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Table 1. Actual type I error rate (%) under the rule (6) (Nominal type | error rate a = 2.5%).

Conditonal power  Desired power Information Size of Nmax

Boundary Q (%) 1-8 fraction t 1.25Ng  1.5Ng 1.75Ng 2No 2.5Ng
0.2 2.52 2.52 2.53 253 2.53

0.8 0.5 2,54 2.55 2.55 2.55 2.55

0.8 2.44 2.38 2.34 232 228

0.9 0.5 248 2.46 2.45 2.43 2.42

0.8 2.32 2.19 2.11 2.05 1.98

0.2 2.51 2.51 2.51 2.51 2.51

08 0.5 2.50 2.49 2.49 248 247

0.8 2.37 2.29 2.24 2.21 217

0.9 0.5 2.45 2.41 2.38 236 233

0.8 2.25 2.10 2.01 1.94 1.87

0.2 2.50 2.50 2.50 250 249

0.8 0.5 248 2.46 2.45 2.44 2.43

0.8 2.32 2.23 2.18 2.15 2.12

15 _._..6.-_2.._....‘........‘?...&‘9 II-I.“I-i:a.s...II"."5:4.5.'I.'“.é.:a.?"““"é-'-‘i-f“"

0.9 0.5 2.42 2.38 2.34 2.32 2.29

0.8 2.21 2.05 1.95 1.8  1.82

0.2 2.50 2.49 2.49 2.49 2.49

0.8 0.5 247 2.44 2.43 2.41 2.40

0.8 2.29 2.20 2.15 2.12 2.09

20 ot ——— e i et R v

0.9 0.5 241 2.36 2.32 2.30 2.27

0.8 2.18 201 1.91 1.85 1.79

not materially inflate the type I error rate. Also if conditional power boundaries are 15 or 20 %,
the actual type | error rate is controlled under the nominal level (2.5 %) in every scenario. Thus,
under the prespecified rule (6) and a given scenario, one can set a conditional power boundary
without inflation of the type I error rate based on Table 1.

The sample size re-estimation rule based on (6) depends on the size of Npnax as well as
those of M and CP(t,z,6 = 5) In real clinical trial settings, the size of Npax is a function of
various factors such as the size of potential eligible patient population, budget for development
and competition in the market, and the required size will be changed according to the situations
of the trial concerned. Therefore, to determine re-planned sample size N with more flexibility,
we propose another re-estimation rule in terms of the minimum required sample size ratio under

the decision of increasing sample size, that is,
No if CP(t,z,6=48)<Q
N={ Ny if CP(t,2,6=0)>Q and M < No, (7)

> TmindNo (Pmin > 1) if  otherwise
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Fig. 1. Maximum type | error rate versus r,, (power 1 —8=0.8).

where rmin is a constant value larger than one. According to the rule (7), although one must
accrue at least (rpin — 1) Np subjects in addition to the initial planned Ny ones, if one decides to
increase sample size, one is allowed to set flexibly an upper limit of re-planned sample size N.
We will now consider the control of the maximum type I error rate under the rule (7). The
maximum type | error rate amax is a+ E{I(r > rmin)Amax(r,t,2)}, where Apax(r,t,z) is the
maximum value of A(r,t,z) given t and 2 in r > ry, (see Appendix B). Figure 1 shows the plots
of Gmax against rmin under the various scenarios. One can see that the maximum type I error rate
Gmax decreases monotonically with the increase of the value of ry,,. Table 2 shows the minimum
required value of rmi to control the maximum type I error rate under the nominal level, at which
the line in Figure 1 crosses amax = 0.025. When the conditional power boundary () is set at 5 or
10 %, the minimum required value of ryiy is about 2 at small information fractions, which means
that the minimum required final sample size is 2Np per group. In practice, the smaller value of
Tmin 1S set in the rule (7), the more fexibility will be obtained in the decision of final sample size.

Therefore, we will set the conditional power boundary Q = 20% in the simulation studies.
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Table 2. Minimum required value of ry,, to control the maximum type I error rate under

the nominal level of 2.5%.

