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Samples from Ghana

352 samples were collected by ACD from 0-15 year old
children in four villages near Winneba, a western coastal
region of the country. Finger-prick blood was collected on
Whatman® 31ETCHR filter paper, and DNA extraction was
performed using the EZ1 BioRobot™ This study was
approved by the Ministry of Health/Ghana Health Service.

Species typing PCR

DNA extracted from all samples was subjected to Plasmeo-
dium species typing PCR based on the nested PCR tech-
nique developed by Snounou et al |28] with some
maodifications. Oligonucleotide primers were identical to
those previously described [28] but the PCR conditions
were modified as follows: For the first round of PCR, 1 pl
of extracted DNA was added 1o 14.85 pl of dH,0, 1.75 pl
of each primer (rPLUS and rPLUG at 5 uM), 2.5 pl of
AmpliTaq Gold® 10« PCR Buffer 11, 2 pul of 25 mM MgCl,
solution, 1 pl of dNTP mixture (2.5 mM each) and 0.15 pl
of AmpliTaq Gold® in a 25 ul reaction. The following
cycling conditions were applied using a GeneAmp® PCR
9700 thermocycler (Applied Biosystems, USA); 95°C for
10 min, 30 cycles of 57°C for 1 min, 72°C for 1 min,
94°C for 1 min and a final extension step of 72°C for 4
min. 1 pl of the resulting PCR product was used for the
second round of PCR, with an identical reaction mix to
that described for the first round (using pairs of species
specific primers FAL-1 and FAL-2, VIV-1 and VIV-2, MAL-
1 and MAL-2, and OVA-1 and OVA-2), and with the fol-
lowing cycle conditions: 95°C for 10 min, 32 cycles of
94°C for 1 min, 65°C for 1 min, and a final extension step
of 65°C for 5 min. The resulting PCR products were visu-
alized on 2% agarose gels, with the presence or absence of
a band with each species primer pair indicative of the
presence or absence of that species in the initial sample.

Sensitivity of species diagnosis PCR

Prior to commencement of PCR analysis of field samples,
a pilot experiment was carried out to assess the sensitivity
of the PCR conditions detailed above. This protocol con-
sistently detected the presence of P. vivax in a dilution of
genomic DNA that theoretically contained one copy of
the parasite genome per pl (data not shown). Due to var-
iation in DNA extraction technique between sample col-
lections, a consistent volume of blood corresponding to
the 1 pl of extracted genomic DNA used in the PCR cannot
be given. However, it is estimated that no less than 0.5 pl
of initial blood sample was used in each reaction. There-
fore, the PCR detection method used in this investigation
should detect P. vivax parasites in infections of as low as
two parasites per pl of blood. Furthermore, microscopic
evaluation of parasite presence was available for all sam-
ples, and these correlated well with PCR results. Although
the very rare occurrence of a microscopically positive sam-
ple being found to be PCR negative did occur, the vast
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majority of discrepancies between microscopy and PCR
diagnosis involved species misdiagnosis by microscopy,
and the detection of parasite infections by PCR in micro-
scopically negative samples, as is expected due to the
greater sensitivity of the PCR technique.

Duffy status profiling

An FY* allele-specific PCR [29] was used to determine the
Duffy status of the individual from Sac Tome infected
with P. vivax. Product amplification took place in a 50 ul
volume reaction containing 5 pl of 10x PCR buffer, 4 pl of
25 mM MgCl2, 0.1 mM of each dNTP, 2 pl of the two 5
pM allele specific primers, 1 pl of the 5 pM control prim-
ers and 6 units of AmpliTaq Gold* DNA polymerase
(Applied Biosystems, USA). Amplification conditions
were as follows; denatwration and activation of the Ampl-
iTagGold DNA polymerase at 96°C for 8 min, then 10
cycles of 94° for 20 s and 69°C for 1 min, leading to 25
cycles of 94°C for 205, 64°C for 30 sand 72°C for 1 min,
followed by 5 cycles of 94°C for 20 5, 62°C for 30 s and
72°Cfor 1 min. Amplification of a411 bp fragment of the
ABO gene acted as the internal control for each reaction.

Results and discussion

Prevalence of P. vivax in sub-Saharan Africa

1,711 samples were positive for P. falciparum (1,526 single
species infections, 51 with P. ovale, 129 with P. malariae,
one with P. vivax and four with both P. malariae and P.
ovale), 67 for P. ovale (12 single infections, 51 mixed with
P. falciparum, and four triple infections with P. falciparum
and P. malariae) 147 for P. malariae (14 single infections,
129 mixed with P. falciparum, and four triple infections
with P. ovale and P. falciparum) and one for P. vivax (mixed
infection with P. falciparum) (Table 2). The only P. vivax
infected sample came from a Duffy positive individual
from Sao Tome, an island off the west coast of Africa. No
P. vivax from any other location within the continent was
detected, confirming the scarcity of this parasite in Africa.
When excluding samples from Rwanda, Mozambique,
Angola and Sao Tome (self-selected as patients identified
by microscopy with a mixed infection were excluded), P.
malariae infections represented 8.5% of all malaria infec-
tions, and P. ovale 3.9%. The prevalence of both parasites
varies greatly by country.

Scarcity of P. vivax

The prevalence of P. vivax in Africa is very low; no evi-
dence for its presence in over 2,500 samples from nine
African countries was found, with the exception of the
island of Sao Tome, from which the parasite had previ-
ously been reported [10]. These results, combined with
the sporadic reports of the transmission of P. vivax in
indigenous populations [10,13,19] and the continued
identification of imported cases originating in west and
central Africa [15,17] indicate that a very low prevalence
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Table 2: Spedi position of isol d by PCR (%)

Collection area MNumber P. falciparum P. ovale P. malariae P. vivax

Burkina Faso! 108 108 (100) 6(55) 8(7.4) 0

Congo 8s| 341 (40.1) 1 (1.3) 8(0.9) 0

Gabon 206 102 (49.5) 4(1.9) 1 (05) 0

Ghana! 52 352 (100) 8(3) 45 (12.8) (]

Kenpa m 459 (63.6) 35 (4.8) B4 (11.6) 0

Angola!2 %0 90 (100) (] 0 0

Mozambique'? 90 90 (100) 0 0 o

Rwanda'? 99 99 (100) 2(2) 1() 0
Sao Tome' 70 70 (100) 1{1.4 0 1(1.4)

Total 2588 1711 67 147 ]

| Only P. folot positive samples were available for analy
2 Only P. folap single sp infections (diagnosed by microscopy) were analysed

of P. vivax is sufficient to maintain transmission. It is con-
ceivable that in areas with very high entomological inocu-
lation rates (EIR), such as in many areas of west and
central Africa [30], even very low numbers of Duffy posi-
tive individuals may allow the continued transmission of
P. vivax,

That low numbers of Duffy positive individuals in west
and central Africa are sufficient to maintain transmission
on P. vivax, is not surprising considering the very high
basic reproduction number of malaria in this region. The
basic reproductive number of a pathogen, R, is defined as
the number of new infections arising from an infected
individual introduced into a naive population, When R, >
1, transmission is maintained in a population, but when
R, < 1, transmission is interrupted and the pathogen can-
not persist. A recent report showed that Ry for P. falciparum
malaria transmission in Africa ranges from below one to
nearly 11,000 with a median value of 86, depending on
geographical location [30]. Given that both P. falciparum
and P, vivax are vectored by the same mosquito species,
the only factor that that differentiates R, for both species
in a given population is the human host's susceptibility to
infection. In order for transmission to be blocked, the pro-
portion of completely immune individuals (p) required in
a population is given by the formulap > 1 - 1/R;. Thus, in
areas where Duffy negativity is present in a population at
a prevalence of up to 99%, as it is in many parts of west
and Central Africa [8], then P. vivax transmission can be
expected to occur when R, (for P. falciparum) > 100, an
entirely realistic value for many areas. It is entirely con-
ceivable therefore, that P. vivax transmission occurs in
populations in which there are a very high proportion
Duffy negative individuals, given the very high P. falci-
parum R, values associated with west and central Africa.

A number of researchers have recently suggested that P.
vivax may be in the process of evolving mechanisms [21]
that enable it to infect Duffy positive individuals. Given
the extremely high EIRs and transmission dynamics of
malaria parasites in sub-Saharan Africa, this scenario
would appear highly unlikely given the extremely low
incidences of the parasite reported here. Any P. vivax par-
asite that acquired the ability to infect Duffy negative indi-
viduals may be expected to rapidly spread throughout
sub-Saharan Africa, and would be readily detectable in the
population,

Discrepancy between P. vivax rates in travellers and
localpopulations

Surveillance of malaria cases imported into the USA
between 2001 and 2005 [31-35], reveals that 32 cases of
P. vivax originated in four west and central African coun-
tries for which we also have species prevalence data from
the local populations. In the same time period, there were
545 cases of imported P. falciparum from the same coun-
tries. This gives a ratio of 100:6 P. falciparum to P. vivax
infections in these areas, a surprisingly high rate, espe-
cially considering that P. malariae and P. ovale are repre-
sented at ratios of 100:6 and 100:5 respectively
(comparable with those of the local populations, see
Table 3). How does one account, then, for the discrepancy
between the imported P. vivax data, and the extremely low
prevalence in the native population reported here?

