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Proof. Since Cy_ (M) is a free ZC,-module, it follows from [3, 11, (4.5)] that 7 : C¥~1 (M) — Cg. ' (M) is surjective,
and hence so is 1.
Since M 1s orientable, it holds that

HA (M a1 (SWiree)) = k1 (SWiee) = €D 2,
HeA

and

N6 (M -1 (SWiree)) = €D Z
HeA

as in the proof of Lemma 6.3. Hence F)f-:l{M: -1 (SWiree)) and H* V(M mp_ 1 (SWiree)) are free Abelian groups
with the same rank. This leads that t is an isomorphism. 0O

Here we give a cohomological description of the multidegree. Let f: M — SWi. be a C,,-map. Using the universal
coefficient theorem, we have the following isomorphisms:

H* = (SWiree: -1 (SWiree)) —> Homz (Hi—1 (SWiree) . k-1 (SWiree) )

L5 Homz (e 1 (SWiree). Tk—1(SWiree)).

where /i denotes the Hurewicz homomorphism. Set
U(SWiree) = (h* 0 k) (idy_, (sWiee)) € H* ™' (SWiiee: -1 (SWiree)).

Then one can see that
(f*1(SWiee), IM]) = fi(IM]) € izt (SWiree).

where f, € Hom(H_{(M; Z), my— (SWyee)) and [M] is the fundamental class of M. We obtain that
mDeg f =@ o h((f*1(SWiee). [M])).

Proof of Theorem D. (1) It is well known [3, I1, (3.19)] that

YO8 = [P USWiee) — 8"t (SWiee) € HY 1 (M, -1 (SWiee)).
Hence we obtain that

mDeg [ —mDegg =P oh((y(f. 8), [M])). !

Assume mDeg f = mDeg g, then it holds that ¥ (f, g) = 0. Since y(f. g) = £(y,, (f. g)) and & is injective, we have
Ye, (f,g)=0.Thus f and g are C,-homotopic.

(2) By Lemmas 6.2 and 6.4, we have Image(s) = nH V(M 7141 (SWire)). Thus we obtain y(f, g) =
elye, (f. ) € nH* V(M 74— (§Wiee)) and hence it holds that

mDeg / —mDegg = ® o h({s(yc, (f. ). [M])) € @ nZ.
HeA
(3) Note that
Image(e) = nH*! {M: Mh—1 [SWrn,,_.J) = EB nZ.
HeA

Every element of fJ:-:! (M 7tk 1 (SWiee)) is realized as v, (f, fo) for some Cp-map f : M — SWiee. Therefore, any
element of €B ;. 4 nZ is realized by mDeg [ — mDeg fy. O
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7. Examples

Here we give a couple of examples. Put n = pg, where p and g are distinct primes.

Let g be a generator of C,. Let T, denote the irreducible unitary representation of C, given by pm : C, — U(1)
defined by pm(g)(2) = {™z, where { = exp(2mi/n). When we denote the greatest common divisor of two integers m
and n by (m, n), we note that ker ppy, = Cipy ).

Example 7.1. Suppose M = ST and SW = S(T, & T,). We determine the structure of [M, SW]E::". Since SWCr =

S(Tp) and SWC = S(T), we have SW>! = S(Tp) U S(T), which is a Hopf-link in SW. Hence, it holds that dim M +
I =k = 2, which shows the existence of C,-isovariant maps from M to SW.

Next, we classify the Cy-isovariant maps. We see that A= (C,, C,; ). Now we define a map f, 5:ST; — S(Tp, &
Ty) by

: o
Jep(2)= _;{:ll agip () +ﬂp)q)‘

where @, f € Z. Then, one can easily check that it is a C,,-isovariant map. By the definition of @, we obtain
mDeg fo5 = (deg(z > 21*7P) deg(z > 2'*D7)) = (1 + Bp)g. (1 +agq)p).

If taking fp ¢ as the reference map, we can construct a bijection
mnm,pnju;eqqgﬂ—ZQZ

by
mDy, ,( fa.5) = (mDeg fo g — mDeg fo,0)/n = (B, ).

Remark 7.2. In the setting of Example 7.1, all f, s are C,-homotopic cach other,

Example 7.3. Here, we consider more general example than Example 7.1, that is, put M = ST} and SW = S(r7) @
sTy ®1T,) (1 Z 5), where rT; means the direct sum of r-copies of T, and so on. If dimM + | < k, it holds that
k = 2. Since the representation is assumed to be faithful, one can easily check that r # 0 or s # 0.

Since SWCr = S(s7},) and SW = S(tT,), we see that SW>' = S(sT,,) U S(tT,) and then k = 2(r + 5) = 2,
which shows the existence of C,-isovariant maps from M to SW.If k = 2, all C,-isovariant maps from M to SW are
Cy-isovariantly homotopic each other. If k =2, we have s = 0, r = l or s = 1, r = 0, and use the multidegree for our
classifying problem,

Case 1 (s =0, r = 1). In this case, SW = §(T; @ 17T,) and swel = S(tTy). If 1 = 0, the action is free. If t £ 0, we
have Iso(SW) = (1, Cy} and A = {C, ). Now we define a map f, : ST, — S(T) @17,) by

Jal@ = (2" %, %) /I,

where & € Z. Then, one can easily verify that it is a C,,-isovariant map, By the definition of ¢, we obtain

mDeg f, =deg(z+> z'**") = 1 +an.

If choosing fj as the reference map, we can construct a bijection mDy, :[ST;, S(T) @ tTHIEY =Z by

‘“Dlu{[fl-l']} — [mDngu =. chg fﬂ}/" =

Case Il (s = 1, r = 0). In this case, SW = S(T, ®1T,), SW”' = ST, U S(1T,) and Iso(SW) = (LCp. Gyl Tfr =1,
the problem was already discussed in Example 7.1. If t 2 2, we have A = {C,]. Now we define a map

fa: STy = S(T, ®1T,)

by

fa(:):(:u«wm_* _____ *)”i_”.
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where « € Z. Then, one can easily check that it is a Cy-isovariant map. By the definition of ¢, we obtain
mDeg f, = deg(z+ 2" P) = (1 + aq)p.

If taking fj as the reference map, we can construct a bijection

mD,:[STy, S(T, ®1T)] e — Z

by
mD z, ([ fa]) = (mDeg f, — mDeg fo)/n = a.
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