Conditonal power  Desired power

Information fraction ¢

boundary Q (%) 1-8 01 02 03 04 05 06 07 08 09
0.8 20 26 23 20 18 16 14 12 11

5
0.4 19 1.8 1.7 15 14 13 13 12 11
0.8 19 1.7 1.6 15 L4 138 L2 X1 Nl

10
0.9 id 14 18 1.3 12 19 13 131 1a
0.8 1§ 1.4 18 1.3 12 12 11 11 1)

15
0.9 S S = . O U G T O 1 A =
0.8 18 12 12 12 11 LT 33 1.1 14

20
0.9 12 EY 13 43 L0 1 oad 1y 1A

3. Simulation Studies

3.1 Settings of simulations

We compared three methods of sample size re-estimation via simulation studies, which are
the proposed modified CP approach, the original 50 %-CP one based on the rule (6) with Q = 50

and the weighted Z-statistic one based on the rule (2). In the simulations, we used the following

rule as our proposed approach,

[ No if CP(t,z,6=48) <20
No if CP(t,z,6=46)>20 and
N =4 rmnNo #f CP(tz6=4)>20 and
M if CP(t,z,6=48)>20 and
| Nmex  f CP(t,2,6=08)>20 ond

where roin = 1.1 or 1.2 according to Table 2.
Table 3 shows the settings of several design parameters. émin and d,~ denote a minimum
clinically relevant and a pre-assumed effect size, respectively. a, 4, dwin, 8pre and Niay were fixed

values, and 18 scenarios of data were generated based on the combination of 4, t and Np, that

Table 3. Settings of design parameters in simulations.

M < Ny

M 2 Nmax

No < M < rminNo

[ ]

TminNo < M < Npax

Nominal Desired Minimum Pre-assumed Maximum  True Information Initial
type | power  relevant effect effect size sample size effect size fraction t  sample size
error ratea 1 -3 size dyin dpre Nmax 5 No
0.05 02
0.025 0.8 0.18 0.22 500 0.2 0.5 s
0.3 0.8
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is, 3(8) x 3(t) x 2(Np) = 18. The three values of § = 0.05, 0.2 and 0.3 represent the situations for
true effect size as nearly zero, moderate and large, respectively. Two values were considered as
initial sample size No, where both of them represent the situations for smaller sample size than
that calculated from the formula (1) under a = 0.025, § = 0.2 and ;. = 0.22, that is, Np = 324,

Assume that patients enter the trial with a uniform process at a fixed rate per unit time.
An outcome variable Y;; for subject i(i=1,..., Nmax) in group j (7 = 1,2) was generated as
normally distributed random variables with their mean, p; =4 and u» =0, respectively, and
common within variance o> = 1. At an intermediate stage ¢, the estimate of effect size § and
the conditional power defined as (4) were computed from the first n (i = 1,..., Not) subjects per
group accumulated so far. Re-planned sample size per group N was determined based on each
rule (2), (6) and (8). Finally, the test statistic based on 2N subjects was computed from (3) and
(5). The above process was replicated 10,000 times.

We compared three methods in terms of several operating characteristics such as power and
average sample number (ASN). The overall and conditional evaluations were conducted, where
the former is based on all cases including N = N, while the latter is based on only the cases of
increasing sample size (N > Ng). In the latter evaluation, several characteristics can be compared
conditional on the decision of sample size adjustment.

3.2 Results

Table 4 shows the results. We presented only the case where ¢ = 0.5 Lo save space, because
similar results were obtained in other settings. In Table 4, Power(Ny) and Power(/NV) are powers
based on fixed design of Ny and re-planned N subjects, respectively, ASN is the average sample
size, Ny is the required sample size for the fixed design to achieve the same power as Power(N),
Pr(N > Nu) is the proportion of the cases of increasing sample size, and Pr(N = Npay) is the
proportion of the cases of increasing sample size to the maximum number.

We first consider the case of & = 0.2 (moderate treatment effect). In the overall evaluations
at No =300, the proposed method (20%-CP) increased power 7% compared with the fixed
design, while its gain in the original one (50 %-CP) was 3%. The weighted Z-statistic approach
(weighted-Z) attained the highest power (0.84) and had the largest ASN (400), because the
approach decided to increase sample size more frequently, that is, Pr(N > Ng) = 0.60 and Pr(N =
Nmax) = 0.42. Two CP methods had nearly the same efficiency as the fixed design (the ratio
ASN/N; = 1.02, 1.00, respectively), while the weighted-Z was a little more efficient (ASN/Ng =
0.93). In the case of small initial sample size Ny = 100, the proposed 20%-CP increased power
9%, improving the gain of the original 50 %-CP (2 %), while both CP methods had the far below
power from the desired power (0.8). Although the weighted-Z improved the power much more
than CP methods owing to the much more frequent increase of sample size, it could not reach

