Proof. Since $C_{k-1}(M)$ is a free $\mathbb{Z}C_n$ -module, it follows from [3, II, (4.5)] that $\tilde{\tau}: C^{k-1}(M) \to C_{C_n}^{k-1}(M)$ is surjective, and hence so is τ .

Since M is orientable, it holds that

$$H^{k-1}(M; \pi_{*-1}(SW_{\text{free}})) \cong \pi_{k-1}(SW_{\text{free}}) \cong \bigoplus_{H \in A} \mathbb{Z},$$

and

$$\mathfrak{H}_{C_n}^{k-1}(M; \pi_{k-1}(SW_{\text{free}})) \cong \bigoplus_{H \in \mathcal{A}} \mathbb{Z}$$

as in the proof of Lemma 6.3. Hence $\mathfrak{H}_{C_n}^{k-1}(M;\pi_{k-1}(SW_{\mathrm{free}}))$ and $H^{k-1}(M;\pi_{k-1}(SW_{\mathrm{free}}))$ are free Abelian groups with the same rank. This leads that τ is an isomorphism. \square

Here we give a cohomological description of the multidegree. Let $f: M \to SW_{\text{free}}$ be a C_n -map. Using the universal coefficient theorem, we have the following isomorphisms:

$$\begin{split} H^{k-1}\big(SW_{\text{free}}; \pi_{k-1}(SW_{\text{free}})\big) &\stackrel{\kappa}{=} \operatorname{Hom}_{\mathbb{Z}}\big(H_{k-1}(SW_{\text{free}}), \pi_{k-1}(SW_{\text{free}})\big) \\ &\stackrel{h^*}{=} \operatorname{Hom}_{\mathbb{Z}}\big(\pi_{k-1}(SW_{\text{free}}), \pi_{k-1}(SW_{\text{free}})\big), \end{split}$$

where h denotes the Hurewicz homomorphism. Set

$$\iota(SW_{\text{free}}) = (h^* \circ \kappa)^{-1} (id_{\pi_{k-1}(SW_{\text{free}})}) \in H^{k-1}(SW_{\text{free}}; \pi_{k-1}(SW_{\text{free}})).$$

Then one can see that

$$\langle f^*\iota(SW_{\text{free}}), [M] \rangle = f_*([M]) \in \pi_{k-1}(SW_{\text{free}}),$$

where $f_* \in \text{Hom}(H_{k-1}(M; \mathbb{Z}), \pi_{k-1}(SW_{\text{free}}))$ and [M] is the fundamental class of M. We obtain that

mDeg
$$f = \Phi \circ h(\langle f^*\iota(SW_{\text{free}}), [M] \rangle).$$

Proof of Theorem D. (1) It is well known [3, II, (3.19)] that

$$\gamma(f,g) = f^*\iota(SW_{\text{free}}) - g^*\iota(SW_{\text{free}}) \in H^{k-1}(M, \pi_{k-1}(SW_{\text{free}})).$$

Hence we obtain that

$$\mathrm{mDeg}\ f - \mathrm{mDeg}\ g = \Phi \circ h(\langle \gamma(f,g), [M] \rangle).$$

Assume mDeg f = mDeg g, then it holds that $\gamma(f, g) = 0$. Since $\gamma(f, g) = \varepsilon(\gamma_{C_n}(f, g))$ and ε is injective, we have $\gamma_{C_n}(f, g) = 0$. Thus f and g are C_n -homotopic.

(2) By Lemmas 6.2 and 6.4, we have $\operatorname{Image}(\varepsilon) = nH^{k-1}(M; \pi_{k-1}(SW_{\operatorname{free}}))$. Thus we obtain $\gamma(f, g) = \varepsilon(\gamma_{C_n}(f, g)) \in nH^{k-1}(M; \pi_{k-1}(SW_{\operatorname{free}}))$ and hence it holds that

$$\mathrm{mDeg}\, f - \mathrm{mDeg}\, g = \Phi \circ h\big(\!\big\langle \varepsilon\big(\gamma_{C_n}(f,g)\big), [M] \big\rangle\!\big) \in \bigoplus_{H \in A} n\mathbb{Z}.$$

(3) Note that

Image
$$(\varepsilon) = nH^{k-1}(M; \pi_{k-1}(SW_{free})) \cong \bigoplus_{H \in A} n\mathbb{Z}.$$

Every element of $\mathfrak{H}_{C_n}^{k-1}(M; \pi_{k-1}(SW_{\text{free}}))$ is realized as $\gamma_{C_n}(f, f_0)$ for some C_n -map $f: M \to SW_{\text{free}}$. Therefore, any element of $\bigoplus_{H \in \mathcal{A}} n\mathbb{Z}$ is realized by mDeg f — mDeg f_0 . \square

7. Examples

Here we give a couple of examples. Put n = pq, where p and q are distinct primes.

