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Fig. 3 - Spedfic cellular response, (a) IFN-y secretion by patients’ PBMC in the presence of HUVECs measured by enzyme-linked
immunospot assay. Representative wells with stained i pots are st (b) Relative numbers and areas of IFN-y
immunospots (Post/Pre) obtained by imag lysis. (c) Relative numbers of lymphocytes secreting IFN-y (Post/Pre) detected
by intracellular cytokine flow cytometry assay. (d) Relative specific lysis of HUVECs by patients’ cellular effectors in an
effectors:targets ratio-dependent manner (at E:T ratios of 5:1, 30:1 and 100:1; Post/Pre), detected by a chromium-release

cytotoxicity assay,

4. Discussion gens is sufficient to induce a specific immune response. In
addition, here, we decided to continue the vaccination proto-
In this study, we tested the clinical utility of vaccination using col in a limited number of patients for long periods of time
glutaraldehyde-fixed human umbilical vein endothelial cells rather than to treat many patients with a limited number of
(HUVECS) in patients with a progressive malignancy. HUVECs doses; first, to reveal potential toxicity of the endothelial vac-
share specific angiogenic properties with tumour endothe- cine, and second, to ensure that the antigenic stimulation is
lium such as the overexpression of angiogenic antigens sufficient for inducing a long lasting immune response. We
CD51'* and CD105,% and inhibit tumour growth in pre-clini-  found that except for a DTH-like skin reaction at the injection
cal mouse models.'*?'%? Therefore, we hypothesised that HU- site, the endothelial vaccine caused no adverse effects to the
VECs could also be effective in clinical settings, especially in recipients during a long term administration. In future stud-
the patients with malignant brain rumours, which are known ies, a minimum effective dose will be evaluated to improve
to be among the most vascularised tumours.” In addition, we the cost-to-performance ratio of the vaccination protocol.
were interested in whether HUVECs could work in the One month after starting the vaccination protocol, specific
patients with colorectal cancer, which on the one hand still antibodies and cellular effectors against HUVECs' membrane
remains a difficult target for cancer immunotherapy,™ but antigens were detected in the patients with recurrent malig-
on the other hand was recently shown to respond to anti- nant brain tumours as well as metastatic colorectal cancer.

angiogenic therapy.'*"* Analysis of candidate target antigens has recently been ongo-
The vaccination protocol in this study was designed to ing so as to get better insight into the mechanisms controlling
provide strong antigenic stimulation to overcome the periph- immune tolerance of angiogenesis, and to develop more

eral tolerance of angiogenesis. Therefore, the number of effective  protocols for anti-angiogenic  endothelial
endothelial cells administered in one dose was 5x 107, i.e. five vaccination.

times more than commonly used in the vaccines based on In three patients with recurrent malignant brain tumours,
tumnour cells, to ensure that the amount of administered anti- marked tumour shrinkage could be observed over an
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Fig. 4 - Clinical tumour response. Partial tumour responses were observed in patient #1 with pinealoblastoma (a) and

(b), wi

patient #2 with gliobl

a complete tumour response was observed in patient #3 with anaplastic

oligodendroglioma (c). Representative gadolinium contrasted magnetic resonance imaging scans taken before vaccination
(Pre), after 9 months of vaccination (Post-9 months), and after an extended vaccination period (Post-21 months and Post-18
months) are shown. Main target lesions are indicated by arrows.

extended period of vaccination. Recently, it has been re-
ported that in some patients with malignant brain tumours,
immediate post-radiotherapy changes that mimic tumor
progression on MRI, the so called 'pseudo-progression’, can
cause an overestimation of therapeutic results, and there-
fore the patients enrolled in a clinical study should be at
least 3 months after completed radiation therapy.”** In
the present study, recurrent disease was first observed in
our patients more than 9 months after completed post-oper-
ative radiation therapy of the original tumour, some of the

recurrent tumours being localised outside the radiation ther-
apy field, and therefore suggested to be true progression. Gi-
ven that neither recurrent turnour was treated by radiation
therapy, and chemotherapy with temozolomide was ineffec-
tive, we concluded thar the tumour responses observed in

d be attributed to the effects of endothelial

this study should b
vaccination
Human tumour cells share some properties with the

angiogenic endothelium, such as expression of CD51 and

CD105, and therefore it can be hypothesised that, theoreti-
cally, turnour cells might be potential co-targets of antiangio-
genic endothelial vaccination. Although our preliminary data
of in vitro immunological assays supported this hypothesis
(data not shown), we suppose that under in vivo conditions,
tumour endothelium should be a primary target. It is due to
the fact that tumour endothelium is lining the intra-luminal
surface of tumour vasculature, and consequently is first
reached by immune effectors induced by endothelial vaccina-
tion. As mentioned in the Introduction section, therapeutic
damage of tumour endothelium activates the coagulation
cascade, and consequently results in the obstruction of tu-
mour vasculature that makes the immune effectors unable
to sufficiently reach tumour cells

In contrast, with the three responding malignant brain
tumour neither tumour other
improvement of the clinical outcome could be observed in
the other patients. The reason for the discrepancy between

:J'AUEIHSI Tesponse nor

the immune response to vaccination and tumour response
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in these patents is not yet known, but we can speculate that
it might be caused by either strong immunosuppression in
the tumour microenvironment ,***? or by possible adapta-
tion of some tumour cells to the consequences of anti-angio-
genic therapy, as was recently described by others™
Discrepancy between the immunological and anti-tumour
effects was also reported by many other authors clinically
investigating cancer vaccines,”** and therefore we suppose
that there is a strong need for studies searching for factors
that make cancer patients responsive or resistant to active
immunotherapy.

In summary, the present pilot study showed the safety and
potental clinical utility of the anti-angiogenic vaccine using
fixed whole end ponse, involving acti-
vation of both specific humoral and cellular immunity, was
observed in eight of nine patients. Partial or complete tumour
responses were observed in three of six malignant brain -
mour patients, but not in three colorectal cancer patients.
To obtain further insight into the possibilities and limitations
of this novel approach, another study employing different
dose levels, adjuvants and combination with conventional
therapy modalities against various tumour types is now
ongoing.
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1. ABSTRACT
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2. INTRODUCTION

Oncolytic virus therapy is an attractive means of

herpes simplex viruses l)fpe 1 (HSV-1) are p
therapeutic agents for cancer. They can replicate in situ,
spread, and exhibit oncolytic activity via a direct cytocidal
effect. In addition, oncolync HSV-l can transfer and
express foreign genes in host cells. The phase I clinical
study with G207, a double-mutated HSV-1, in recurrent

li t glioma § ts has shown that oncolytic HSV-1
can be safely administered into human brains. The
therapeutic benefits of oncolytic HSV-1 depend on the
extent of both intratumoral viral replication and induction
of host antitumor immune responses. We develop new-
generation oncolytic HSV-1 by enhancing these properties
while retaining the ss.fcty fcnmrc-s G47A was created from
G207 by intr | genetic mutation. Compared
with G207, G47A showed 1) better stimulation of human
antitumor immune cells, 2) better growth properties leading
to higher virus yields and increased cympnlhic effect in
vitro, 3) better a.nmumw efficacy in both immuno-
[ t and petent animals, and 4) preserved
sniety in the brain of HSV-1-sensitive mice, Preparation is
under way for a clinical trial using GA7A in progressive
glioblastoma patients. G47A is also suited as a backbone
vector for expressing foreign molecules. Using bacterial
artificial chromosome and two DNA recombinases, we

ing cancer (1). Viruses, especially herpes simplex
virus type 1 (HSV-1) and adenoviruses, are genetically
engineered 1o restrict virus replication to tumor cells and to
widen the therapeutic window. Infected tumor cells are
destroyed by a direct oncolytic activity of the viruses, and
the recombinant viruses do not harm normal tissues.
Oncolytic virus vectors can also be used for transgenc
delivery.

HSV-1, especially in ison with adenovirus,
has suitable features for cancer therapy: (1) HSV-1 infects
most tumor cell types. (i1) A relatively low multiplicity of
infection (MOI) is needed for total cell killing. (iii) Anu-
viral drugs are available. (iv) A large genome (~152 kb)
allows the msertion of Iargc and/or multiple transgenes. (v)
The host © h antitumor effects. (vi)
Circulating anti-HSV-1 antibody does not affect cell-1o-cell
spread of the virus. (vii) There are HSV-1 sensitive mouse
and nonhuman primate models for preclinical evaluation.
(vini) Viral DNA 15 not integrated into the host genome.