to the desired power and its efficiency was less than the fixed design.
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In the conditional evaluations at Ny = 300, the power gain of the 20 %-CP compared with
the fixed one was 20 % and it was higher than that of the 50 %-CP (12%). These conditional
Power(N) were higher than that of the weighted-Z, which means that the power of the weighted-
Z given the increase of sample size was low, although it increased sample size more frequently.
For the conditional ASN, both CP methods were more efficient than the fixed one, while the
weighted-Z required additional about 100 subjects compared with the fixed one. Furthermore,
the conditional A error given N = Ny, was high in the weighted-Z, which means that there were
much possibilities of not detecting the significant result in spite of increasing the sample size to
its maximum. When Ny = 100, the power gain of the 20%-CP (27 %) was much larger than
that of the original 50 %-CP (12%). While there was no difference in the conditional Power(N)
between the 20 %-CP and the weighted-Z, the conditional 8 error of the latter method was high.

Next, we consider the case of § = 0.3 (large treatment effect). As was expected, when
Ny = 300, the overall power of the fixed design was high and power gains in three re-estimation
methods were little. There were no remarkable differences in the ASN between three methods.
When No = 100, overall power gains in the 50 %-CP, 20 %-CP and weighted-Z compared with
the fixed design were 3%, 10% and 33%, respectively, while there was no large difference in
the conditional Power(N) between the 20 %-CP and the weighted-Z.

Finally, we consider the case of § = 0.05 (nearly zero treatment effect). The weighted-Z
increased sample size erroneously in more than 90 % case and most of them were attained to its
maximum (in result, ASN were nearly Np..), while cases of sample size increase by both CP
ones were fewer than those observed at § =0.2. The ASN of the 50 %-CP was nearly the same

as the initial sample size Ng, while a few increase was observed in the 20 %-CP.

4. Discussion
4.1 Implications from simulation resulis

In this paper, we proposed a new sample size re-estimation method based on the rule (7) and
compared it with the original 50 %-CP and the weighted Z-statistic ones. Our proposed method
can control the type I error rate flexibly due to the restriction on the minimum required sample
size ratio Tmin. For example, rmin = 1.1 implies that the type I error rate can be preserved under
the nominal level if at least 1.1 Ny subjects per group are accrued, even when re-planned sample
size based on the rule (6) is 2No = M < Nuay. As shown in Table 2, when the conditional power
boundary @ is set at 20%, most of the values of rmi» are 1.1 or 1.2 and thus, the requirement
will not be so impractical that the final sample size can be determined flexibly accounting for
circumstances of the trial concerned. Furthermore, we calculated the possible inflation of the
maximum type 1 error rate under ryg, = 1.0 and Q = 20, and it was found to be 0.05% in
the worst case. That means the type I error rate would not be materially inflated even if the

restriction was not kept at all. Thus, we recommend @ is set at 20%. On the other hand, when Q
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is set at 5 or 10 %, the values of rmin are more than 1.4 especially at small information fractions.
In real clinical trials, since the minimum sample size increment will be influenced by not only
predictable factors but also many uncertain ones, one may hesitate to make a decision based on
an interim result at an early stage. In other words, it is not recommended to consider increasing
sample size at a very early stage with little available information because of the imprecise estimate
of effect size as well as the possible inflation of the type I error rate.

It was confirmed from the simulation results that the original 50 %-CP method is conser-
vative, because the probability of increasing sample size Pr(N > Ny) was small with the result
that the overall power was nearly the same as the fixed design. On the other hand, our proposed
one increased power about 10% compared with the fixed design by setting the value of @ to a
lower one. Therefore, the proposed method is more useful for reducing the risk of not detecting
the treatment effect of medical interest but slightly smaller than what was expected.

The conditional power of our method was higher than that of the weighted Z-statistic one,
although the latter was superior in the overall power. In real clinical trials, additional costs must
be paid for increasing sample size as well as conducting an interim look. Therefore, it is also
important to improve the conditional power when actually there is a treatment effect. Using this
high conditional power characteristic, the proposed method can be applied as follows. Consider
a large prevention trial, in which a huge amount of fund will be needed to accrue a large number
of healthy subjects in a fixed design with a power of 90 %. Because the existence of a clinically
meaningful treatment difference is usually uncertain, researchers have to take a considerable
economic risk and thus hesitate to start the trial. In this scenario, initial sample size calculation
is conducted based on the minimum required power such as 70 % or 80 %, and if the conditional
power based on the interim estimate of effect size is greater than 20 %, sample size re-estimation
using the rule (7) is conducted to obtain the target power of 90%. Such a strategy is useful for
reducing not only the economic risk but also the conditional average sample number.