Let g be a generator of C_n . Let T_m denote the irreducible unitary representation of C_n given by $\rho_m: C_n \to U(1)$ defined by $\rho_m(g)(z) = \zeta^m z$, where $\zeta = \exp(2\pi i/n)$. When we denote the greatest common divisor of two integers m and n by (m,n), we note that $\ker \rho_m = C_{(m,n)}$.

Example 7.1. Suppose $M = ST_1$ and $SW = S(T_p \oplus T_q)$. We determine the structure of $[M, SW]_{C_n}^{\text{isov}}$. Since $SW^{C_p} = S(T_p)$ and $SW^{C_q} = S(T_q)$, we have $SW^{>1} = S(T_p) \sqcup S(T_q)$, which is a Hopf-link in SW. Hence, it holds that dim M+1=k=2, which shows the existence of C_n -isovariant maps from M to SW.

Next, we classify the C_n -isovariant maps. We see that $A = \{C_p, C_q\}$. Now we define a map $f_{\alpha,\beta}: ST_1 \to S(T_p \oplus T_q)$ by

$$f_{\alpha,\beta}(z) = \frac{1}{\sqrt{2}} (z^{(1+\alpha q)p}, z^{(1+\beta p)q}),$$

where $\alpha, \beta \in \mathbb{Z}$. Then, one can easily check that it is a C_n -isovariant map. By the definition of Φ , we obtain

mDeg
$$f_{\alpha,\beta} = (\deg(z \mapsto z^{(1+\beta p)q}), \deg(z \mapsto z^{(1+\alpha q)p})) = ((1+\beta p)q, (1+\alpha q)p).$$

If taking $f_{0,0}$ as the reference map, we can construct a bijection

$$\mathrm{mD}_{f_{0,0}}: [ST_1, S(T_p \oplus T_q)]_{C_n}^{\mathrm{isov}} \to \mathbb{Z} \oplus \mathbb{Z}$$

by

$$mD_{f_{0,0}}(f_{\alpha,\beta}) = (mDeg f_{\alpha,\beta} - mDeg f_{0,0})/n = (\beta,\alpha).$$

Remark 7.2. In the setting of Example 7.1, all $f_{\alpha,\beta}$ are C_n -homotopic each other.

Example 7.3. Here, we consider more general example than Example 7.1, that is, put $M = ST_1$ and $SW = S(rT_1 \oplus sT_p \oplus tT_q)$ $(t \ge s)$, where rT_1 means the direct sum of r-copies of T_1 , and so on. If dim $M + 1 \le k$, it holds that $k \ge 2$. Since the representation is assumed to be faithful, one can easily check that $r \ne 0$ or $s \ne 0$.

Since $SW^{C_p} = S(sT_p)$ and $SW^{C_q} = S(tT_q)$, we see that $SW^{>1} = S(sT_p) \sqcup S(tT_q)$ and then $k = 2(r+s) \ge 2$, which shows the existence of C_n -isovariant maps from M to SW. If k > 2, all C_n -isovariant maps from M to SW are C_n -isovariantly homotopic each other. If k = 2, we have s = 0, r = 1 or s = 1, r = 0, and use the multidegree for our classifying problem.

Case I (s=0, r=1). In this case, $SW=S(T_1\oplus tT_q)$ and $SW^{>1}=S(tT_q)$. If t=0, the action is free. If $t\neq 0$, we have $Iso(SW)=\{1,C_q\}$ and $A=\{C_q\}$. Now we define a map $f_\alpha:ST_1\to S(T_1\oplus tT_q)$ by

$$f_{\alpha}(z) = (z^{1+\alpha n}, *, ..., *)/\|-\|,$$

where $\alpha \in \mathbb{Z}$. Then, one can easily verify that it is a C_n -isovariant map. By the definition of Φ , we obtain

mDeg
$$f_{\alpha} = \deg(z \mapsto z^{1+\alpha n}) = 1 + \alpha n$$
.