It is possible that the geographical distribution of P. vivax
within Africa is patchy, with sporadic areas of transmis-
sion scattered throughout the continent, possibly associ-
ated with human populations in which the Duffy negative
phenotype is present at a lower frequency than elsewhere
(such as on the island of Sao Tome), Travellers may pref-
erentially visit areas of west and central Africa where there
is a relatively high frequency of Duffy positive individuals
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Table 3: Parasite species prevalence of traveler’s malaria imported into the USA (2001-2005) from Burkina Faso, Gabon, Republic of
Congo | Democratic Republic of Congo and Ghana compared to that of the local populations.

Species Total number Species prevalence (per 100 P. falciparum cases)
Imported to the USA/ Local population? Imported to the USA! Local population?

P. falaparum 545 903 - »

P. vivax n 0 5.9 []

P. malarice 34 62 61 69

P. ovole 16 % 48 32

1 2001-2005, data from [17.31-35]
2 data from the current survey

in the local population (e.g. migrant workers and non-
African expatriates) and where P. vivax is more likely to be
transmitted.

Another factor that may contribute to this discrepancy is
the higher transmissibility of P. vivax relative to other
malaria parasites, and in particular relative to P. falci-
parum, under adverse conditions |9|. This has the conse-
quence that there should be higher proportion of P. vivax
relative to P. falciparum in the vector mosquitoes than
there is in the corresponding human population. Conse-
quently travellers, who are a probe of the infection rates in
the local mosquitoes, can be expected to, and indeed do
have (Carter and Mendis, unpublished analysis), higher
proportions of P. vivax than are found in the endemic
human populations amongst whom the travellers have
briefly resided. This may explain the recent findings of
Ryan et al [19], who report the presence of P. vivax in
0.65% of mosquitoes from an area of western Kenya with
a high proportion of Duffy negativity in the local popula-
tion, However, even an extremely small percentage of
Duffy positive individuals in this population may be
expected to support such a rate in mosquitoes.

The use of prophylactic anti-malaria drugs among travel-
lers may also contribute to this phenomenon. Mefloquine
is the recommended prophylactic drug for travellers 1o
west and central Africa from the USA [31], and whilst
effective against the blood stages of all malaria parasites,
it does not affect the dormant hypnozoite stages of P.
vivax, and will therefore not protect against relapses after
cessation of drug use. This is also true of P. ovale, which is
also capable of producing hypnozoites, and may explain
the slightly higher rate of this parasite in returning travel-
lers compared to the local populations (Table 3).

It is also probable that a small proportion of imported
cases may be P. ovale infections rather than P. vivax, as is
often difficult to distinguish the two species by micros-
copy |15]. As previously mentioned, there are an increas-
ing number of reports detailing imported African P. vivax

diagnosed by accurate molecular typing techniques
|16,18].

In conclusion, the present study indicates that the preva-
lence of P. vivax in local populations in sub-Saharan Africa
is very low, despite the frequent identification of this par-
asite in travellers. P. vivax malaria, therefore, does not con-
stitute a health risk to the indigenous populations of west
and central Africa, though Duffy positive individuals,
including non-African travellers to the area, may be at risk
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Abstract

or'n 1oh 1 1

A pl mass proteins (PfRhopH) of the human malana parasite Plasmodium falciparum induces host protective immunity
and therefore is a cand:dau for vaccine development. Understanding the level of polymorphism and the evolutionary processes is important for
advancements in both vaccine design and knowledge of the evolution of cell invasion in this parasite. In the p study, we seq d the
enlire open reading frames of seven genes encoding the proteins of the PfRhopH complex (rhoph2, rhoph3, and ﬁ\-’e rhophi/clag gene paralogs).
We found that four rhophl/clag genes (clag2, 3.1, 3.2, and 8) were highly polymorphic. Amino acid substitutions and indels are predominantly
clustered around amino acid positions 1000-1200 of these four rhophl/clag genes. An excess of nonsynonymous substitutions over synonymous
substitutions was detected for clag8 and 9, indicating positive selection. The McDonald-Kreitman test with a Plasmodium reichenowi orthologous
sequence also supports positive selection on clag8. Based on the ratio of interspecific genetic distance to intraspecific distance, the time to the most
recent common ancestor of the clag2 and 8 polymorphisms was d to be 1.89 and 0.87 million years ago, respectively, assuming divergence
of P. falciparum and P. reichenowi 6 million years ago. In addition to a copy number polymorphism, gene conversion events were detected for the
rhoph l/clag genes on chromosome 3, which likely play a role in increasing the diversity of each locus. Our results indicate that a high diversity of
the PfRhopH 1/Clag multigene family is maintained by diversifying selection forces over a considerably long period.

@ 2007 Elsevier B.V. All rights reserved.
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1. Introduction

. Malaria infects more than 300 million people and kills 1-2

Abbreviations:  aa, amino acid; chr, ch clag, cy

linked asexual gene(s), CI, confidence interval, mya, million years ago;, nt,
nucleotide; ORF, open reading frame(s); PCR, polymerase chain reaction; PV,
parasitophorous vacuole; PVM, PV membrane; §.E., standard eror, TMRCA,
time to the most recent s UTR, 1 region(s).

* Note: Semmﬁh&umﬁammkhawbmdcpmﬂcdwﬂhﬂw

GenBank™/EMBL/DDBJ d under bers AB250801-
AB250912.
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tute of Tropical Medicine, Nagasaki U ity, 1-12-4 Sak , Nagasaki

852-8523, Japan. Tel.: +81 95 819 7838, fax: +81 95 819 7805.
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and Immunology, Faculty of Medicine, Tottori University, Yonago, Tottori 683-
8503, Japan.

0166-6851/8 - see front matter © 2007 Elsevier B.V. All rights reserved.
doi: 10.1016/j. molbiopara. 2007.11.004

million each year. Efforts have been made to develop effective
malaria vaccines, but none is available so far. Malaria is caused
by the obligate intracellular protozoan Plasmodium parasites;
and entry into erythrocytes is prerequisite for the growth in the
mammalian host. After contact with the erythrocyte surface, par-
asite discharge the content of the microorganelles called the
micronemes to establish a tight junction with the erythrocyte
surface molecules; parasite then invaginates into a nascenl par-
asitophorous vacuole (PV) [1,2]. During formation of the PV,
the parasite discharges the contents of another pair of microor-
ganelles, the rhoptries [3]. The molecules located within these
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organelles play a key role in erythrocyte invasion and have been
studied as vaccine targets, with the aim to induce antibodies to
block invasion. One erythrocyte-binding molecule in the rhoptry
is a complex of high-molecular-mass proteins called the RhopH
complex [4,5]. The RhopH complex is distributed throughout the
erythrocyte and PV membrane (PVM) and has been detected in
ring-stage parasites [6], suggesting an important role during PV
establishment. The importance of the complex has further been
emphasized by the failure of attempts to disrupt the pfrhoph3
gene locus, suggesting its necessity for parasite survival [7].

The RhopH complex comprises three distinct components:
RhopH1, RhopH2, and RhopH3 [8-12]. The genes encoding
RhopH1 are members of the rhophl/clag gene family, which
was originally defined by the cytoadherence-linked asexual gene
(clag) on chromosome 9 in Plasmodium falciparum (clag9) and
consists of at least three members; clag2, 3.1, and 9 [13-15].
Although not yetdetermined experimentally, molecules encoded
by clag3.2 and 8 are likely parts of the RhopH complex as judged
by their similarity in amino acid sequence and transcription pat-
tern with other members [15]. Because only one RhopH1/Clag
participates to form a single RhopH complex [15,16], five types
of PfRhopH complex are expected to exist, each of which con-
tains one rhophl/clag gene product. In this report we employ
‘RhopH1/Clag’ (protein) and ‘rhophl/clag’ (gene) as the family
name, and ‘Clag’ (protein) and ‘clag’ (gene) for each member.

Erythrocyte-binding proteins discharged from P. falciparum
merozoites are considered to be targets of host immune
responses. Strong diversifying selections on microneme proteins
have been detected (e.g., AMA-1 and EBA-175), suggesting
that polymorphism of these proteins has been maintained to
evade host immunity in parasite populations [ 17,18]. Antibodies
against the PfRhopH complex partially inhibit the growth of £
falciparum in vitro and in vivo, consistent with its potential as a
vaccine target [ 19-21]. Although the RhopH complex has been
shown to induce host protective immunity and is likely to be
under host immune pressure, the genetic diversity and immuno-
logic characteristics of this complex are not fully understood.
Here, we analyzed sequence polymorphism in five rhophl/clag
members, rhoph2, and rhoph3 and show that some of the rhoph
genes are under positive/diversifying selection. In addition, we
assessed a population genetic mechanism that might drive the
evolution of the rhaphl/clag multigene family.