3. G207 — A SECOND-GENERATION ONCOLYTIC
HSV-1

For HSV-1, the principle of how to target viral
ion to tumor cells is to inactivate or delete viral

have created an “armed” oncolytic HSV-1
system that allows insertion of transgene(s) into the
genome of G47A in a rapid and nccunlc manner. We
found that expression of i lecules can
significantly enhance the antitumor eﬁicar.y of G4TA.
Based on these advances, we anticipate that oncolytic virus
therapy using oncolytic HSV-1 will soon be established as
an important modality of cancer treatment.
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gencs that are essential for viral replication in normal cells
but dispensable in tumor cells, using features common for
all types of cancer. Oncolytic HSV-1 therefore can be
applied to a wide variety of cancer. The key 1o successful
and practical development of oncolytic HSV-1 is the safety,
ie, a wide therapeutic window, which can be achieved
only via genetic engineering.
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Figure 1. Structures of G207. The HSV-1 genome
consists of long and short unique regions (Uf, and Ug) each
bounded by terminal (T) and internal (1) repeat regions (R,
and Rg). G207 was engineered from wild-type HSV-1
strain F by deleting | kb within both copies of the y34.5
gene, and inserting the E.coli JacZ gene into the ICP6
coding region.

G207 is the first oncolytic HSV-1 used in a clinical
trial in the United States (2). This second-generation
oncolytic HSV-1 has double mutations created in the HSV-
| genome (Figure 1). G207 has deletions in both copies of

the 345 gene, the maojor determinant of HSV-]
ncumv:rulencc (3). ﬁdj-dcﬁcnenl HSV-1 vectors are
bly att I cells, but retain their

ability to replicate wﬂ.hm neoplastic cells. In normal cells,
HSV-1 infection induces activation of double-stranded
RNA-dependent protein kinase (PKR), which in turn leads
to phosphorylation of the alpha-subunit of eukaryotic
initiation factor 2 (elF-2a) and a subsequent shutdown of
host and viral protein synthesis (4). The product of the
#34.5 gene sntagonizes this PKR activity. However, tumor
cells have low PKR activities, thereby allowing y34.5-
deficient HSV-1 tors to replicate (5, 6), G207 also has
an insertion of the E. coli JacZ gene in the infected-cell
protein 6 (ICP6) coding region (UL39), inactivating
ribonucleotide reductase, a key enzyme for viral DNA
synthesis in non-dividing cells but not in dividing cell (7).

G207 has been tested in more than 60 different cell
lines and proved effective in all human tumor cell lines
except for those denved from bone marrow (8). In human
glioma and malignant meningioma cell lines, for example,
G207 can schieve cell destruction of the eatire cell
population within 2 to 6 days at an MOI of 0.1 (2, 9).
Whereas rodent cells are generally less susceptible 1o HSV-
| infection than human cells, G207 can destroy the entire
cell population of N18 murine neuroblastoma cells within 3
days at an MOI of 1 (10), G207 manifests no ellect on
pnmary cultures of rat cortical astrocytes or cerebellar
neurons even at 9 days post-infection, whereas, at the same
MOI, the wild type HSV-1, the parental strain F, kills these
normal cells (2). This difference in G207 cylopathic effect
observed in vitra between wmor cells and normal cells is
directly reflected in the results of in vivo studies.

In A/] mice harboring established syngeneic N1R
tumurs subcutancously or in the brain, a single
I lation with G207 caused a significant
reduction in tumor growth or prolongation of survival (IOJ
The most remarkable finding with G207 when tested in
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Is was that it induced systemic
antitumor smmuluty (10,1 I) In A/J mice beaning hilateral
subcutancous N18 tumors, ir G207 I

into the left tumor alone caumd gmwlh reduction not only
of the inoculated tumors but also of the non-inoculated
contralateral tumors.  The antitumor immunity was
associated with an elevated cytotoxic T lymphocyte (CTL)
activity specific to N18 tumor cells that persisted for at
least 13 months.

An extensive in vivo safety evaluation was
performed with G207 (12-15). The results are summanized
us follows: l] G207 does not cause disease in HSV-1-
susccpnble mice after intracercbral, mtrn-ventncular
intravenous, intraprostatic or intrahepatic injection at 10"
plaque-forming units (pfu). 2) G207 does not cause discase
in HSV-susceptible primates (Owl monkeys, Aofus

) after intracerebral or intraprostatic injections of
1-3 x 107 or 107 pfu.  3) No elicitation of severe
inflammatory response was observed with multiple
inoculations or in animals with prior HSV-1 exposure. 4)
No detectable reactivation of *latent” HSV-1 in the brain
was observed in Balb/c mice. 5) No detectable shedding of
virus was observed after intracerebral inoculation in Owl
monkeys. 6) Induction of amti-HSV ll'ltlbodles was
observed after intrm | or intrapr ion 1n
Owl monkeys. 7) G207 DNA was detectable in ﬂle brain up
to 2 years afier intr bral injection and in the t
spleen and lymph nodes after i mln.proslnhc injection in Owl
monkeys.

4. G207 CLINICAL TRIAL

The G207 phase | clinical tnal was performed
between 1998 and 2000 at two institutions in the United
States, Georgetown University Medical Center and
University of Alabama at Birmingham (16). We treated 21
patients with recurrent malignant glioma: 16 patients with
glioblastoma and 5 patients with anaplastic astrocyloma.
G207 was admimistered directly into the tumor wvia
stereotactic inoculation. This dose escalation study started
trom 10° pfu and increased to 3 x 10" pfu, with three
patients at each dose. No acute, moderate to severe adverse
events attributable to G207 were observed. Minor adverse
events included seizure (2 cases) and brain edema (1 case).
An improvement in Karnofsky score was observed in 6 of
21 patients (29%) at some time after G207 inoculation.
Eight of 20 patients that had senal MRI evaluations had a
decrease in tumor volume (enhancing area) between 4 days
and one month post-inoculation. Pabent #4 that received
10" pfu showed continuous decrease in tumor size after
G207 inoculation, but died from irrelevant cercbral
infarction 10 hs after t The inal proved the
safety of G207 inoculated intratumorally in the brain up 10
3x 10 pfu.

5. G47A - A THIRD-GENERATION ONCOLYTIC
HSV-1

We further developed a third-g oncolytic
HSV-1 termed G47A (Figure 2) GATA was newly created

from G207 by introducing genetic alteranion, ie.,
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Figure 2. Structure of G47A. G47A was created from
G207 by further deleting 312 bp within the @47 gene. The
deletion also places the UST ] gene under control of the 47
immediate-early promoter.
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Figure 3. Concept of cancer therapy using oncolytic HSV-
1 armed with an immunostimulatory gene. When oncolytic
HSV-1 armed with the interleukin 12 (11.-12) gene infects
tumor cells, IL-12 1s secreted in the course of viral
replication and stimulates the immune cells. In addition 1o
direct tumor cell killing via viral replication and spread,
tumor cells are destroyed by augmented antitumor immune
responses, resulting in enhanced antitumor activities.

the deleton of the a7 gene and the overlapping
UN11 promoter region, in the G207 genome (17). Because
the @7 gene product (ICP47) inhibits transporter
associated with antigen presentation (TAP), which
translocates peptides across the endoplasmic reticulum, the
down-regulation of MHC class | that normally occurs in
human cells afier infection with HSV-l does not occur
when the @47 gene is deleted (18). G47A-infected human
cells in lnct presented higher levels of MHC class |
expression than cells infected with other HSV-1 vectors
(17). Further, human melanoma cells infected with G47A
were better at stimulating their matched tumor-infiltrating
lymphocytes in vifro than those infected with G207. The
dclcuon also places the late US1/ gene under control of the

diate-early a4d7 p which results in
suppression of the reduced growth phenotype of y34.5-
deficient HSV-1 mutants including G207 (19). In the
majonity of cell lines tested, G4TA replicated better than
G207, resulting in the generation ol higher virus titers, and
cxhll'nnns greater cytopathic effect (17). In athymic mice
bearing subc USTMG h glioma and A/J mice
bc-unng subcutaneous Neuro2a neuroblastoma, G47A was
significantly more efficacious than G207 at inhibiting the
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tumor growth when inoculated intrancoplastically (17).
G47A was also more eflicacious than G207 in athymic
mice bearing intracerebral UBTMG tumors (Ino Y, ef al
unpublished data). Nevertheless, the safety of G47A
remained unchanged from G207 following injection into
the brain of HSV-1-sensitive A/J mice (17). Thus, with
G474, by creating the third engineercd mutation within the
(G207 genome, we improved the efficacy of G207 without
compromising its safety. G47A has been shown efficacious
in animal tumor models of a vanety of cancers including
bmin tumors, prostate cancer, breast cancer and
schwannoma (17, 20-22). A phase I-11 clinical tnal using
G47A in patients with progressive glioblastoma is
underway at the Univemsity of Tokyo.

6. “ARMED" ONCOLYTIC HSV-1

One of the advantages of HSV-1 is the capacity to
incorporate large and/or multiple transgenes within the
viral genome. Certain antitumor functions may be added to
omiyuc activities of tee-ombemm HSV-1. Conventional

techniques had required time-
con:ummg processes o create “armed” oncolytic HSV-1.
We tly established an “armed” oncolytic
HSV-1 construction system utilizins bacterial artificial
chromosome (BAC) and two DNA recombinase systems
(Cre/loxP and FLP/FRT) (23). Using G47A as the
backbone, this system allows a rapid generation of multiple
vectors with desired transgenes inserted in the deleted ICP6
locus.