If choosing f_0 as the reference map, we can construct a bijection $mD_{f_0}: [ST_1, S(T_1 \oplus tT_q)]_{C_n}^{isov} \cong \mathbb{Z}$ by

$$mD_{f_0}([f_\alpha]) = (mDeg f_\alpha - mDeg f_0)/n = \alpha.$$

Case II (s = 1, r = 0). In this case, $SW = S(T_p \oplus tT_q)$, $SW^{>1} = ST_p \sqcup S(tT_q)$ and $Iso(SW) = \{1, C_p, C_q\}$. If t = 1, the problem was already discussed in Example 7.1. If $t \ge 2$, we have $A = \{C_q\}$. Now we define a map

$$f_{\alpha}: ST_1 \to S(T_p \oplus tT_q)$$

by

$$f_{\alpha}(z) = (z^{(1+\alpha q)p}, *, ..., *)/||-||,$$

where $\alpha \in \mathbb{Z}$. Then, one can easily check that it is a C_n -isovariant map. By the definition of Φ , we obtain

mDeg
$$f_{\alpha} = \deg(z \mapsto z^{(1+\alpha q)p}) = (1 + \alpha q)p$$
.

If taking f_0 as the reference map, we can construct a bijection

$$\mathrm{mD}_{f_0}: \left[ST_1, S(T_p \oplus tT_q)\right]_{C_n}^{\mathrm{isov}} \to \mathbb{Z}$$

by

$$mD_{f_0}([f_\alpha]) = (mDeg f_\alpha - mDeg f_0)/n = \alpha.$$

References

- [1] K. Borsuk, Drei Sätze über die n-dimensionale Sphäre, Fund. Math. 20 (1933) 177-190.
- [2] W. Browder, F. Quinn, A surgery theory for G-manifolds and stratified sets, in: Manifolds 1973, Univ. Tokyo Press, Tokyo, 1975, pp. 27-36.
- [3] T. tom Dieck, Transformation Groups, Walter de Gruyter, Berlin, New York, 1987.
- [4] K.H. Dovermann, Almost isovariant normal maps, Amer. J. Math. 111 (1989) 851-904.
- [5] G. Dula, R. Schultz, Diagram cohomology and isovariant homotopy theory, Mem. Amer. Math. Soc. 110 (527) (1994).
- [6] M. Furuta, Monopole equation and the 11/8-conjecture, Math. Res. Lett. 8 (2001) 279-291.
- [7] T. Kobayashi, The Borsuk-Ulam theorem for a \mathbb{Z}_q -map from a \mathbb{Z}_q -space to S^{2n+1} , Proc. Amer. Math. Soc. 97 (1986) 714-716.
- [8] W. Lück, Transformation Groups and Algebraic K-theory, Lecture Notes in Math., vol. 1408, Springer, Berlin, 1989.
- [9] J. Matoušek, Using the Borsuk-Ulam Theorem. Lectures on Topological Methods in Combinatorics and Geometry, Universitext, Springer, 2003.
- [10] I. Nagasaki, The weak isovariant Borsuk-Ulam theorem for compact Lie groups, Arch. Math. 81 (2003) 748-759.
- [11] I. Nagasaki, Isovariant Borsuk-Ulam results for pseudofree circle actions and their converse, Trans. Amer. Math. Soc. 358 (2) (2006) 743-757.
- [12] I. Nagasaki, The converse of isovariant Borsuk-Ulam results for some Abelian groups, Osaka J. Math. 43 (2006) 689-710.
- [13] H. Steinlein, Borsuk's antipodal theorem and its generalizations and applications: A survey, in: Méthodes topologiques en analyse non linéaire, Sémin. Math. Supér., Sémin. Sci. OTAN (NATO Adv. Study Inst.) 95, 1985, pp. 166–235.
- [14] H. Steinlein, Spheres and symmetry: Borsuk's antipodal theorem, Topol. Methods Nonlinear Anal. 1 (1993) 15-33.
- [15] A.G. Wasserman, Isovariant maps and the Borsuk-Ulam theorem, Topology Appl. 38 (1991) 155-161.