2. Materials and methods
2.1. Malaria parasites

All cloned lines of P. falciparum were maintained in vitro,
essentially as described previously [22]. The parasite lines exam-
ined originated from Southeast Asia (Dd2, FVO, Camp, T9/96,
T9/102, K1, and Thai838), Papua New Guinea (MAD20), Cen-
tral and South America (HB3, 7G8, DIV17, DIV29, DIV30,
PC49, PC54, Santa Lucia, and Haiti), and Africa (RO33,
123/5, 128/4, SL/D6, LF4/1, 1021, M2, M5, Fab9, 713, P13,
and KMWII) and have been previously described [23-25].
Their geographic origins have also been previously described
[26].

2.2, DNA and RNA isolation

Genomic DNA was obtained as described previously [24].
Total RNA was isolated from schizont stage-enriched HB3 and
Dd2 parasite lines using the RNeasy mini kit (Qiagen, Valen-
cia, CA). Complementary DNA was synthesized using random
hexamers and an Omniscript reverse transcription kit (Qiagen)
after DNase treatment.

2.3. Polymerase chain reaction.(PCR) amplification and
sequencing

Nucleotide sequences corresponding to open reading frame
(ORF) were determined for five pfrhophl/clag genes, rhoph2,
and rhoph3 in four parasite lines: Dd2, HB3, 7G8, and
FVO. DNA fragments were PCR amplified with KOD-Plus
DNA polymerase (Toyobo, Japan) using a panel of oligonu-
cleotides specific for the genes (Supplemental Table 1) and
sequenced directly using an ABI PRISM® 310 genetic ana-
lyzer (Applied Biosystems, Foster City, CA) or sequenced
after cloning into pGEM-T Easy® plasmid (multiple plas-
mid clones sequenced for each DNA fragment; Promega,
Madison, WI). To PCR amplify DNA fragments includ-
ing the entire ORF of clagd.l] or 3.2, LA Tag DNA
polymerase (TaKaRa, Japan) was used with oligonucleotide
primers 3.1F (5-TGTGCAATATATCAAAGTGTACATGC-3")
and 3.IR (5-TAGAAAATATTAGAATTGCTATTATGTAC-
3) or 3.2F (5-AATAGTTGAGTACGCACTAATATGTC-3')
and 3.2R (5-ACACAAATTCTTAATAATTATATAAAACC-
3'), respectively. A highly polymorphic region identified in
clag2, 3.1, 3.2, and 8 in this study was further analyzed by
increasing the number of parasite lines (n=25) from different
geographic areas.

2.4, Plasmodium reichenowt sequences

A TBLASTN search was performed against the P reichenowi
preliminary genome sholgun database (Dennis strain; Sanger
Centre, UK) using Clag2, 3.1, 3.2, and 8 amino acid sequences
as queries. For prelag?2 and prelag8, sequences were assembled
using SeqMan IT accompanied with Lasergene software (DNAS-
TAR Inc., Madison, WI) with manual corrections. Regions
covered by at least two independent reads and showing identical
sequences were selected and used for analysis (Supplemental
Figs. S1 and S2). The generated sequences were 3273 bp long
for prelag2, corresponding to nucleotide (nt) positions 193870,
1021-1902, 2458-3432, and 34484185 of pfclag2 (3D7),
and 2175bp long for prelag8, comresponding to nt positions
1459-4173 of pfclag8 (3D7). For Clag3 orthologs in the £
reichenowi genome, only sequences possessing homology with
the S’ untranslated region (UTR) (reich908g11.plk) or 3’ UTR
(reich1194c08,plk and reich289106.qlk) were used.

2.5. Sequence alignment and analysis

The entire ORFs for the 7 P/RhopH complex-related genes (5
rhophl/clag genes, rhoph2, and rhoph3) in four culture-adapted
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P, falciparum lines—Dd2 (Southeast Asia), 7G8 (Brazil), HB3  rily aligned and were therefore excluded from the analysis. The
(Honduras), and FVO (Vietnam)—were aligned with those  sequences(3D7 parasite line) used to construct trees and the evo-
retrieved froma genome database (3D7 line, presumably African lutionary rate were as follows: nt positions 154-312, 331-573,
in origin) using a CLUSTAL W program [27] with man-  727-1122, 1207-1266, 1324-1560, 1609-2988, 3004-3288,
ual corrections; nucleotide diversity () and its standard error  and 3382-3924 for clag3.2, mt positions 160-318, 337-579,
(S.E.) were computed with the Jukes and Cantor method using 733-1128, 1213-1272, 1330-1566, 1615-2994, 3010-3294,
MEGA 3.1 software [28] after excluding insertions/deletions  and 3388-3930 for clagd.];, nt positions 223-381, 400-642,
(indels) and highly polymorphic regions. The mean numbers of ~ 799-1194, 1279-1338, 1390-1626, 1696-3075, 3091-3375,
synonymous substitutions per synonymous site (ds) and non- and 3553-4095 for clag?; nt positions 130-288, 307-549,
synonymous substitutions per nonsynonymous site (dy) and 706-1101, 1186-1245, 1300-1536, 1606-2985, 3001-3285,
their standard errors were computed using the Nei and Gojobori  and 3415-3957 for clag8; and nt positions 82-240, 265-507,
method [29] with the Jukes and Cantor correction, implemented 652-1047, 1132-1191, 1276-1512, 1582-2961, 2977-3261,
in MEGA 3.1. The statistical difference between dg and dy was  and 3394-3936 for clag¥.
tested using a one-tailed Z-test with 500 bootstrap pseudosam-
plesusing MEGA 3.1. A value of dy significantly higherorlower 3, Results
than ds at the 95% confidence level was taken as evidence for
positive or purifying selection, respectively. Thedy:ds ratiowas 3.1, Polymorphism of the PfRhopH complex-related genes
evaluated using a sliding window method (50 bases with a step
size of 10 bases) in DnaSP 4.0 [30]. Positive selection was also All seven PfRhopH complex-related genes showed greater
evaluated using the McDonald-Kreitman test [31]. Before esti-  pucleotide diversity levels than the average (+2 S.E.) of 204
mating the time to the most recent common ancestor (TMRCA)  ORFs on P falciparum chromosome (chr) 3 [35] (Table 1).
for P. falciparum clag2 and 8 polymorphism, the evolutionary  Among the seven genes, clag2, 3.1, 3.2, and & are highly
rate constancy of clag2 and 8 between P. falciparum and F.  polymorphic with nucleotide diversity (m=0.0053-0.0164)
reichenowi was validated using a Plasmodium yoelii ortholog  comparable to malaria vaccine candidate antigen protein genes
PyRhopH1A (accession number ABO60734) as an outgroup  such as eba-175 (w=0.0030) and ama-1 (w=0.0166) [17,18].
using Tajima's relative rate test [32] implemented in MEGA 3.1, The observed nucleotide diversity levels of clag2, 3.1, and 3.2
Mean and 95% confidence intervals (CI) for estimated TMRCA  should be taken as minimum estimates, because indels and
were computed based on the model assuming the distribution of  highly polymorphic regions were excluded from this analysis
the distance and the substitution rate were Gamma-distributed (o obtain reliable alignments. The highly polymorphic nature
[33). Gene conversion was evaluated for each exon using an  of four rhephl/clag genes at the nucleotide level extends to
algorithm by Betrdn et al. [34] implemented in DnaSP 4.0. the amino acid level, which is represented by high dy values
Unrooted dendrograms of lhepfrhaphl/ciag members were (Table 1). Thus, the genes encoding RhopH1/Clag are more
constructed using the neighbor-joining and maximum parsi-  polymorphic than RhopH2 and RhopH3.
mony methods in MEGA 3.1, and Tajima's relative rate test Among the four RhopH1/Clag showing high polymorphism
was used to evaluate the evolutionary rate among members.  (Clag2, 3.1, 3.2, and 8), the majority of polymorphic sites are
Indels and highly polymorphic regions could not be satisfacto-  clustered in a region at amino acid (aa) positions 1000-1200