Aside from the extent of replication capability within
the wmor, the efficacy of an oncolytic HSV-1 depends on
the extent of antitumor immunity induction (10, 11).
Thercfore, while any transgene that does not interfere with
HSV-1 replication may be used (24), the genes of
i fulatory lecul would be reasonable
candidates for “arming” oncolytic HSV-1. Using this
construction system, we [irst created oncolytic HSV-1
armed with immunostimulatory genes such as interleukin
12 (IL-12), 1L-18, or soluble B7-1. Immunostimulatory
functions should augment the antitumor Immumty
induction that adds to direct oncolytic activity of the virus,
resulting in enhanced antitumor activities (Figure 3). Using
A/] mice bearing bilateral subcutaneous Neuro2a tumors,
known to be poorly immunogenic, we tested the efficacy of
a third-generation oncolytic HSV-1 armed with mouse
fusion-type 1L-12, termed T-mfIL12, When the viruses
were inoculated into the left tumor only, T-mf{IL12 showed
a significantly better antitumor activity than the unarmed
control virus, T-01, not only in the inoculated left tumors
but also in the non-inoculated remote tumors (Miyamoto S,
el al. unpublished data). When three oncolytic HSV-1
expressing [L-12, IL-18 or soluble B7-1 were tested
together using the same Newro2a model, the triple
combination of the three armed viruses exhibited the
highest etlicacy amongst all single virus or combinations ol
two viruses (25). Combining 1 x 10 pfu each of the three
“armed” viruses showed stronger antitumor activities than
any single “armed” virus at 3 x 10° pfu in inoculated
tumors as well as non-inoculated remote tumors, We have
also ted a G47A-backbone HSV-1 double-armed with
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IL-18 and soluble B7-1 (23). This double-armed oncolytic
HSV-1 showed a significant enhancement of anti
efficacy via T-cell mediated immune responses in A/J mice
with subcutancous Neuro2a tumors as well as in CS7TBL/6
mice bearing subcutancous TRAMP-C2 prostate cancer.

Whereas the most common route of deli\rery of
oncolytic HSV-1 has been a direct intratumoral i

virus-1 for the treatment of malignant gliomas, Naf Med 1,
938-943 (1995)

3. Chou J, Kern ER, Whitley RJ and Roizman B: Mapping
of herpes simplex virus-1 neurovirulence to gamma 34.5, a
gene nonessential for growth in culture. Science 250, 1262-

1266 (1990)
4. He B, Chou J, Brandimarti R, Mohr I, Gluzman Y and
R B: ion of the phenotype of

an intravenous delivery would further broaden the cllmml
application of oncolytic HSV-1 vectors if proven ctfective.
One of ap, hes to herapeutic efficacy via
mtmvenons administration is by “arming” of oncolytic
HSV-1. We observed that intravenous delivery of T-
mflL12 caused a significant inhibition of tumor growth
compared with mock and T-01 treatments in A/J mice
bearing subcutaneous Neurola wmors (Guan Y, e al
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intravenous  admimstrations of T-mfIL12 sigmificantly
inhibited the ber of st pared with mock
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7. SUMMARY

In summary, oncolytic HSV-1 has high potential as a
new drug for cancer therapy for lollowing reasons. 1) It
can be applied to all types of solid tumor: Oncolytic HSV-
| therapy has a wide varety of application in cancer
therapy. 2) It can be combined with conventional
therapies, i.e. surgory, rndlolhernpy lnd che.moﬂlurnpy 3)
It can be X Neither
myel nor mng has been
observed so lar. And, 4) it may work synergistically with
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“Arming” of oncolytic HSV-1 with transgenes lcads
o development of a variety of oncolytic HSV-1 with
certain antitumor functions resulting in enhancement of
antitumor efficacy, which in turn leads to development of a
senes of oncolytic HSV-1 suited for certain tumor types
and different administration routes.
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Genetically engineered, conditionally replicating herpes simplex
viruses type 1 (HSV-1) are promising therapeutic agents for brain
tumors and other solid cancers, They can replicate in situ, spread
and exhibit oncolyric activity via a direct cyrocidal effect. One of
the advantages of HSV-1 is the capacity to incorporate large and/
or multiple transgenes within the viral genome, Oncolytic HSV-1
can therefore be “armed” to add certain functions. Recently, the
field of armed oncolytic HSV-1 has drastically advanced, due to
development of recombinant HSV-1 generation systems that urilize
bacterial artificial chromosome and multiple DNA recombinases.
Because antitumor immunity is induced in the course of oncolytic

tumor cells are destroyed by a direct oncolytic activity of the viruses.
Importantly, oncolytic viruses can also act as vectors that provide
amplified transgene delivery.

HSV-1, especially in comparison with adenovirus, has suitable
features for cancer therapy: (1) HSV-1 infects most tumor cell types.
(2) A relatively low multiplicity of infection is needed for roual
cell killing. (3) Anti-viral drugs are available. (4) A large genome
{-152 kb) allows the insertion of large and/or multiple trans-
genes. (5) The host immune reactions enhance antitumor effects,
(6) Circulating anti-HSV-1 antibodies do not affect cell-to-cell
spread of the virus. (7) There are HSV-1 sensitive mouse and

activities of HSV-1, transgenes enceding immunomodul
molecules have been most frequently used for arming. Other
armed oncolytic HSV-1 include those thar express antiangiogenic
factors, fusogenic membrane glycoproteins, suicide gene products,
and proapoptotic proteins. Provided that the transgene product
does not interfere with viral replication, such arming of oncolytic
HSV-1 results in augmentation of antitumor efficacy. Immediate-
carly viral promoters are often used to control the arming
transgenes, but strict-late viral promoters have been shown useful
to restrict the expression in the late stage of viral replication when
desirable. Some armed oncolytic HSV-1 have been created for the
purpose of noninvasive in vivo imaging of viral infection and repli-
cation. Development of a wide variety of armed oncolytic HSV-]
will lead to an establishment of a new genre of therapy for brain
tumors as well as other cancers.

Introduction

Oncolytic virus therapy is an attractive and rapidly developing
means for treating cancer.! Genetically engineered viruses, such as
herpes simplex virus type 1 (HSV-1) and adenovirus, are designed
so that virus replication is restricted to tumor cells and therefore
infection causes no harm to normal rissues. In principle, infected
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nonh primate models for preclinical evaluation. (8) Viral DNA
is not integrated into the host genome. HSV-1 is neurotropic and the
genes necessary for neuropathogenicity have been identified and can
be mutated. Therefore, the use of HSV-1 is especially advantageous
for brain tumor therapy.

In order to target HSV-1 replication to tumor cells, viral genes
that are essential for viral replication in normal cells but dispensable
in tumor cells are inactivated or deleted.” This principle uses features
common for all types of cancer, therefore the application of oncolytic
HSV-1 is not restricted to brain wmors, but also includes a wide
variety of cancer. The key for successful and practical development
of oncolytic HSV-1 is to achieve a wide thempeutic window by the
use of genetic engineering technology.

Second-Generation Oncolytic HSV-1

G207 was the first oncolytic HSV-1 used in a clinical trial in the
United States.* This second-generation oncolytic HSV-1 has double
mutations created in the HSV-1 genome.® G207 has deletions in
both copies of the ¥34.5 gene, the major determinant of HSV-1
neurovirulence.® ¥34.5-deficient HSV-1 vectors are considerably
attenuated in normal cells, but retain their ability to replicare within
neoplastic cells. In normal cells. HSV-1 infection induces activation
of double-stranded RNA-dependent protein kinase (PKR), which
in turn leads to phosphorylation of the @-subunit of eukaryoric
initiation factor 2 and a subsequent shutdown of host and virl
protein synthesis.” The producr of the ¥34.5 gene antagonizes this
PKR activity. However, tumor cells have low PKR activiries, therehy
allowing ¥34.5-deficient HSV-1 vectors to replicate.”® G207 also
has an insertion of the £. coli lucZ gene in the infected-cell protein 6
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(1CP6) coding region (UL39). inactivating ribonucleotide reductase.
a key enzyme for viml DNA synthesis in non-dividing cells but not
in dividing cell.”

In preclinical studies using immunocompetent animals, the
most remarkable finding with G207 was that it induced systemic
antitumor immunity in the course of oncalytic activigy.!™!" For
example, in A/] mice bearing bilateral subcutaneous N18 (syngencic
neurablastoma) tumars, intrancoplastic G207 inoculation into the
left tumor alone caused growth reduction not only of the inoculated
tumors but also of the non-inoculated contralateral tumors. The
antitumor immunity was associated with an elevated cytotoxic T
Iymphocyte activity specific to N18 tumor cells that persisted for at
least 13 months.

After an extensive in vive safety evaluation using HSV-1-
susceptible mice and non-human primates, the G207 phase | clinical
trial was performed between 1998 and 2000 at two institutions.*
Twenty-one patients with recurrent malignant glioma were treated,
and G207 was administered directly into the tumor via stereotactic
inoculation, This dose escalation study started from 10° plaque-
forming units (pfu) and increased to 3 x 10" pfu, with three patients
at each dose. As a result, no acute, moderate to severe adverse events
attributable to G207 were observed. Eight of 20 patients that had
serial MRI evaluations had a decrease in tumor volume between four
days and one month post-inoculation and two patients survived for
more than five years.

