.0

4.4

Died (4)

PE

M

60

FH-5

Fever, malaise  December 6, 2000

2000

IgM anti-HBc was detected by CORE-M-IMx (positive range, COI (cut
assay (TMA-HPA; Chugai Diagnostics, Ltd., Tokyo, Japan). Percent in

plification-hybridization protection

percent. For details, please see method section in the text.

y immunoassays (positive range, HBeAg >1.0; anti-HBe and anti-HBc >70.0).
y transcription-mediated am;

off index) >1.0). Serum HBV-DNA levels were measured b:

each parenthesis meant for inhibition

HBeAg, anti-HBe, and anti-HBc¢ were detected b

Nagasaki et al.

BT,

gen; anti-HBc, antibody to hepatitis

-prednisolone pulse administration; T-Bil, total bilirubin; ALT, alanine aminotransferase

eAg, hepatitis B e antigen; anti-HBe, antibody to hepatitis e anti

antibody to hepatitis B s antigen; HB

, continuous hemodiafiltration; mPSL, methyl

; anti-HBs,
B c antigen; IgM anti-HBc, immunoglobulin M antibody to hepatitis ¢ antigen; n.t., not tested; COI, cut off index; LGE, logarithm of the genome equivalent.

F, female; M, male; PE, plasma exchange; CHDF

prothrombin time; HBsAg, hepatitis B s antigen



HBV Nucleotide Sequence of Fulminant Hepatitis

IgM anti-HBc was detected by CORE-M-IMx (Abbott
Laboratories). Serum HBV-DNA levels were measured
by transcription-mediated amplification-hybridization
protection assay (TMA-HPA; Chugai Diagnostics, Ltd.,
Tokyo, Japan) with frozen stocked sera as described
previously [Sakugawa et al., 2001; Kobayashi et al.,
2007]. The results of this TMA-HPA assay were in-
dicated as logarithm of the genome equivalent (LGE)/ml
and its measurable range was 3.7-8.7 LGE/ml
(equivalent to HBV-DNA 10%7-10%7 copies/ml).

Amplification of HBV DNA by Polymerase
Chain Reaction (PCR)

Nucleic acids were extracted from 200 pl of serum
as described previously [Niitsuma et al., 1995]. For
analysis of the entire nucleotide sequence, we divided
the entire HBV genome into six overlapping segments
and amplified each segment. Extracted DNA was
subjected to the first round of PCR with each set of
primers. PCR was performed with TaKaRa Ex Taq™
(TaKaRa Co. Ltd., Shiga, Japan) for 35 cycles (consisting
of denaturation for 1 min at 93°C, annealing for 1 min at
55°C, and extension for 1 min at 74°C), followed by an
extension cycle at 74°C for 8 min. The second round of
PCR was carried out for 30 cycles consisting of the same
protocol as in the first round.

The primers for the first and the second PCR rounds
were as previously reported [Shan et al., 2002].

We used the standard numbering system method in
this report, with the numbering of the bases commenc-
ing at the cleavage site for the restriction enzyme EcoRI
in the preS2 region and counting of the full lengths of the
3,215 base pairs.

Nucleotide Sequences of HBV Isolates

We used each set of sequencing primers previously
described [Shan et al., 2002]. Direct sequencing of
the PCR products was carried out by a fluorescence
autosequencer (model 377, PE Japan Applied Bio-
systems, Chiba, Japan) using a Big Dye Terminator
Sequencing Kit (PE Japan Applied Biosystems) accord-
ing to the manufacturer’s instructions.

Phylogenetic Analysis of the Isolated HBV Clones

Six overlapping segments were joined and phy-
logenetic determination of the sequences of the HBV
clone was performed by the neighbor-joining method

969

with the aid of ClustalW (DNA Data Bank of Japan;
DDBJ, http://www.ddbj.nig.acjp/search/clustalw-j.html).

We compared the present isolated clones with the
eight reported HBV clones and confirmed their genotype
by phylogenetic analysis. The accession numbers
of the clones and genotypes of these HBV sequences
used in the analysis were as follows: AB014370 (geno-
type A); X97850 (genotype B); X75665 (genotype C);
J02203 (genotype D); X75664 (genotype E); X75663
(genotype F); AF160501 (genotype G); and AY090457
(genotype H).

RESULTS
Serum Test Findings

All of the patients were IgM class anti-HBc positive, as
shown in Table I, and showed severe liver dysfunction,
and coagulopathy compatible with fulminant hepatitis.

Entire Genome Sequences Detected
From the Present Patients

We determined the entire nucleotide sequences
except in one isolate (FH-5). The divergences among
the four isolates were 0—0.2% (Table II). As for the
partial nucleotide analysis in the HBs region (nt 278—
646), all but one isolate were completely matched.
Only one isolate (FH-4) demonstrated single different
nucleotide.

Phylogenetic Analysis With HBV Entire Genome

We constructed a phylogenetic tree using the present
four entire nucleotide sequences and other HBV isolates
retrieved from the DNA database (DDBJ/GenBank)
as representative genotypes (A, B, C, D, E, F, G, and H)
(Fig. 1).

The genotype was B. The HBV/B isolates detected
worldwide are divided into five subgenotypes: B1, B2,
B3, B4, and B5; the present subgenotype was B2.

Comparison of the Nucleotides and Amino
Acids of AB302942 With the Isolates
From Previous Reports

Some nucleotide and amino acid mutations related
to HBV fulminant hepatitis were previously reported
[Carman et al., 1989; Aritomi et al., 1998; Sterneck et al.,
1998; Friedt et al., 1999; Yuasa et al., 2000]. As for the
nucleotides sequences of AB302942, the mutations of

TABLE II. Percentage Divergences of Entire HBV Nucleotide Sequences Among the Five Isolates From the Present Patients
and Other HBV Isolates Registered on GenBank

Accession number (country)

Accession AB302942 AB302942 AB302942  AB302942  AF121245  AB073834  X97850
Patient number (Japan) (Japan) (Japan) (Japan) (Vietnam) (Vietnam) (China)
FH-1 AB302942 - 0.1 0 0.2 1.7 1.7 3.2
FH-2 AB302943 = 0.1 0.2 1.7 1.7 3.1
FH-3 AB302944 — 0.2 1.7 1.9 3.2
FH-4 AB302945 — 1.7 1.7 3.2
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