Table 1
Nucleotide diversity of the PfRhopH complex genes®
Gene n Indel  Sites " 7(SE) dx du(SE)  ds ds (S.E.) dnlds ]
clag?® 5 (+) 41317 0.0053 (0.0008) 0.0032 10.0007) 0.0133 (0.0028) 0.24 (0.0003)
clag3. ¢ 5 (+) 4,140 0.0164 (0.0015) 0.0062 (0.0011) 0.0582 (0.0058) 0.11 (<10~
clagd.>* 5 (+) 4,134 0.0138 (0.0011) 0.0063 (0.0011) 0.0445 (0.0050) 0.14 (<1019
clag8 5 (=) 4,182 0.0066 (0.0007) 0.0065 (0.0011) 0.0069 (0.0020) 0.94 ns
clag? 5 (=) 4,020 0.0009 (0.0003) 0,0011) (0.0004) 0.0000 {0.0000) oo 0.002
rhoph2 5 (=) 4,134 0.0009 (0.0003) 0.0010 (0.0004) 0.0005 (0.0005) 2.00 ns
rhaph3 : | (=) 2,691 0.0013 (0.0004) 0.0012 {0.0005) 0.0015 (0.0010) 0.80 ns
clag2? 4 (+) 5 0.0131 (0.0032) 0.0114 (0.0042) 0.0192 (0.0074) 0.60 ns
clags® 26 (=) 585 0.0267 10.0042) 0.0305 (0.0060) 0.0132 (0.0061) 23 0.020
Chr 5 202,069 000044 (0.00006) 0.00039 (0.0060) 0.00068 (0.00010) 0.57

* n, Ni of ampled; sites, sites analyzed excludi di q and alignment gaps; =, pairwise nucleotide diversity; dy, number of

WWMMNWM ds'mmmofmmmhﬂmnmnmmdwnws.ﬂ standard
mwmmpﬁeduhgIheNﬂﬂojtbmmwimMmmms&wnmmmmbmmwmsomepmm

® Povalue indicates that dy is significantly greater than ds. 'Im:dmmpum that d5 are significantly greater than dy. The statistical difference
between ds and dy was tested using an one-tail Z-test with 500 b f ! d in MEGA 3.1. mmmmutpmm(haos;

© For optimal sequence alignment, nt 3433 wswueadmbdlmmﬂmz.m”ﬂ 3“7Mch331 and nt 88-99 and 3343-3444 from clagd.2 for the analysis.
Nucleotide numbering are after the 3D7 line sequences,

4 nt 3022-3606 of clag8 and nt 3106-3420 and 34363642 of clag2 were used.

* Data from 204 ORF on F. falciparum chr 3 using five parasite lines [35].
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Fig. 1. Locations of amino acid polymorphism of seven components of the
PfRhopH complex among five P. falciparum parasite lines (3D7, HB3, Dd2,
FVO, and 7G8). Indels are shown as gaps with asterisks (aa position 1145
for Clag2, as positions 1113-1149 for Clag3.l, and aa positions 30-33 and
1115-1144 for Clag3.2). Numbers are those of 3D7 line sequences

(Fig. 1). In addition, numerous polymorphic sites in this region
have more than one amino acid substitution, whereas most poly-
morphisms in the other regions are dimorphic (at both nucleotide
and amino acid levels). Most indels are also located in this region
(Fig. 1, asterisks). Thus, the region at aa positions 1000-1200
of RhopH1/Clag is the most highly polymorphic region of the
PRhopH complex.

3.2. Gene conversion between clagl.l and 3.2

Of interest, clag3.] and 3.2 share some polymorphic sites.
Because clag3.] and 3.2 have 96.7% nucleotide identity (3D7
parasite line) and are located on chr 3 and separated by only
10kb harboring one putative ORF (PFCO0115¢) (Fig. 2A), we
assessed gene conversion between these two loci, Using an
algorithm by Betrin et al. [34], we identified multiple gene con-
version tracts located at nt positions 1314-1353, 1447-1452,
1612-1659, 1702-1785, 1852-1983, and 2148-2208 in 3D7
clag3.1; nt positions 38244240 in HB3 clag3.1; nt positions
189-247 in 7G8 clag3.1; nt positions 813-817 and 38214182
in 3D7 clag3.2; nt positions 88-151 in HB3 clag3.2; and nt
positions 3320-3755 in 7G8 clag3.2 (Fig. 3). The detected con-
version tracts had less than 5% informative nucleotides showing
a mosaic origin, indicating that the probability of these tracts
being involved in a recombination event more than once is neg-
ligible [34]. No gene conversion was detected between the other
rhophl/clag genes.

Because gene conversion potentially accelerates nucleotide
diversity, we evaluated the evolutionary rates of clag3./ and 3.2.
Results showed that clag2, 3.1, and 3.2 form a single clade and
clag8 another (Fig. 4); thus we performed Tajima’s relative rate
test using clag8 as an outgroup and found that the evolutionary
rates between clag3.] and 2 and between clag3.2 and 2 were
significantly different for all combinations of the sequences from
five parasite lines. Because clag3.] and 3.2 were more diverse
than clag2, clag3. I and 3.2 appear to have evolved more rapidly
than clag2.

3.3. Amino acid polymorphism of the region around aa
positions 1000-1200 of Clag2, 3.1, 3.2, and 8

Because extensive polymorphisms were observed around aa
positions 1000-1200 in Clag2, 3.1, 3.2, and 8, we further ana-
lyzed polymorphism in this region with additional sequences
from parasite lines originating worldwide. Alignment of Clag2
sequences showed multiple amino acid substitutions per site at
multiple sites, e.g., five amino acids at aa position 1139 (K.
R, S, G, and I). Indels were also observed (Supplemental Fig.
S3). Clag8 has even higher levels of amino acid substitutions
atl between 1077 and 1136; five different amino acids (I, S, R,
G, and N) at 1100, seven at 1101 (D, S, T, E, N, 1, and K), six
at 1104 (S, N, I, K, R, and T), and five at 1105 (G, D, T, §,
and N) (Supplemental Fig. §4). Clag3.1 and 3.2 are also highly
polymorphic (Fig. 5), which will be discussed later.

3.4. Copy number polymorphism of rhophl/clag genes on
chr3

Notably, when PCR amplification was performed to obtain
DNA fragments of the entire ORFs of clag3.1 or 3.2, 17 parasite

A
Chr3 120 130 140 kb
i L i A A L
ORF= « clag3.2 _rgcunsc clag3. 1
Oligo  3.2F 3R LAF 1LIR
888
SN
Ty ey
1 2 3 4
3p7 I Mapzo )
1 D
Haiti [
rcs« I
1235 R ~]
Santa Lucia CTRNNEN 12844 &
SL/D6
vs I
713 T

Fig. 2. Copy number polymorphism of rhoph [/clag genes on chr 3. (A) Genome
organization around clag3.2 and 3./ gene loci on chr 3. The locations of the
oligonucleotide primers are indicated. Oligonucleotide 3.2F and 3.1F were
designed on the §' UTR of clagd.2 and 3./, respectively. Oligonucleotide 3.2R
and 3.1R were designed on 3' UTR of clag3.2 and 3./, respectively. (B) PCR-
amplified DNA fragments of 26 F. falciparum lines with different combinations
of oligonucleotides.
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Fig. 3. Gene conversion tracts in clag3. ] and clagi.2. Polymorphic codons (circles) in the coding sequences of Clag3.1 and 3.2 were compared in five P, falciparum
lines. Clag3.1, black bar; Clag3.2, gray bar. Polymorphisms matching the paralogous sequence are shown in gray o black circles, respectively, and rare poly h

by an open circle. Exons are separated by vertical bar with the intron number at the bottom. Polymorphic ites that differ between consensus sequences are shown
below the line classified as YmOus (n). synomy (s), and del (d). Gene jon tracts identified using algorithm by Betrdn el al. [34), wide gray
bars.

lines showed the 2 expected positive bands with the primer sets  clag3.2 sequence at the §' UTR and clag3.] sequence at the 3’
3.1F-3.1R and 3.2F-3.2R, whereas 9 parasite lines showeda  UTR (Fig. 2B). DNA fragments were not amplified with other
positive band only with the primer set 3.2F-3.1R, which sug-  primer combinations, indicating that artificial amplification due
gests that these 9 parasite lines possessed a hybrid gene with 10 primer mispairing was negligible. This is consistent with a
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Fig. 4. Unrooted dendrograms of pfrhophl/clag genes using nucleotide
sequences from the 3D7 parasite line. The trees were constrocted by the
neighbor-joining and maximum parsimony methods using MEGA 3.1. Numbers
on branches indicate bootstrap values (500 pseudoreplicates).

recent report by Chung et al. [36], who found that some parasite
lines possess only a single rhophl/clag on chr 3 by Southern
blot hybridization. We here designate this clag3 gene as clag3h
(clag3 hybrid, Clag3H for protein). In addition, we obtained
two distinct sequences for clagd.] from the KMWII parasite
line (Fig. 5), using several cloned plasmids after experiencing
difficulty in direct sequencing of PCR products. Sequences for
clag2, 3.2, and 8 were easily obtained from the KMWII line by
direct sequencing of the PCR products, supporting the assump-
tion that this line was a clone. Thus, the KMWII line appears
to possess at least three clag3-related sequences in the genome.
This data suggests that the number of clag3-related sequences
in P. falciparum varies from one (o at least three.