Third-Generation Oncolytic HSV-1

The phase | clinical trial proved the safety of G207 and hinted
its efficacy for human brain twmors. However, in order to further
improve the efficacy without compromising its safety, a third-gener-
ation oncolytic HSV-1 termed G47A was newly created from G207
by introducing another genetic alteration, ie., the deletion of the
@47 gene and the overapping US11 promoter region, in the G207
genome. ' Because the @47 gene product inhibits transporter associ-
ated with antigen presentation, which translocates peprides across
the endoplasmic reticulum, the downregulation of MHC class | thar
normally occurs in human cells after infection with HSV-1 does not
occur when the @47 gene is deleted.'* G47A-infected human cells
in fact presented higher levels of MHC class | expression than cells
infected with other HSV-1 vectors.'? Further. human melanoma cells
infected with G47A were better ar stimularing their matched umor-
infiltrating lymphocytes in vitro than those infected with G207. The
deletion also places the late US11 gene under control of the imme-
diate-erly 047 promoter, which results in suppression of the reduced
growth phenotype of y34.5.deficient HSV-1 mutants including
G207.' In the majornity of cell lines tested, G47A replicated betrer
than G207, resulting in the gencration of higher virus titers, and
exhibiting greater cyropathic effect.! In athymic mice bearing subcu-
tancous US7MG human glioma and A/J mice bearing subcutancous
Neuro2a neuroblastoma. G474 was significantly more efficacious
than G207 at inhibiting the tumor growth when inoculated intraneo-
plastically.'! G47A was also more efficacious than G207 in athymic
mice bearing intracercbral US7MG wumors (Ino Y et al., manuscript
in preparation). Nevertheless, the safety of G474 remained unchanged
from G207 following injection into the brain of HSV-1-sensitive A/]
mice.'* In Japan, a clinical trial of G474 in recurrent glioblastoma
patients is underway. G47A has been shown efficacious in animal
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tumor models of a variety of cancers including brain twumors, prostate
cancer, breast cancer and neurofibroma. !> 17

Construction of “Armed” Oncolytic HSV-1

One of the advantages of HSV-1 is the capacity to incorporate
large and/or multiple transgenes within the viral genome. Certain
antitumor functions may be added to oncolytic activities of HSV-1
The use of replication-competent HSV-1 for transgene expression
has multiple atractive advantages over replication-incompetent or
defective HSV-1 vectars: (1) A continuous generation of a high-titer,
homogenous vector stock is possible, which allows manufacturing of
a large amount with a better quality control, (2) An amplified gene
delivery can be obtained in vivo. And, (3) transgene expression may
lower administering doses required, thercfore decrease toxiciry. On
the other hand, potential demerits of using replication-competent
viruses for expressing foreign proteins are that the tansgene expres-
sion may increase the toxicity of the vector, and may also interfere
with viral replication. Transgene expression by armed oncolytic
HSV-1 could be shorter in duration than replication-incomperent
vectors due to destruction of the host cell by viral replication.
However, we have observed that, because continuous viral spread
and infection occur within the tumor, a larger number of tumor
cells consequently express the transgene, therefore a much higher
total amount of transgene product is achieved compared with non-
replicating vectors.

In the past, a recombinant HSV-1 was constructed by conven-
tional homologous recombination techniques thart required selection
of a correctly structured clone from millions of candidares. It often
took a few years until the intended HSV-1 was obtained. In order
to circumvent the time-consuming processes, we have developed
an innovative “armed” oncalytic HSV-1 construction system using
G47A as the backbone."® Besides its favorable features for human
cancer therapy, including the safety, high yields of virus, improved
oncolytic activity and potent stimulation of antitumor immune
cells, G47A is especially suited as a replication-competent back-
bone for expressing any forcign protein molecules, because of the
wide therapeutic window and preclusion of the shutoff of protein
synthesis in the infected host cells. The system, termed T-BAC
system, utilizes bacterial artificial chromosome and two DNA
recombinase systems (Cre/loxP and FLP/FRT) (Fig. 1). It allows
(1) a construction of armed oncolytic HSV-1 in a short period
(usually 3-4 months), (2) a simultancous construction of multiple
vectors, (3) an accurate insertion of a desired transgene into the
deleted JCP6 locus, (4) an insertion of multiple transgenes using the
same effort as inserting a single transgene, and (5) a direct compar-
ison of multiple “armed” oncolytic HSV-1 with the same backbone.
A similar system, termed HSVQuik system. has been also developed
using a G207-like backbone ! %2

Oncolytic HSV-1 Armed with Immunostimulatory Genes

Aside from the extent of replication capability within the tumor,
the efficacy of an oncolytic HSV-1 depends on the extent of anti-
tumor immunity induction,!™!! Therefore, while any transgene that
does not interfere with HSV-1 replication may be used, the genes
encoding immunomodulatory molecules would be reasonable candi-
dates for arming oncolytic HSV-1. Immunostimulatory functions
should augment the antitumor immunity induction that adds to
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figure 1. A schema describing the TBAC system for construcling “armed”
oncolylic HSV-1 with the G474 bockbone. The desired hransgene for “arm:
ing" is Inserted into the multiple cloning site of the shuttle vector [SY-01). The
first step Is bo Inserl the entire sequence of the shultle vector inlo the loxP site
of TBAC by o Cre-medioled recombination, followed by an electroporation
into E. coli. The second step is to coransfect the co-integrole with o plosmid
axpressing FIP onto Vero cells to excise the BAC sequence flanked by the
FRT sitas. The objective ormed oncolytic HSV-1 appear os GFP.negative and
locZ-positive virus plogues. Nonrecombined vituses do nol oppeor, due o
the presance of the lombda stuffer sequence (Imd) cousing an oversize of
the genome. L

direct oncolytic activity of the virus, resulting in enhanced antitumor
activities (Fig. 2).7 ¥34.5 -deficient HSV-1 containing the murine
interleukin 4 (IL-4) gene displayed a significanty higher antitumor
activity and prolonged survival of mice with intracranial tumors
compared with its parental virus or the one expressing [L-10.%! First-
generation oncolytic HSV-1 expressing [L-12 (M002 and NV1042)
showed improved in vivo cfficacy against 4C8 glioma in syngeneic
B6D2F mice*” and brain tumors of NeuroZa neuroblastoma in synge-
neic A/) mice.*? and also against murine squamous cell carcinoma®?
and murine colorectal tumor?® Immunohistochemical analyses of
tumors treated with these [L-12-expressing HSV-1 revealed a signifi-
cant influx of CD4*, CD8* T cells and macrophages. The oncolytic
HSV-1 expressing IL-12 (NV1042) was more efficacious than the
one expressing granulocyte macrophage colony-stimulating factor
(GM-CSF) in the same backbone (NV1034) in mice with subcuta-
neous squamous cell carcinoma.? The mice cured by NV1042 had
a higher rate of rejecting rechallenged tumor cells than those cured
by NV1034 4

' Cell Adhesion & Migranon

The HSVQuik was used to create G207-like second-genera-
tion oncolytic HSV-1 armed with munne [L-4, CD40 ligand or
6CK (Fig- 3).%° In BALB/c mice bearing 4T1 breast cancer in the
brain, all of these armed HSV-1 showed better antitumor efficacy
than the control virus. Using the HSVQuik system, we also created
oncolytic HSV-1 armed with IL-12, IL-18 or soluble B7-1.'? All
of these armed HSV-1 demonstrated replicative capabilities similar
to the parental virus in vitro. The in vive efficacy was tested in
Af] mice harboring subcutaneous tumors of syngencic and poorly
immunogenic Neuro2a neuroblastoma, 1L-12 was the most effica-
cious among the immunostimulatory molecules investigated when
expressed by the G207-like HSV-1. The triple combination of the
three armed viruses exhibited the highest efficacy amongst all single
viruses or combinations of two viruses. Combining 1 x 10 pfu each
of the three armed viruses showed stronger antitumor activities than
any single armed virus at 3 x 10 pfu in inoculated tumors as well as
non-inoculated remote tumors.

Using the Neuro2a subcutaneous tumor model, another research
group demonstrated thar the antitumor efficacy of M002, a fist-
generation ¥34.5-deficient HSV-1 thar expresses 1L-12, could be
augmented when used in combination with M010), the same backbane
HSV-1 that expresses chemokine CCL2.%% The group also demon-
strated that the virus selected after in vivo serial passage of M002 in
mors of a D54-MG human malignant glioma cell line improved
survival in two independent murine brain tumor models compared to
the parent M0U2.”" This enhanced antitumor cfficacy was not due to
restoration of protein synthesis or culy US11 expression.

Recently, using the T-BAC system, we generated a G47A-back-
bone oncolytic HSV-1 armed with mouse fusion-type 1L-12, termed
T-mfIL12 (Fig. 3). In A/] mice bearing bilateral subcutancous
Neuro2a tumors, intrancoplastic inoculation with T-mfIL12 into
the left tumor alone led to a significantly better antitumor activity
than the unarmed control virus, T-01, not anly in the inoculated left
tumors but also in the non-inoculated remote tumors (Miyamorto
S. et al, manuscript in preparation). We also created a G47A-
backbone HSV-1 armed with both IL-18 and soluble B7-1."* This
double-armed oncolytic HSV-1 showed a significant enhancement
of antitumor efficacy via T-cell mediated immune responses in A/]
mice with subcutancous Neuro2a tumaors as well as in CS7BL/6 mice
bearing subcutaneous TRAMP-C2 prostate cancer.

An armed oncolytic HSV-1 has not been tested in patients with
brain tumors, however a phase | clinical trial with a second-genera-
tion oncolytic HSV-1 expressing GM-CSF was conducted in patients
with cutancous or subcutancous deposits of breast, head and neck
and gastrointestinal cancers and recurrent malignant melanoma. ™
OncoVEXSMGF has a deletion in the w47 gene and the ¥34.5
gene replaced with the GM-CSF genc driven by a CMV promorter
(Fig. 3). A single dose (13 patients) or multiple doses (17 patients),
ranging from 10° to 10* pfu/ml/dose, were injected intratumonally.
Local inflammation, erythema and febrile responses were the main
side effects, and the local reaction to injection was dose limiting in
HSV-1-seronegative patients ar 107 pf/ml. Some of biopsy speci-
mens after treatment showed areas of necrosis thar strongly stained
for HSV-1. Three patients had stable discase, six patients showed
flattened injected and/or uninjected tumors, and four patients
showed inflammarion of uninjected tumars.
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Armed Oncolytic HSV-1 with Other Antitumor Functions

Various types of transgenes other than immunomodulatory genes
have been used to arm oncolytic HSV-1. Theoretically, antiangiogenic
factors can augment the antitumor activities of oncolytic HSV-1
without compromising the viral replication and antitumor immunity
induction. Early gencration oncolytic HSV-1, such as G207, was
shown to retain the ability of wild type HSV-1 1o increase infected
tissue vascularity, whereas third-generation G47A showed suppressed
vascularity in infected umors.?” By using the G47A-BAC system, a
preliminary version of the T-BAC system, G47A-backbone oncolytic
HSV-1 armed with Platdler Factor 4 or dominant negative fibroblast
growth factor receptor have been created.*™*! Both of these armed
ancolytic HSV-1 were more efficacious in inhibiting the tumor
growth and angiogenesis than the control virus in both human
US7MG glioma and mouse 37-3-18-4 malignant peripheral nerve
sheath wmor models. By using the HSVQuik system. an oncolytic
HSV-1 armed with tissue inhibitor of metalloproteinases 3, termed
rQT3, has been created.* In athymic mice bearing human neuro-
blastoma or malignant periphesal nerve sheath tumor, treatment with
QT3 caused delayed tumor growth. incrcased peak levels of infec-
tious virus, and immature collagen extracellular matrix. Remarkably,
QT3 treatment caused reduced tumor vascular density, which was
associared with reduced circulating endothelial progenitors.

Another approach for arming oncolytic HSV-1 is the use of fuso-
genic membrane glycoproteins. Expression of fusogenic proteins by
infected tumor cdls could cause involvement of surrounding unin-
fected cells to form syncytium and facilitate umor cell killing, but
might also increase roxicity in the normal tissue. Fu et al. constructed
an oncolytic HSV-1 armed with a truncated form of the gibbon ape
leukemia virus envelope fusogenic membrane glycoprotein (GALY.
fis) ** In athymic mice bearing human Hep 3B hepatocellular carci-
noma xenografts, the expression of GALVfus significantly enhanced
the antitumer effect of the virus. Furthermore, by using a strict late
viral promoter instead of a CMV promoter, GALV.fus glycoprotein
could be expressed only in tumor cells and not in normal non-
dividing cells

So-called suicide genes have been used from carly stages of armed
oncolytic HSV-1 development. Expression of a suicide gene by an
infected tumor cell should elicit bystander killing of surrounding
uninfected tumor cells via extracellular diffusion of activated
prodrug, but premature killing of the host cell could also suppress
vinal replication. HSV-1 naturally expresses thymidine kinase that
activates the prodrug ganciclovir. However, a combination with
systemic ganciclovir administration did not significantdy enhance
the efficacy of G207 in A/] mice with intracerebral N18 neuroblas-
toma ™ rRp450 was engincered by replacing the leZ gene within
the ICP6 locus of the first-generation oncolytic HSV-1, hrR3,
with the gene encoding rat cytochrome P450 2B1 (CYP2BI). &
member of the cytochrome P450 family responsible for activating
the prodrug cyclophosphamide.*® In rat 9L and human US7AEGFR
glioma models. systemic administration of both cyclophasph-
amide and ganciclovir in combination with rRp450 showed the
most efficacy compared with any other combinations.*® By using
the HSVQuik system, an oncalytic HSV-1. termed MGH2. was
created that expressed both CYP2B1 and secreted human intestinal
carhoxylesterase.” The latter enzyme converts irinotecan into an
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Figure 2. Concept of afficocy aug using oncolytic HSV.1

armed with an immunostimulatery gene. When oncolyfic HSV.| armed wilh

the [l-12 gane Infects tumor cells, IL-12 is secreted in the course of viral repli-

cation and slimuloles the immune cells. In addition to direct umer cell killing

via viral replicafion and spread, umor cells are destroyed by cugmenled
it i [ resuliing in enhanced aniitvmor activities.

active metabolite. In athymic mice bearing GH36AEFGR glioma
in the brin, MGH2 displayed increased antitumor efficacy when
combined with cyclophosphamide and irinotecan. The researchers
found that, unlike ganciclovir, cyclophosphamide, irinotecan or the
combination of both did not significanty affect virus replication,
HSV1yCD was created by replacing the JCP6 gene of HSV-1 with
the gene encoding yeast cytosine deaminase (yCD).** yCD converts
the prodrug 5-fluorocytosine (5-FC) to a cytotoxic agent, 5-fluorou-
racil. This research group also observed that the approach enhanced
cytotoxicity without significantly reducing viral replication and
oncolysis. In BALB/c mice bearing subcutancous tumors or diffuse
liver metastases of MC26 colon cancer, anti-neoplastic activity of
HSV1yCD combined with systemic 5-FC administration was
greater than HSV1yCD alone. By utilizing the same backbone
as OncoVEXSM-CSF (Fig, 3). an oncolytic HSV-1 termed
OncoVEXSAVIED doyuble-armed with yCD/uracil phospho-
ribosyltransferase fusion and GALV.fus has been created*” In
Fischer 344 rats bearing subcutancous 9L glioma, OncoVEXGALY/
ED proved most efficacious compared with the control viruses
(OncoVEX, OncaVEXSALY ar OncoVEX®P) when combined with
systemic 5-FC administration.
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Figure 3. Stuclures of repraseniative ormed oncolyfic HSV.1. The HSV:1
genome consists of long and short unique regions (U, and U, eoch bounded
by terminal [T) and Internal [I] repecl regions (R ond Rs). Armed oncolytic
HSV.1 ereoted by using the TBAC [or GA7A-BAC) system hos the bockbone
shucture of G474, a third-generation oncolylic HSV-1. I has riple deletions
in the ¥34_5, ICP6 and ad7 genes. The ransgene (s inserted into the deleted
ICP& locus. As o marker, it also expresses the LocZ gene driven by the ICPS
promotar. Armed oncolytic HSV:1 crealed by using the HSVQuik system
hos the backbone skuclire similar to G207 or MGH1, secondgenerotion
oncolylic HSV-1. It has double deletions in the y34.5 ond ICP6 genes
The tronsgene is inserted into the deleted ICPS locus. As o marker, it also
expresses the GFP gana driven by the ICP6 promoter. The OncoVEX series
has the backborie structure of o second-generalion ancolytic HSV-T with
double delefions in the ¥34.5 ond ud7 genes. The ransgene is inserted into
the deleted y34.5 locl.

Han er al. recently created an oncolytic HSV-1, with double
deletions in the ¥34.5 and ®47 genes, armed with tumor necrosis
factor alpha (TNFe).*" TNFtt is a cytokine with a potent antitumor
activity. but a local delivery of TNF is known to cause toxicity,
and its ability to induce tumor cell apoptosis could interfere with
viral replication. To avoid these problems, they used the USI1 true
late HSV-1 promoter to drive the TNFo gene, Whereas the virus
armed with U851 I-driven TNFo expressed lower amounts of TNFa,
it exhibited higher antitumor effects and less toxicity than the virus
that used the immediate-eardy CMV promoter.

Armed Oncolytic HSV-1 for in vivo Imaging

With the advancement of oncolytic virus therapy development,
there has been an increasing need for non-invasive methods of
imaging or monitoring of viral infection and replication. Oncolytic
HSV-1 can be armed not only for the purpose of augmenting the
therapeutic efficacy but also for realizing such non-invasive in vive
imaging. In preclinical settings, onc approach is to utilize a luciferase-
based bioluminescent system. Two HSVQuik-based oncolytic HSV-1

Cell Adhesion & Migrathon

were generated that express firefly luciferase under the control
of the immediate-carly (IE) 4/5 promoter or g promoter.’ The
TE4/5 promoter acts immediately after viral infection, whereas the
strict late gC promoter acts in the late stage of the replication cycle.
When athymic mice bearing subcutaneous tumors of Gi36AEGFR
glioma were observed under a supersensitive charged coupled device
camera, the expression of luciferase controlled by the /£4/5 promoter
correlated with virl infection and that by the gC promoter with viral
replication.