To deduce the direction of the one-gene to two-gene (or
vice versa) change, we searched P. reichenowi orthologs
in the genome database and found one sequence read
(reich908g11.plk) showing high similarity with the sequence
around the start codon of clag3.] and 3.2, We also found two
reads (reich289f06.qlk and reichl194c08.plk) showing strong
homology with the sequence around the stop codons of clag3.]
and 3.2, Comparison of the nucleotide sequences at the UTR
revealed that reich908g1 1.plk and reich289{06.qlk were similar
to the pfclag3.2 sequence and that reich1194c08.plk was similar
to the pfelag3. I sequence (Fig. 6). Thus, duplication of clag3.]
and 3.2 gene loci appears lo predate the divergence of P. falci-
parum and P. reichenowi, suggesting that a single rhophl/clag
(clag3h) found in some P. falciparum lines is likely a result of an
unequal crossover between two closely related genes. Notably,
Clag3H had characteristic amino acids that were not observed in

Table 2

The McDonald-Kreitman test of selection for Plasmodium falciparum clag and §

Clag3.1 and 3.2, For example, Ala at 1116 was found in three of
nine Clag3H (30%). If Clag3H originated recently, for example
during culture, the amino acid allele observed in Clag3H would
also exist in Clag3.1 or 3.2; however, Ala at 1116 was not found
in a total of 36 sequences of non-Clag3H protein sequences.
Three in nine Clag3Hs is a significant excess compared to zero
Ala at 1116 in 36 non-Clag3H sequences by Fisher's exact
test (P=0.013), This suggests that at least some Clag3H have
accumulated some unique amino acid substitutions since their
creation.

3.5. Selection on the PfRhopH complex

Positive selection was evaluated by comparing synonymous
and nonsynonymous substitutions (Table 1). A significant excess
of dy over ds was observed for clag? (entire ORF of five parasite
lines) and for clag8 (highly polymorphic region at nt positions
3022-3606 of 26 parasite lines), suggesting positive selection
acting on these genes. A sliding window plot of dy:ds ratios
revealed that clag? and 8 had the highest peaks, around nt
positions 3000-3600 (Fig. 7). It should be noted that the cor-
responding regions of clag3.] and 3.2 are the regions showing
highly extensive polymorphism with indels (asterisks in Fig. 7),
thereby preventing evaluation of dy:dg ratios in this region.
The peak at the N-terminus of clag3.2 is due (o introduction
of pan of the clag3.] sequence into the HB3 line clag3.2 by
gene conversion (see Fig. 3).

Positive selection was further evaluated by the
McDonald-Kreitman test using P reichenowi orthologs
for clag? and 8. Significant excess of intraspecific nonsyn-
onymous substitutions over synonymous substitutions was
observed in clag8 as compared with interspecies fixed differ-
ences of nonsynonymous and synonymous changes, suggesting
positive selection (Table 2).

3.6. Early origin of the clag2 and 8 polymorphism

We estimated the TMRCA for clag2 and 8 polymorphism
using aligned regions. Distances of synonymous single-
nucleotide polymorphisms are 0.0139 +0.0031 for clag2 and
0.0106 4 0.0030 for clag8. Distances between P. falciparum
and P, reichenowi are 0.0455 £ 0.0082 and 0.0748 + 0.0120 for
clag2 and 8, respectively. Assuming that the divergence time of
P. falciparum and P. reichenowi was 6 million years ago (mya)
[37,38], the estimated TMRCA of the polymorphism of clag2

Locus n* No. of sites Fixed differences between species Polymorphic sites within P. falciparum
syn Nsyn® Syn Nsyn P
clag? 5 3273 23 I 18 12 (0.011)
clagh 5 2715 36 55 11 k] 0.030
* n, Number of £ falciparum lines used.
* Syn, synony Nsyn, ¥ substitutions.

e m‘nmwn(me-whd]wuam P-value indicates that Nsyn are significantly greater than Syn. Value in parenthesis indicates that Syn are significantly

greater than Nsyn.
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Fig. 5. Polymorphism of Clag3. An amino acid region 1112-1150 (after 3D7 line Clag3. 1 sequence) of I falciparum (27 lines) was aligned. Geographic origins are
shown at left: SE Asia or S, Southeast Asia; Am, America; P, Papua New Guinea: Santa, Santa Lucia cloned line. Identical, conserved, or semiconserved residues
in the alignment are indicated with asterisk, colon, or period, respectively. The number of amino acid replacements at each position and the region with indels are
shown at the bottom. Cys residue at aa position 1113 and Asn and Ala residues at aa position 1116 are masked.

and 8are 1.89(95% CI, 1.02-3.18) and 0.87 (95% CI.0.42-1.54)
mya, respectively.

4. Discussion
4.1. Diversifying selection on the rhophl/clag gene loci

The present study revealed that the RhopH1/Clag-encoding
genes clag2, 3.1, 3.2, and 8§ contain a highly polymorphic

region, particularly at nt positions 3000-3600. Diversifying
selection increases nucleotide diversity (m), and an excess of

d to ds is indicative of positive selection favoring amino acid
replacement [39]. Thus, the observed excess of dy to ds at
nt positions 3000-3600 of clag8 suggests that the polymor-
phism in clag8 is positively maintained. An excess of dy to
ds was also observed for clag9, indicating that this gene is
also under positive selection. The most polymorphic region, in
which positive selection was detected for clag8, was excluded
from clag2, 3.1, and 3.2 due lo exlensive sequence variation
that made sequence alignment unreliable. Further analysis is
required to evaluate positive selection on these three rhophl/clag
genes.,
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To date, observation of such high levels of polymorphism for
clag2,3.1, 3.2, and 8 (7 =0.0053-0.0164; dy =0.0032-0.0065)
has not been reported for other known malaria rhoptry protein
genes. The high polymorphism observed in clag2, 3.1, and 3.2
is consistent with the observation by Kidgell et al. [40] based
on the hybridization of genomic DNA from a panel of parasite
lines to an oligonucleotide array for the P. falciparum genome. In
addition, the polymorphism levels are comparable to those of the
microneme proteins such as eba-175 (7=0.0030; dn =0.0037)
and ama-1 (w=0.0166; dn =0.0207), which are exposed to host
immune responses [17,18)]. Rhoptry proteins are released into
the PV and are considered to be minimally exposed to host
immunity. If RhopH1/Clag polymorphism is generated by host
immune pressure, the questions arises as to how RhopH1/Clag
is exposed to host immunity. There are a few possible explana-
tions. First, RhopH 1/Clag may be released from the merozoites
before attachment to the erythrocyte surface, thereby becoming
a target of host immunity. Second, the RhopH complex, which
is released into PVs, may be leaked to the surface of infected
erythrocytes through the junction between invading parasite and
the erythrocyte membrane. Leaked RhopH complex, and there-
fore parasite-infected erythrocytes, are then polential targets
of host immunity. Indeed, the PfRhopH complex and rhoptry-
associated protein 2 (RAP-2, RSP-2), another malaria rhoptry
protein, have been detected on the erythrocyte surface upon par-
asite attachment to erythrocytes [41,42]. The last possibility is
that RhopH 1/Clag, after release into the PV, may be distributed to
the parasite-derived membranous network (i.e., Maurer's clefts)
in the erythrocyte cytosol, where it is exposed to host immunity.
RhopH2 and RhopH3 have recently been observed in materials
deriving from Maurer's cleft by proteome analyses. consistent
with this possibility [43,44].

There are no obvious associations between particular hap-
lotypes and their geographic origins, and most haplotypes
co-exist in different geographic areas, similar to other known
polymorphic antigens such as MSP-1 [45,46]). RhopH 1/Clag
polymorphism might be maintained in natural parasite popula-
tions to evade host immunity. Using a T-cell epitope prediction
algorithm (SYFPEITHI software) [47], we found that binding of
a predicted T-cell epitope peptide to a particular HLA allotype
was dramatically affected by the RhopH1/Clag polymorphismin

silica. For example, aa positions 1094-1108 of 3D7 line Clag8
(KRISTSIDHISGGKW) was predicted as a T-cell epitope of
HLA-DRB1*1101 with a score of 22, but the score for the cor-
responding region of Camp line Clag8 (MRISSTSTYISNNEW)
was (), emphasizing a potential involvement in immune evasion
of RhopH 1/Clag polymorphism. We consider the algorithm use-
ful because the score of HLA-DRB1*0701 for the PfCSP Th2R
dormain, a well characterized malaria polymorphic T-cell epitope
peptide, is 22 for the K1 parasite line (KIQYSLSTEWSPCSV)
but only 12 for that of the 3D7 line (KIQNSLSTEWSPCSY).