Systemic Delivery of Armed Oncolytic HSV-1

Whereas the most common route of delivery of oncolytic HSV-1
has been a direct intratumoral inoculation, an intravenous delivery
would further broaden the clinical application of encolytic HSV-1
if proven effective. The main hurdle for intravenous delivery is that
only a small percentage of the administered virus reaches the tumor,
By arming of oncolytic HSV-1, a large antitumor effect can be
induced from a small number of virus that initiates replication at the
tumor. We observed that intravenous delivery of IL-12-expressing
T-mflL12 caused a significant inhibition of tumor growth compared
with mock and the unarmed control virus (T-01) trearments in A/]
mice bearing subcutaneous Neuro2a tumors (Guan et al.. manuscript
in preparation). When A/] mice bearing intracerebral tumors were
treated by repeated intravenous injections, T-mfIL12, but not T-01,
significantly prolonged the survival compared with mock. Also. in a
renal cancer lung merastases model using BALB/c mice and syngencic
RenCa cells, int administrations of T-mfIL12 significanty
inhibited the number of merastases compared with mock and T-01
trearments (Tsurumaki et al.. manuscript in preparation).

Summary

In summary, "arming” of oncelytic HSV-1 with transgenes leads
to development of a variety of oncolytic HSV-1 with certain func-
tions resulting in enhancement of antitumor efficacy and/or in vivo
imaging capability. In the future, a series of armed oncolytic HSV-1
suited for certain tumor types or certain administration routes may
be used differentially or in combination according to conditions of
patients. Armed oncolytic HSV-1 has high potential as a new genre
of therapy for brain tumors as well as other cancers,
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MWERME (glioma) FEMEMELARTIHENLTH
LA, ATEDES - ERBEORE - EFICLh0b6
¥, WEMEMEZ L D EW glioma O EME T IR
HTRRTH D, Btk glioma ERMOED—2Th B4k
ERESDIENTHHTHEIEHNE L, TOFEEL
T, BECHFSRN 7% i R B O FFAE I & b A~
EHFGEEAME MR NG AICMA, HEHREE KD
LOoRAMEOTENEELRBLLTEIALATY
AV, EMEMEORIcE, HEFEMCERE) v %%
HEZHA®m, FROEEI LA TELNBENLE
Thaont, Bt glioma TN EEOBAF ORI L)
BTG TORELRMTH S,

EtE glioma okt 2 (LA IR, 2005 FEIcREEN
7z Stupp 5 OB MHMREBHRERKBORE, A% 30 F
KTMHTELWADKELERES AN, B ES
T# 5 WHO grade NV OB (glioblastoma; GBM) i
HLTIE WTRMMSIHORE BURBESRICHERLT te-
mozolomide (TMZ) ®:EH#Z5 2T, £0OHI | 2HEE
TMZ 2 & DHEFIE & 1T 2 T { T L AT Rk i i
Lol b ThaY, Bdic TMZ BRIZE ) MY %
WGP IACNLIEAL L LD oTROONDLY, —
AT TMZ B Eu LS $ {, B3FM T3R8 G
Wz, TMZ $FHIC L D %77 (overall sur-
vival OS) OERDHEIF~ 25 P AICBEL W,
TMZ % X OLEMER~OBZ e HWET LR TF2H
SEMMILTW LT, BEIRETFRHL, FLBTH
EFEHLZMIMLEMOELRMI T A0 s
A

FWTIHE., £& LT gliomalcBiF 3 TMZ 248
BT e &UZHT T B BRI PR & TR A A R R 4
SEMAEOMAEENT A,
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1. TMZ BEDOTILFIALRIC X AEBIER E O~
methylguanine=-DNA methyltransferase
(MGMT/AGT) RROMES

TMZ % procarbazine (PCZ) (1E & L TE DNA #?
guanine F&3EMA O°BBALIC methyl &ML, O-meth.
ylguanine (MG) %M+ 5. T/, BCNU % ACNU %
Yo=pPovy LT RIEEKIL FEIS chloroethyl 2
{4 5 Z & T OP-alkylguanine (AG) M+ 25",
O°-AG 12T (#4589 % DNA SO cytosine & AT
TN DNA SHMBEE R 545, TMZIZLD
Hilx 3 0-MG I DNA #B OB thymine &£ 3 A
<zv¥L (O*-MG:T), DNADOZER (GT) #4£EL %,
SO OC-MGTHELEHLTI AT v FHEM (mis-
match repair, MMR) ##i2 & 24 MRIES B { 2%, R
% DNA Bt O-MG 2" BAFT D IZIER ICHEH
ENT, FEOEBRIEAHE Y E SN (futile repair), &
#1891 DNA breaks #%4 L, #il@%E (apoptosis) A*H%5#
EnplEZLATWSY, Glioma #ICBVTIREL
TMZ 2t AMIlEMEEO EESEHShTvwaY,
DNA ¥sBE% TS A O"-methylguanine-DNA methyl-
transferase (MGMT) (2, O-MG/O°-AG % EH %
guanine IZ#EMT 2 Wik £ 827, MGMT 2T O
BUEOTAFAEEREL, DNA LIEMICHS L EE
I MGMT BHUFELSREZARBETH ), o
DNA F3IRI L 3REAHMEALTVEYY (B 1),
L7=#%%>T MGMT BB L T3 HE%", MGMT #
BAKRELTWTH MMR BREMKINL TV 2MEIC
MR IE TMZ o= oy L7 RICEtERRT L E
i 6 ﬂalﬂ.lno

MGMT REFORBEMIIEL LTREFS2E—

¥ — IR epigenetic e A FNALIZ L B L EZ BN,
methylation-specific PCR # (MSP) % HwWw/: ZO#R
DAFLLRITL, mRNA S S wWit&RERBRE
MGMT BEEREE 4 EAMGMT BHro itk & LTHH
ShTETwa", Glioma FHEATIX T0% LA LI
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———
——
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—— /P% Futile
(Rapaired) mismatch
| "
=
B 1 Temozolomide |2 & % DNA 2 F ML & MH
il bR

Temozolomide (TMZ) (2Hi#i DNA @ guanine ¥
% (G) ®OEPLIZAFLEL (@), O-methyl
guanine (O°-MG) 2Bl & 3. MO DNA #
WEFIZ OF-MG 12 cytosine (C) T2 < thymine (T)
£ 3 A< > ¥ L, mismatch repair (MMR) B2 X D
thymine 2*BEFME L2, O-MG IRHFTELD
MMR {EAH 8 DB S h, RIEA9IC DNA QA4 U
BRIEIZF S, Glioma MREIZHVWTIE, TMZIZLE D
DNA BEMREMTOGZ F=v 244 » %
&ML L. @& R mitotic catastrophe #°IE#H & 1L
BFEHELD (M 6). DNA EEBERED O*-methyl-
guanine-DNA methyltransferase (MGMT) i2 0*-MG
Mo AFABEREL, DNA EERICHERT S L R
KLELEFET .

MGMT &t A5l Eh'Y, —5 MGMT REF 70 E—
=GO A F AL (BBIIH]) 1249EH (40~76%)

OIEFTRH 5TV, Glioma & HHERAFME
RoOMEEEHVAERT, SMRKEO MGMT #EiEd
HVIZRFRS ACNU B E B CHMT 52 EH
HahTsh"™, FAMGMT £WEHAL TS glioma
FEHTIR. FRCENMOBERREIZOORTWE™Y,

Stupp & @SN =3 2 HAHRIG RO TMZ #
EOH T HRROEM T, Hegi 613 TMZ iG#EOETF
it MGMT 7O E— % — DA F MLV ROHHALET
FRIERTLIZ LKLY, bhbh L BREFEHIC
£ L TMZ Y % T o 2-EMT, M MGMT &R
ORBEE BEFREEFMM (progression-free survival;
PFS). OS#tE b lcHmicHMTa LEMmELRY.

INEORIZ, MGMT #FATMZ =t VI
THRIOERRICHERETIMELAFHREAFELLE
EEMCRBLTEYD, HHROHRERDLLHICE,

MGMT A H M i3I A F1{E MGMT 70 £ —
Y —OEE L, T F VRSO B EIRT
7. MGMT DM 4+ RE Z A PEELE-TC
Ao LAL. BB AT Stupp b ORBEME EW T 2 BRER
BRI O FERITLEAEL (Y, FERAF ML
MGMT 70 E— ¥ —Tho e LTHHE UM I L (&
N#THD TMZ 285 L wWiafERRENTIE 2w
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—7. glioma & &AM TIZ, NRMALREERALE
T MMR K44 microsatellite instability (MSI) @
MR L R A TLRLAYOEMAT
MMR BEET o MLHL, MSH2, MSH6 OFEB A
2hTHHT, HAEM glioma T MMR BRIERNO
BHiE~OME P2V ETFHEND, LL, BET NV
F LALFI (8 O TR EE glioma T MSH6 OS2 ¥
gah® 37/ R glioma Tid MSI OB AR A £ 5
X h# ¢®, Children's Oncology Group (COG) @ TMZ
MEoS 1 A%E (ACNS026) THLHIMNEDHLN
ot b ¥h 647 (http://www.cancer.gov/
clinicaltrials/COG-ACNS0126), /MBS —#OEMTIE
MMR B4 TMZ RS LTy B iEEL 5.