4.2. Evolution of PfRhopH 1/Clag polymorphism of the
extant P. falciparum population

Gene conversion has been reported for other P falciparum
loci, such as falcipain 2 (48] and var [49], as a source of
genetic diversity. In this study, we show that elag3. 1/3.2, which
interchange their sequences by gene conversion, evolved more
rapidly than clag2. The precise function of the RhopH com-
plex remains unknown, and thus whether the gene conversion
observed was functionally advantageous or neutral is also
unknown; however, gene conversion can be a mechanism for
anligenic variation to evade host immunity. Some examples
include the vsg gene of Trypanosoma brucei, causalive agent
of African sleeping sickness, the ves gene of a catile parasite
Babesia bovis [50], and var genes in P. falciparum [51].

Based on the shared hybridization pattern between clag3. !
and 3.2, Chung et al. [36] proposed that these genes are alleles of
the same locus; however, because the origin of two rhophl/clag
loci on chr 3 appear to predate the P. falciparum-P. reichenowi
divergence, these should be categorized as paralogous genes but
not the same gene. Shared features between these loci detected
by Southern blot hybridization by Chung et al. can be simply
explained by the gene conversion identified in this study. clag3h
could be generated by an unequal crossover between clag3. ] and
3.2 of a set of chromosomes during meiosis. If such crossover
had occurred, parasite lines possessing three rhophl/clag on chr
3 would be expected, with a molecule having its 5" end derived
from clag3.1 and its 3’ end from clag3.2 (Supplemental Fig. S5,
model 1); however, this type of rhophl/clag was not detected
in this study, KMWII line appears to possess 3 rhophl/clag
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genes on chr 3, but the third rhophl/clag on chr 3 appears not to
be generated by the mechanism described above, because this
rhophl/clag was obviously a duplicated clag3. ] gene amplified
with the clag3. I-specific primer set. Thus, clag3his more likely a
product of a recombination event between clag3. I and 3.2 on the
same chromosome (Supplemental Fig. S5, model 2). Because a
unique amino acid of Clag3H (e.g.. Ala at aa position 1116)
suggests a relatively old origin of clag3h, recombination events
between clag3. ] and 3.2 might be rare in the natural population,

Four highly polymorphic rhophi/clag genes contained unex-
pectedly large numbers of synonymous substitutions. Based
on the ratio of interspecific distance to intraspecific distance,
the TMRCA of the polymorphism of P. falciparum clag2 and
& were estimated to be 1.89 (95% CI, 1.02-3.18) and 0.87

(95% ClI, 0.42-1.54) mya, respectively. Although there is still
controversy surrounding its accuracy, TMRCA of the extant
P. falciparum population was estimated to be approximately
0.1-0.2 mya based on the genetic distance in nuclear genome
housekeeping genes between P falciparum and P. reichenowi
([52], Tanabe, unpublished data). Thus, polymorphism of clag2
and 8 appears to be generated between the divergence of P. falci-
parum and P. reichenowi and TMRCA of the extant P. falciparum
populations. Early origins of the polymorphism have been sug-
gested for merozoite surface proteins PAIMSP-1 and PMSP-2,
for which the origin of the polymorphism was proposed to pre-
date the P falciparum—P. reichenowi divergence (thus termed
‘ancient origin'), or TMRCA of the extant P. falciparum popu-
lation, respectively [53,54]. Early origins of the polymorphism
older than TMRCA of extant P falciparum populations would
suggesl that rhophl/clag polymorphisms confer an advantage
to the parasite and were positively selected for during the recent
evolution of P. falciparum.

In summuary, four factors appear to affect current rhophl/clag
polymorphism,; (i) older origin than TMRCA of the extant P, fal-
ciparum population; (ii) gene conversion and (iii) copy number
polymorphismfor rhophl/clag on chr 3; and (iv) positive diversi-
fying selection. Multigene families play important roles in many
aspects of malaria biology, e.g.. responsibility for redundancy of
erythrocyte invasion or antigenic variation of parasite-infected
erythrocytes. Given the abundance of multigene families in the
P falciparum genome [55], combination of the mechanisms
described in this study can be a powerful driving force to gen-
erate high biologic redundancy for parasite survival.
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1 (Prx-KO). The number of Pn: KD midgut oocysts at 14-15 days post-feeding (pf) was comparable to
that of the parent strain (WT); however, the numbers of sporozoites that formed in midgut oocysts and
accumulated in the salivary gland of Prx-KO-infected mosquitoes by 21 days pf were decreased to 10-20%
—— and 3-10%, respectively, of those values in WT-infected mosquitoes. A higher frequency of DNA strand

mv breaks was detected in Prx-KO oocysts than in WT oocysts. Sporozoites carrying the targeted disruption
Pesoxiredonin had reduced infectivity in mice; however, the knockout did not affect the ability of the sporozoite to reach
Plasmodium berghei the liver parenchyma and initiate exo-erythrocytic form (EEF) development. TPx-1 may be involved in

Thioredoxin peroxidase

development during exponentially multiplying stages. such as sporozoites and EEF.

© 2008 Elsevier BV, All rights reserved.

As Plasmodium spp. actively proliferate in erythrocytes of their
vertebrate hosts, the parasites are subjected to the toxic effects
of reactive oxygen species (ROS) through their asexual develop-
ment [1.2). In contrast, the parasites fertilize and multiply in the
digestive tract (midgut) of the vector mosquito and subsequently
mature intracellularly in the salivary grand. In these environments,
the parasites are also likely to be subject to oxidative stress [3,4].
Because Plasmodium spp. are highly susceptible to such oxidative
stress, their antioxidant defenses are considered to play essential
roles in survival throughout the lifecycle and thus may be potential
targets for malaria chemotherapies [5].

Superoxide dismutase, catalase, glutathione (GSH) peroxidase,
and peroxiredoxin (Prx) are the four major cellular antioxidant
enzymes in aerobes [6,7]. An interesting feature of antioxidant

Abbreviations: DHFR-TS, dihydrofolate reductase-thymidylate synthase; GSH,
glutathione; Prx. peroxiredoxin: ROS, reactive oxygen species.
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system of malaria parasites is that the parasites do not possess
genes that encode catalase or genuine GSH peroxidase, but they
are equipped with a 1-Cys Prx, two typical 2-Cys Prxs, a 1-Cys
antioxidant protein (AOP) and a GSH peroxidase-like thioredoxin
peroxidase [1.2,8,9). We recently reported that disruption of the
gene encoding cytosolic 2-Cys Prx (PbTPx-1) of the rodent malaria
parasite Plasmodium berghei did not affect its asexual proliferation
in mouse erythrocytes but that the disruption caused a defect in
gametocyte development [10]. In the present report, we examined
the insect-stage phenotype of parasites carrying a targeted knock-
out (KO) of the Prx gene (pbtpx-1). We also examined the phenotype
of Prx-KO sporozoites during the early stage of liver infection.

To investigate the effect of pbtpx-1 disruption on the mosquito
stage of the parasite, Anopheles stephensi were fed on BALB/c
mice that showed high levels of gametocytemnia (Table 1). Prx-WT
oocysts developed similarly to those of WT in the midgut, and the
final numbers of sporozoites that formed inmidgut oocysts and that
accumulated in the salivary gland by 21 days post-feeding (pf)were
equivalent level to those of WT (P=0.4-0.8 and P=0.4-0.5, respec-
tively). For Prx-KO1-3 populations, the number of midgut oocysts
at 14-15 days pf was comparable to those of WT. The normal oocyst
formation in Prx-KO suggests that the pbtpx-1 disruption does not
affect the gamete fertilization, ookinete formation or transforma-
tion of the ookinetes to oocysts, which requires ookinete invasion of
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Table 1
D of Prx-KO Pl dium berghe! in Anophel
Parasites 14-15 days post-feeding (ph) 21 days pl no. of sporozoites/maosquite®
Total pocyst b No. of mosquitoes® oocyst(X)  Midgut Salivary gland  No. of mosquitoes®
Experiment | WT 1760 321 22000 £ 2740 8600 £ 990
Pra WT 1920 28 272 25200 & 2850 7600 + 610 20
KO1 1540 42 2870 + 120° 770 = 60F
Experiment 2 WT 1330 186 50400 + 510 9950 + 1700
Prx WT 1040 20 1758 49100 £ 7700 9600 = 600 30
KO1 870 ER 5470 + BOOF 330 £ ¢
Experiment 3 WT 1020 145 30000 £ 3280 7070 £ 510
Pra WT 1460 20 ns 28910 + 3240 7920 + 1180 25
Ko1 1310 7 4720 £ 1130¢ 80O + 160°
Experiment 4 WT 700 19.7 14100 + 1370 5430 = 740
Ko 940 20 12 3070 + 930¢ 550 = 150F 30
Ko3 1220 LB 1700 + 360° 770 + 9C¢
Experiment § WT 1590 1759 44400 £ 800 13800 + 530
KO4 1020 25 41 4280 + 970° 920 + 460¢ 25
KOS 760 a7 4940 & 420¢ 660 & 160¢