KBk {, glioma ML T TMZ HBHHC X Y Il
AMoR%E, FLTGHMToME EREhL (G2
Fzv R4 FEK)Y. Hirose 51, HAMBIRIET
@ TP53 A*EH % glioma MR TIZZ OfERA SR, 14
ML e L 7 s bR I E Y, T ORRMAE
PETTEFMBRERCLAWMES AL EEWMEL
™, —%, TPS3 RHEAH S glioma M Tz Z DM
U, DNABE2#F LTI FRM~FED, mi-
totic catastrophe & MR D MilaET S - L1z, TMZ
23 G2Fxy 2#E4r 0Lz G2 WIZIEH
4% Chkl, Chk2, p38 &) »M{LBEEIME LT
Bh, ChbooRERIEZHATT S LT TPSIRE
FREEMFELE S TMZ 122 2RSS MLk
Me2P G2Fzy 7 HA Y A TMZ HBO-HOM
MELaMEELELLATVS,

2. MGMT Zp& L7z TMZ TR

TMZ 0 FEE 45 MGMT iFiE M+ 22 &
i, TMZ~OREHALERL 7 7o—F & LTHEM
THdH. MGMT IEDNA P LT A& LELERET LR
KEETAEREETHLIHHEFMALT. MGMT ®
ERELD5TF - EFRNZ L DA LT MGMT 45
EFRAGNTVAY, ThECHERBRLEDRLA
b T A EHIE 0*-benzylguanine (BG) Th .
O°-BG IFBHOR Y YL R%E MGMT OFHRTH A
cysteine LS X5 2 £ TMGMT % A0z
seif a4, MBMROT W F MR~ ORI 2 M1
Al EPRERTWS, Kt glioma 23 LTI BCNU
xS LARBITDA T VL2, TMZ 2
LTS 1T, RN THREHT S
Twde SORCEE%: 2 0°-BG OF M EIEN T
H25, MGMT MGBH AW 0 hind & EL D ICHE
mEhazn, TMZ oMl ERAHRAS 2 B WL
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Lo OF-BCREBEARE LY, LRRBRTIE BB
HAHES 2o TwaY, RO MGMT A
#l & LT O~ (4-bromothenyl) guanine (PaTrin-2) & B
ERBISEEATVWEY,

TMZ B4 b O-MG OIEH#IZL H MGMT £ ii$E S
+5 kLo, BFRTOMAES T MGMT Fi&
R RAWLC EAME2N™, 2l HMOERES ST
B Mx5-7 0 MKEL & D ETRSEN. TMZ Rt
B glioma Iz LT, BEBKRBRLE LTiTbh
Tvde

MGMT RIZF® mRNABEXHM T2 L1283
HHERRELHASN TS, Natsume Hid, glioma &l
M % interferon-f THMLET 2L TMZ BEHAHME
h, FOE)RL p53 4 L7 MGMT R=TRBEO Y
2k B EEHE LAY, Interferon-8 & TMZ A
MEOS I BRI VR - FREM glioma 1284 L HETT
sh, HESIHRRFHE 2N T3, Cisplatin
MGMT mRNA %BLE9H L, SHELETSE5EMAY
HHEZEMNGhTEY, TMZ LBFRALAMRERFE
24 58 LHREY T bALYY, wFhoRRTH
FEZhHEE(d 20%, PFS-6m i 35%Bi#&. <M PFS #4f20
MATHETH Y, FHREFMIZNT S TMZ Btk To
HHRF (EMH®E 8%, 6-mPFS 21%, &M PFS9 M)
B LEESRESRTE DY, TMZ BRHIC
HLTOMRYISHEEHEE AL LAMFSNE,

3. Ak EEPRERISHE

AR Z 2 M (anaplastic oligodendroglioma;
AO) HiwiBREEREZRERMIEME (anaplastic oli-
goastrocytoma; AOA) Tid, MMIEE (60~80%) i=ifa
#1FEN (1p) BLUTFI9FER (19q) CREFRE
(1p/19q deletions) #*#¥ &h %, Cairncross 57471998
42 AQO DEFT 1p/19q KEAPCV (PCZ+CCNU+
vincristine) MEEEA~O RS L EFFNIMOE R & HK
5T EAMELTURY, RRETFRE LEMREHE,
AHSET L oMY MO IR ShTE L, ShET
DETAH, IhbORMBEFRRICHS DL EFREIELE
HETEZREFIIANEATELY, LA 1p/19q 3k
Ktk | B £ 19 F O centromer TOE D #
THETRBEITREATVE, REORETIE, 1p/
19q 3K %kid PCV ME~DEEDO 22 54, TMZ ~
DREHEDOFHEFTHALZ LOREALTY, Lol
INHOBERBRTIIHERGHEBBEATDS 1p/19
EREBROTNTRRETH Y, COREFREOTFE
I B E~OFNET, Ei2EEEB DTk
AFThamMiEbIEMEATH2Y, BRATI. Z
ZEBEAMETIE 1p/19q R EOHEIZL D RHL

o

iS4

L., K&z AO/AOA (23 L T2 M glioma & L
TOiEM (BATREMOER TMZ) v 880 iER %
B LARERBERNTLIESREL Y,

4. SFREMEICHI DT

Bt glioma B S REFREOMITE LT,
ML T - MIRERIN 2 KA L L TOXRE
LT EWMENHRICHENCHMSTARATAHO,
BoTEAY, MEMETIINM - £FOLDICEOL
S rREEBFAOEFEIMAKTLELLNDZ D
& (pathway addiction), ThoDETF MM L L
THET 25 FRNGERAS MM+ 52580 %
Bl LOEEMERB TV, SFEmEMREL
LT, BCREAMEamAIcs) 2 Phl Riafklo
Ber-Abl #{ZF % #E6Y & L7 imatinib (Glivec) %, L#§
12841 5 Her2/ErbB2 i #¥ % trastuzumab (Hercep-
tin) 2 &, ML HEREROB EIZKRL TETBY,
Bt glioma 2BV TH, BETRLICHDMICERM:E
RTWwa, BIHBAD Y 7+ EE % ik 54 5 BRIk
%M1 % EGFR fETFORETFHNELRETLEZE
Il % OB glioma THMEEICKILER, €0 ty-
rosine kinase domain %8R & ¥+ 2/ FHEN (tyro-
sine kinase inhibitor; TKI) T# % gefitinib (Iressa),
erlotinib (Tarceva) % LA BEICEBERRBMTRASLTY
b

Glioma =X+ A5 FHEMETIE, XL LTHREBF
MAr$s LS THRBEIRESATwE57, Zh
FTHLEZAEGFR TKIs DR 2WAFFE N L I2FE R
+, MisE R 0~25%, PFS#2~34H, 6 A
#0 PFS (6 m-PFS) #%0~26% &, WRIBFREIZHT
ZALEMEN A LA IHABOHERLBR TS
DTREh ol TOEBALLTEROIOETFIERLL
NTWad.

1) ST HENEREIZBTYS CPT-11 % X0 Hi#
L E BEESEEN, IS TAD AR (enzyme-
inducing antiepilepsy drugs: EIAED) WA T CoOREHE
BOETHBOLHh, FOLHOMRSHTOEREES R
THEMDREIBONT, BEROMBEFLELE 2L
EHBNTY,

2) EGFR BEFRENEBEICA LT LM TIE.
EGFR @ kinase i3 T ® mutation #* gefinitib %
CHRELZHERTFTHLZ EAHOMIEND glio-
ma Tit EGFR #{%F @ mutation X £ & L TR ¥
AL ICELBvIIZATTHY, kinase FAA Y IZik
Wik & Mo mutation iFHH 3 1Ly, 18- T EGFR
TKI~OBEEFHOMBELTFRIT2IENFTES

49.50)
Ul °
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@ EGFRvIII

EGF, TGFa

EGFR

B 2 PISK/Akt > 7+ L#EES & - T IRAO M
M fFET S EGFR XY &~ FTh S EGF &
#eTaLiFERibsh, F12& 2 PI3K HRE~REHE
L. PIR2AE A K Aoty Pv—ThdPIPI~

TEWMENSY, ORI PTEN OFET TIZIOM2
NTWE, PIP3ICE h Tkl Akt, mTOR & E® ser-
ine/threonine V) >~ M{LEEEANEMEL S h, MELMAE
i kUMM O S Y F ARt s hb, ERE
EGFR (v II) 12 EGF - fEfF M IcEMmISEREL T
vwd, B glioma TIRMMET PTEN A RELTEH
h, PIP3, Akt D ¥ ¥ F LA ERLELTVWE LD,
EGFR B #(=nz T PI3K/Akt & 7 4 Vo [ R HE
L AR MFE LD,

3) Glioma T, BETFRH¥ICHVER{ELEhDZ
s EE RV IFMERERICL ), HEMROESLE
W AR ELA b o6 EL b, EGFR 2 EOMER
FZ% 4k, PI3 kinase (PI3K)/Akt/PTEN/mTOR #*5
O #ERE. Ras/Raf/MEK/MAPK F@#E#S. sonic hedge-
hog/PTCH ®#R7% &, TR ENHPMILICH ML
LA SMMICEEL - R EhTwaEEz o (B
2), Fo—HoliErHELTL, toEROL I
EHICI ) FOHRELSRERS N EVITEEND L. Mel-
linghoff &1, BB¥MEIZ43v»T EGFRv 1 &£ PTEN 210}
FEARBLTWSD S &2, EGFR TKI Oi#ARE in
vitro T E &4, BELOHTECHEBREDS LAENT
AZEERLEY, B, PTENORE - REILLY
PI3K/Akt ® ¥ 7 + LR EEAL L LRETI,
EGFR #* HE+ 204 TiIHMEDRRBLNT, [
DAkt DA RES 7PV ERET LI LD
EGFR TKI ~O S48 5 22O Wg & 7 5 R
ARLTWD. £BEIZ Wang 63, PTEN &% L
EGFR 8\ i EGFRv M#MA#HAL Tv 2 BF MM T
12, PTEN/PI3K ¥ #+ LTI+ D mTOR @
P #) rapamycin TH#T 4 2 & T, EGFR TKI 2 &
LN - MRS EA L EREL TS
0, PTEN %6 OB EEHIEO—BHEZ 2 2 EAFR
s, ok, HEoOMRM Y+ VERD
WL 2 S MEHMICMS LTwAEERS
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o
N, ZEBII7FLVEEIC L HEGRINFENS,

4) BOSFIo L 23 7+ VERO negative feed-
back 7. PTEN SR EMOMMTE, Akt &
4+ LT mTOR #%i&#{L+ % &, mTOR i3 Raptor & ra
pamycin BEMOWAKEHAL, TORKE negative
feedback b= & ) Akt EEAFIM EN Y. LT,
mTOR # @+ 2 L 20 feedback 2408 s h, ML
#o Akt EHANIN L, WGBS MIET L E
HAtEz 5B, OReilly 513 mTOR OHFEMETH S
rapamycin #{&® RAD001 & A\ 7- 70 - KIH#E 0
B REES in vitro TOWAR~OHEHIZBLT, #R
fic Akt ATEHE LR LR HREL. AtEROL
A FFICEET 2 & CmTOR HER~OMEEH
ABHOLNAET EERLAY, E#LMEE glioma 2
#12 EGFR/MAPK ¥ 7+ L Th & 60™, M5
FoOL2L LS FAy bT—20BHANSELY
BRI RO LIS LEE 2D Y,

5. MAEMEHMER (Brain tumor stem cells; BTSC)

SEAE, BTHNEEE S MEIEL Do RO fFE
AHLII D EE b, BMRERVA BRSO
EHICWT 2MRNL bbb L)t hoTE. B
MR I 3R O A IF CAEEMICH R ED T AL
25, EOMEEPOM A LRI b AR OTE
AESHMCSNTEY, AR TEHERMRAEE S
nTWwa, HEHBEoHIcs, —HICHCHRELRD,
MO R VIR OB % b oMl OTFAEN
s, COL I ENBICARITELEDE LN
#4188 (cancer stem cells; CSC)” O EATER 2 #HT
"\'6“"}

Bl =35V T b, glioma HINEHEL 1S3 NE - f3FIE %
L% S AR (brain tumor stem cell;
BTSC v 12 brain tumor stem-like cells) %377 BiXEs 3]
EThHDZ ENMESAL™ (B3), BTSCI, =7
At KBTS LSBT S MBS .
—a—or, BN, dEVEZRERARLEEDS)
FTHIB~OZFLEERFTHEL LIS, WEOBOH
WiELEE, MBS Mb s MEFREEH IR LR
Sl EZ GATVWEY, SokH) LM, BERE
Fo EGF & FGF2 % ifthn L -3 v+ 2 L HiEH
“Ha & iz neurosphere & TERE L, FhEEHi SEHIE O
2 —H—Tdh 5 CDI133 WYEMA & v 5 s BT 5%,
BTSC i24%if{a %l T3 5 Hoechst 33342 i % Wik
A LTV 24088 (side population, SP#IRE) &L
T b rat glioma C6 ML 2 & 58 = 0 £-A%", Bk
CDI133 Bett, JESP#REIZSL BTSCAHFETHI L LM
EshTVaY,
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cmmn factor [Differentiation| [R pltulaﬂon
' of brain tumor
ulnodondm:vho. "
& +EGF, FGF2

N h
eurosphere ﬁ

formation
? ! Extensive self-mnewali
. LA AR R R Y]

CD133+

Irradiation ° o |Generation of|___ > Tumnr
Chemotherap BTSCs ““! °‘° progenies formation

Tumor recurrence

Tumor shrinkage
(Enriched BTSCs)

[ 3 BEBR@5EHEM (brain tumor stem cell BTSC) {H# & BTSC = & 2 ¥miHE

Glioma % X' BtE RIS HEA 12 124 80 BTSC PEFHFICET 5 niche K8
LTHETLEZELGN, THSGRBICIVACHEE THRE LS MEMRYEE S
Ld, MAHRE LA UM T 520, B iEAERO BB 20T w
DL, BTSC 384 LW CGRMtz aa$uv) 2X ) MEttoBtbok
ELZOhTEY, MBI ELRFL, JIaREMEBHR - BEOBKE L. (BE

#M 3 T3 BTSC (M 2 iR £ 8 ICitR L 2.)

A% pid, BTSC L HUHBR MRS O G~ O
LR TERE LS, EEEESOGRHED—FE
AT EETH L, HRHERL, TOFHRTDH LM
FEL T MRS <D & —RIcTREESEL, i
A OER DRI LV GO MDA SV L, B
HHEMRAEZ4ES ABC A& P2 SLHBEME 5 > 2
F—F—DRH, DNA #EHEERM D ITHE 4 apoptosis ~
WL Er Rt EELLNTVD,

HHRAREICB G A EFHERE R T M E LTI,
Michor & D84 F 8t O mAMRIZH T 54 vF =7
Bt OHRF RO EL RN L2ANEYH 2, Al
MDA, AvF=TFTOWMSTTFTh S Ber-Abl
MERHDEROZ VMRS S iLSLa w1
TFTHMIZL DRI T 200 EREoL v
MR OB MR L, A IR &
LTHMME & ¥4 2 eAFENT: Glioma W T
LEHMICRERAREETTHREN L Eh T,
Kang %12 glioma #latke® A172 LB F M4 5 BCNU
CEHMEA TR TR B L2225, Thoofl
faod iz CD133. CD45 e rodilakifiv—4—%#8
L, #5rLiEE 45, SCID =9 AR %
TABTSCHAEETNTWAZELRLAY, Liu 5i2E
S o 9 W13 M AIBE A & CD133 e iEsiia s ol L 7: &
ZA, INHOHMNLIE glioma ER M S LD A
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@ TMZ. carboplatin, etoposide % paclitaxel {2 W%
AL, ENEENLREFTSHD MGMT 42 BCRPL. T
= FLIP, Bcl-2 % ¥ @ apoptosis M1#){ZF® mRNA
REFMAEICAELTVRLRELTWEY, 851
BCRP1 i=fnZ, WAHEERMEIZMH S ABC b7 ¥ X
H—=p = A== TF7 7 3)—i2KT 3 MRP1l, MRP3
HZEORBAENCDIBWEO BTSC TREATY
T/, E{OFMF EFMICDNA BELELT
BB ERICEE 2R TRz CD133 B
BABEIZSEATEN, TheD#ATIE DNABE
HEHABRORGTEVZDoh, TOREZELLT
Chkl. Chk2 FEtickIFF LTzt D bH 5%,

B RER P LERIEICH L BTSC 6 4{E LIEK
AN RETEERTIBATY, BTSC IZih#st
ELEFL, BUNMEMEEEE T L THILLE
MLBREELT, BI5, 6% L BTSC 2 A& BE
TELHEMTHITNE, MEOHRE - BRKREL LW
ZEkA-d, BTSC, #ivit oMigicBiT 5ttt
WERTFEN L OAERTEL WM 2 WELMR - 57
FHEHELDAZEZEAOND, BE, WiERMlOE
b MEL RS % -+ BMP (bone morphoge-
netic proteins)-BMPRIB O#8l & STAT #4rLiz¥ ¥
+ A%, BTSC MR & Bl 5 L O,
Hedgehog-Gli & 7+ VEBIZ & 5 BTSC ¥k o6l #8074