The P berghei ANKA strain was obtained from the Armed Forces Research Institute of Medical Sclences, Thalland. The Prx knockout (Prs-KO) parasite, which carries a targeted
distuption of pbtpx- 1 (PlasmoDB, PBO00037. DLD}. was embli:hcd by double-crossover homologous recombination with a selectable marker, the dihydrofolate reductase-

thymidylate synthase (DHFR-TS]) gene with a pyrimeth e |ln]. Five Prx-KO populations (Prx-K01-3 and Prx-KO4-5 were obtained by two inde pendent
electroporation experiments ), one wild- wpe population with py i e (dhfr-ts/mi at dhfr-rs locus)and tnutptrpu 1 (Prx-WT)and the parent strain
(WT) were used to infect the animals. Alter parasite infection, the numbers of gametocytes in the peripheral blood were i 4, and A. steph quitoes were fed on
five-week-old BALB/c mice (Clea Japan, Japan) when the number of gametocytes reached 20-30 per 1 = 10 erythrocytes. At 14-15 days pl, the mosquitoes were dissected,
and oocyst numbers |n the midgut were counted [17). An cocyst filled with needle-shaped sporozoites was counted as 3 mature oocyst. One week later (21 days pl), the
remaining mosquitoes were dissected, and sporazoite numbers in the midgut oocysts, hemolymph and salivary glands were examined |18}, The animal experiments in this
study were carried out in compliance with the Guide for Animal Experimentation at either Ehime University School of Medicine or at the International Medical Center of

Japan. Dilferences were evaluated with Student's t-test. P<0.05 was considered statistically significant.

4 Mean+5D.
B No. of mosquitoes dissected.
¢ The difference between WT and KO population was significant (P<0.01)

epithelial cells and attachment to the basal lamina of the mosquito’s
midgut [11]. The lower number of oocysts in Prx-KO4 and 5 pop-
ulations when compared to that of WT may be attributed to the
mosquito’s blood feeding, which varies between each experiment.
P berghei develops asynchronously in the infected mosquitoes,
and the midgut contains both young and mature oocysts. In our
experiments, in WT-infected mosquitoes, 15-32% of the oocysts
were mature oocysts, which contained needle-shaped sporozoites,
at 14-15 days pf. However, the percentages of mature oocysts in
Prx-KO-infected mosquitoes at the same time points were lower
(1-4%) than those of WT-infected mosquitoes. This phenotype was
observed in all Prx-KO populations. Electron microscopic obser-
vation of the midguts at 14-15 days pf revealed that there was
damaged oocyst with irregular sporogonic development (Fig. 1A),
supports the idea that sporogony is abnormal in Prx-KO. This
finding strongly suggests that the immature oocysts in Prx-KO pop-
ulations failed to develop further. Consequently, the final numbers
of sporozoites that formed in midgut oocysts and that accumulated
in the salivary gland by 21 days pf were significantly decreased
to 10-20% and 3-10%, respectively, in Prx-KO-infected mosquitoes
than in WT-infected mosquitoes (Table 1). The ratio of salivary
gland sporozoites to midgut sporozoites was significantly lower
(P<0.05) in Prx-KO-infected mosquitoes (0.06-0.21) than in WT-
infected mosquitoes (0.20-0.46). Thus, the reduction inthe number
of salivary gland sporozoites in Prx-KO populations may not be
due solely to the reduced number of sporozoites in the midgut
oocysts. Because the ratio of hemolymph sporozoites to midgut
sporozoites was comparable between Prx-KO-infected mosquitoes
and WT-infected mosquitoes (data not shown), pbtpx-1 disruption
may not affect sporozoite entry to the salivary gland, but it may
affect parasite survival in salivary gland after the entry. Sporozoite
invasion of the salivary gland requires multiple steps [12], includ-
ing entry into the secretory cavity, where the parasite has direct
contact with saliva. NADPH oxidase activity which produces ROS

was detected in anopheline salivary homogenate [13]. Disruption
of pbtpx-1 may affect the parasite survival in the mosquito saliva,
but the phenotype requires further investigation to clarify this.

To investigate the role of TPx-1 in oocyst maturation, the Prx-
KO and WT populations were subjected to in vitro oocyst culture
(Fig. 1B). Ookinetes derived from WT population could efficiently
transform into oocysts, and they conspicuously enlarged in size
after the Sth day of culture. The number of oocysts, those that
grew more than 6 um in diameter with normal morphelogy, was
11146+ 678 (28 +2% of the total number of ookinetes initially
added to the culture) on the 7th day of culture. Ookinetes from the
Prx-KO population transformed into oocysts like those of the WT
population (data not shown). However, their growth after trans-
formation was less pronounced than that observed by WT oocysts.
The maximum number of cocysts observed on the 7th day of culture
was 6740 £ 898 (17 + 2% of the total number of ookinetes initially
added to the culture), which was significantly lower than that of
the WT population. These results indicated that the reduced oocyst
development observed in Prx-KO-infected mosquitoes could be
reproduced in vitro.

To investigate whether the gene disruption can promote DNA
damage during the insect stage, oocysts harvested on the 8th day of
culture were subjected to comet assay. We found that the comet-tail
length of Prx-KO oocysts was significantly longer than that of WT
oocysts (P<0.05)(Fig. 1C). Although comet-tail length is considered
to reflect breaks in the cellular DNA[14], it is not clear whether the
DNA alterations are causal or just a consequence of degrading par-
asites. However, our findings from immunoelectron microscopic
observation also suggested that there was an increase in formation
of 8-hydroxy-2'-deoxyguanosine (8-OHdG), a marker of oxidative
DNA damage, in Prx-KO oocyst nuclei during early developmental
stage (Fig. 1D). Taken together, our data suggest that disruption of
pbtpx-1 induces DNA damage in oocyst nuclei. How malaria para-
sites deal with the accumulation of oxidative DNA damage during
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Fig. 1. (A} Electron microscopy image of oocyst and sporozoite in midguts of mosquitos infected with WT (a and b) and Prx-KO (c and d). Electron microscopy was performed
as described previously |18] with a transmission electron microscope (Hitachl H-7000, Japan). The midguis were dissected at 15 days pl. Matured oocyst in WT is packed
with fully formed sporozoites. and the sporoblast decreases in size to become one residual body (a). The soprozoites show normal structure with a firm nucleus and rhoptries
(b). Docyst in KO contains one large sporoblast, which does not form multiple islands (c). The sporoblast and the sporozoites have deformed nuclei, swollen rhoptries and
abnormal cytoplasmic vacuoles (d) Eighty-two oocysts, 39 of which had begun sporozoite budding, from three midgut samples were observed for Prx-KO, and none of the
OOCYSIS ¢ ined normal sp jtes. Such abnormal sporogony was rarely seen in WT-infected mosquitoes. N, 5B, 5P, R. RB and V indicate nucleus, sporoblast, sporozoite,
rhoptries, residual body and vacuole, respectively. Bars indicate 5 um. (B) Effect of pbtpx-1 disruption on cocyst development fn vitre. Docyst culture was basically carried
out as described previously | 19]. Ookinetes (4 = 10%) derived from WT (®) and Prx-KO () populations were initially added to the culture weil. The number of cocysts (those
that grew more than 6 wm in diameter with normal morphology) was counted on every other day from 5th to 19th day of culture. Data are mean £ 5.D. of the oocyst number
in triplicate cultures. “The difference between the WT and KO populations was significant (P<0,05). (C) Effect of pbupx- | disruption on DNA damage in oocysis. DNA strand
breaks In oocysts harvested on the 8th day ofculture were evaluated by comet assay. Comet assay was performed according to the manufacturer's instructions (CometAssay™,
Trevigen, Inc., USA) Quantitative analysis was done by measuring the tail length of the degraded DNA from each oocyst cell spot in WT and Prx-KO (KO) populations witha
confocal laser scanning microscope (LSM510, Carl Zeiss, Germany). Bars indicate 100 um. Data are mean £ 5.0. of the comet-tail length () of 75 oocysts from WT (CI) and
Prx-KO populations (M) *P< 0.05. (D) pbepax- I disruption promotes B-0HAG formation in oocyst nuclel. 8-0HAG formation in nucle| of oocysts at an early developmental stage
(young oocyst developed in the mosquito’s midgut ar 15 days pf) was detected by immunoelectron microscopy with anti-8-0HdJG antibody (Japan Institute for the Control of
Aging. Japan) and secondary antibody conjugated with gold particle. Immuncelectron microscopy was performed as described previously | 18). The presence of gold particles
in the nuclei of Prx-KO oocysts (arrowheads in panels labeled KO) indicates formation of 8-OHAG, which was rarely observed in nuclei of WT oocysts. Arrowheads in panel

labeled WT showed traceable deposition of these particles in the cytosol. Bars represent 1 pm.

the lifecycle is of interest. Because oocyst maturation was reduced
in Prx-KO in vitro, host factors may not contribute to the accumula-
tion of oxidative DNA damage during the mosquito stage. Recent
data from microarray analyses of oocysts cultured in P. berghei
revealed that expression of genes encoding thioredoxin and 2-Cys
peroxiredoxin (PbTPx-1) are upregulated during the early stage of
oocyst development [15]. This finding suggests that ROS are present
during the early stage of vocyst development (young oocyst), when
oxygen metabolism in the cell may be elevated. There is a consistent
data indicating that genes encoding enzymes in the mitochondrial
electron transport chain, which produces ROS, are upregulated in
young cocysts [15).

To evaluate infectivity of Prx-KO populations in mice, salivary-
gland sporozoites were injected intravenously into BALB/c mice,
and the infection rate and the period required for the para-
site to develop 0.5% parasitemia of erythrocytic stage (pre-patent
period) were compared to those of WT. Parasitemia of the ani-
mals was monitored every 12 h. After inoculation of 100, 1000
and 10000 sporozoites from Prx-KO2, Prx-KO3 and WT popula-
tions, all animals developed erythrocytic-stage infection. Therefore,
the infectivity of the Prx-KO population was assessed based on

pre-patent period (Supplementary Table 2). The pre-patent period
recorded for WT infections increased according to decreasing num-
bers of sporozoites in the inoculum, the mean pre-patent period for
animals (n=>5) inoculated with 10000, 1000, and 100 sporozoites
were4.6,5.3 and 6.2 days, respectively. The mean pre-patent period
for animals (n=5) inoculated with 1000 Prx-KO sporozoites were
6,1 (KO2)and 6.3 (KO3) days, which was equivalent to that recorded
in animals inoculated with 100 WT sporozoites. These data indicate
that the infectivity of Prx-KO populations in mice was reduced to
1/10 of WT.

To investigate the influence of Prx-KO on sporozoite invasion
to the liver parenchyma, parasite burden in the liver shortly after
the spaorozoite inoculation, which represents the number of sporo-
zoites that could cross the sinusoidal cell layer, was compared
between WT, Prx-WT, and Prx-KO1 by TagMan® fluorescent quanti-
tative RT-PCR. For this purpose, mice were inoculated intravenously
with 2000 sporozoites, and their livers were perfused with PBS
1h after the inoculation and then removed. The parasite burden
in the liver sample, which represents number of sporozoites in
Kupffer cells, the space of Disse, and hepatocytes, was assessed
as the ratio of the amount of parasite 185 rRNA to the amount
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of mouse glyceraldehyde-3-phosphate dehydrogenase (GAPDH)
mRNA (Supplementary Table 3). The parasite rRNA levels were
measured with the copy number-based standard curve (R>0.99),
and they were at least 100000-fold less than the mouse GAPDH
mRNA levels. Parasite 185 rRNA was detected in all liver sam-
ples examined. except for the sample from the animal inoculated
with formalin-inactivated sporozoites (data not shown). There
was no significant difference in the liver parasite burden, which
was quantified for C-type (sporozoite-type) 185 rRNA, between
groups of mice infected with WT(5.40+2.55 « 10-5, n=4)and Prx-
WT (5.03+ 122 « 10-%, n=5) (P=0.89) and with WT and Prx-KO1
(481198 x 10-%, n=6) (P=0.86). There was also no significant
difference in the liver parasite burden, which was quantified for
A-type (asexual-type) 185 rRNA, between groups of mice infected
with WT (2.2440.97 » 10-5, n=4)and Prx-WT(1.58 £0.44  10-5,
n=5)(P=0.52)and with WT and Prx-KO1(1.86+0.85 = 10-5, n=6)
(P=0.78). The results of our animal infection experiments sug-
gested that the Prx-KO population requires a longer pre-patent
period to appear in mouse erythrocytes than the WT population.
This finding indicates that Prx-KO has a defect in liver-stage infec-
tion because this population can multiply in erythrocytes with
efficiency similar to that of WT [10]. However, the results of quan-
titative RT-PCR experiments, which targeted the parasite C-type
185 rRNA, suggested that Prx-KO does not affect sporozoite inva-
sion into the mouse liver parenchyma. Zhu et al. [16] suggested
that invasion of liver cells by sporozoites and transformation to the
exo-erythrocytic form (EEF) can trigger the ribosome switch. In the
present study, the ribosome switch from C to A was detected in all
liver samples examined (data not shown). However, there was also
no significant difference in the liver parasite burden, which was
quantified for A-type 185 rRNA, between groups of mice infected
with WT and Prx-KO (Supplementary Table 3). These results sug-
gested that Prx-KO sporozoites could invade liver parenchyma and
initiate EEF development with similar efficiency to WT during the
early stage of liver infection. This finding suggests that the Prx-KO
population can produce a few but intact sporozoites with normal
activity to initiate the liver stage development. If this is the case,
it is presumed that Prx-KO parasites have a defect in EEF develop-
ment after the early stage of liver infection. pbtpx-1 may be involved
in development during exponentially multiplying parasites stages,
such as sporozoites and EEF. The 2nd generation Prx-KO parasites
have the same defect in gametocytes production as that of the 1st
generation [ 10] (data not shown). The activity of its sporozoite pro-
duction should be confirmed.

Although the specific mechanism by which disruption of pbtpx-1
leads to DNA damage and reduces maturation of vocysts remains to
be elucidated, the present findings suggest that the parasite antiox-
idant system contributes to sporozoite development during the
insect stage, Further studies to clarify the role of TPx-1in sporozoite
development will provide further insights into the contribution of
this antioxidant protein to the insect-stage development of malaria
parasites and may provide novel transmission-blocking strategies.
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Abstract

Unlike other eukaryotes, malaria parasites in the genus Plasmodium have structurally and functionally different paralogous copies of
the cytosolic (cyto-) SSU rRNA (188 rRNA) gene that are expressed at different developmental stages. In P. falciparum, P. vivax, and
P. berghei, A-type cyto-SSU rRNA is expressed in asexual stage, while S-type in sporozoite stage. A third type (O-type) has been
described in P. vivax. Tt is expressed only in oocyst stage in the mosquito. Recently, it has been shown that the maintenance of heter-
ogeneous cyto-SSU rRNAs in Plasmodium can be modeled as a birth-and-death process under strong purifying selection [Rooney,
A_P., 2004, Mechanisms underlying the evolution and maintenance of functionally heterogeneous 188 rRNA genes in Apicomplexans.
Mol. Biol. Evol. 21, 1704-1711]. In this study, we performed detailed phylogenetic analyses of Plasmodium cyto-SSU rRNAs with special
emphasis on the evolution of multi-copy genes in simian Plasmodium species. We sequenced paralogous copies of the cyto-SSU rRNA
genes from an African simian Pfasmnd!m species, P. ganden, and Asian simian Plasmodium species, P. fragile, P. coatneyi, P. inui,
P. hylobati, P. fieldi, P. simi ,and P. ¢y lgi. 1 gly, all Asian simian Plasmodium species have a single S- l.ype-hkc gene
and several A-type-like genes. Ahgnmen!. analysls demonslratad for the first time that an approxmicly 50-residue insertion in the
V7 variable region near the stem 43 is shared exclusively by the S-type-like sequences of the Asian simian Plasmodium species and
the S- and O-type sequences of P. vivax. We comprehensively analyzed all cyto-SSU rRNA sequences of the genus Plasmodium currently
available in the database. Phylogenetic analyses of all publicly available cyto-SSU rRNA sequences for the genus Plasmodium clearly
demonstrated that gene duplication events giving risc to A- and S-type-like sequences took place independently at least three times in
the Plasmodiwm evolution, supporting the hypothesis that these genes evolve according to a birth-and-death model
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

The genus Plasmodium comprises unicellular malaria
*s The seq reported in this paper have been submitted  parasites that infect various vertebrate hosts including pri-
to GenBank, EMBL, and DDBJ databases under Accession Nos.  mates, rodents, reptiles, and birds. Five Plasmodium spe-

ABZGS'?BQ -AB265791 and AB287269-AB287290. . . . . 1 ed
* Corresponding anthor, Address: The Tnstitute of Biologicil Scisices, cies, P. falciparum, P. vivax, P. malariae, P. knowlesi, and

University of Tsukuba, Tsukuba 305-8572, Japan. Fax: +81 298536614, £~ ovale, arc known as human parasites. To better under-
E-mail address: hashi@biol.tsukuba ac jp (T. Hashimoto) stand the evolution of the genus Plasmodium and to iden-
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