When considering sample size re-estimation, it is also important to control the error proba-
bility of increasing sample size under no treatment effect. The error probability of the weighted
Z-statistic one was very high (93 % in No = 300 and 94 % in No = 100}, while that of our method
was small (24 % in Ny = 300 and 20% in Ng = 100). Furthermore, the probabilities of attaining
a maximum sample size were 84 % and 16 % (No = 300), 60 % and 0% (No = 100), respectively.
Increasing sample size when the interim result shows no treatment effect usually requires a dra-
matic sample size increase which may not be affordable in practice and waste limited resources,

Despite our method’s superiorities over the weighted Z-statistic one in terms of the condi-
tional power and probability of erroneously increasing sample size under no treatment effect, our
method was inferior in overall power, especially for small initial sample size. The feature is due
to the lower probability of increasing sample size under a moderate or large treatment effect than

the weighted Z-statistic approach. Furthermore, because the conditional power CF(t,z,0 = 8),
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which is used for the decision whether or not to increase sample size, is based on the initial
sample size, and the chance of increasing sample size will become less as the smaller sample size
is planned. Thus, the conditional power boundaries in our method should be tuned on account
of such trade-off between the high conditional power and low erroneously increasing probabil-
ity, and the low overall power. If a trial sponsor overwhelmingly regards the overall power as
importance, one should use the weighted Z-statistic approach.

In real clinical trials with a confirmatory purpose, it is usual to take a conservative approach
so long as researchers do not have a firm prior information on treatment effect, and is rare to
assume a large treatment effect. When actually there is a large treatment effect, initial sample
size will be larger than true required one, and all sample size re-estimation methods including our
proposed one will add the extra subjects. However, in this situation, if sample size re-estimation
is considered in the context of a group sequential design, the formal interim analyses will stop
the trial for efficacy in the presence of an overwhelming treatment difference, and thus, the above
mentioned problem will not be much concerned.

4.2 Group sequential settings

As argued by some authors (Cui, Hung, and Wang, 1999; Shih, 2001), it may be more
attractive if sample size re-estimation and efficacy interim analyses can be used in the same trial.
The proposed method can be extended to a group sequential trial, where a decision may be made
at the interim analysis to stop the trial early due to a convincing treatment benefit or to increase
sample size if the observed result is not as good as expected. The extension must take account
of not only the multiplicity of the hypothesis testing, but also the distributional change in the
final test statistic due to the early stopping by interim analyses. Small limited simulation studies
were conducted to evaluate the behaviors of our proposed method in the setting of a group
sequential design. The relationships between o and ryu, were not different from Figure 1,
and the values of ry,;, to control the maximum type I error rate under the nominal level were
essentially the same as Table 2. However, in futility stopping settings, our simulation results
might change on some aspects. For example, if a large futility stopping boundary is set (e.g
stop a trial for futility if CP(t,z,d = &) is less than 10%), differences in conditionally evaluated
characteristics between the CP and weighted-Z methods become moderate due to the conditional
type II error rate reduction of the weighted-Z method. Differences in the error probability of
increasing sample size under no treatment effect might also become moderate. When the required
sample size is far above the maximum sample size, it is not ethical to continue a trial with sample
size adjustment. Further research is needed to assess the characteristics of those re-estimation
methods with various futility stopping criterion.

4.3 Some remarks

Although sample size re-estimation is an appealing design, it should not substitute for careful

planning of a trial (Gallo, and Maurer, 2006; Schafer, 2006; Wittes, and Lachenbruch, 2006). One
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must note that both CP and weighted-Z approaches cannot improve the power to the desired
level when initial sample size is much smaller than true required one. As described by many
authors (Chen, DeMets, and Lan, 2004; Gould, 2001; Shih, 2001; Hung et al., 2006; Koch, 2006),
important regulatory and logistical issues remain unresolved such as who will see what data; what
knowledge of the trial result needs to be protected from investigators, patients and the sponsor’s
management; how to minimize possible influence of sample size re-estimation on investigators
and patients behavior during the trial; whether or not the knowledge from external trials will
have adverse influence on the current trial, etc. While many discussions on such issues have been
conducted in the above referred papers, and the PhRMA Working Group on Adaptive Designs
(Gallo et al., 2006) was formed in order to develop general consensus, the further research at
individual trial level is still needed to investigate the impact of such a decision based on unblinded
interim results on the conduct of the trial, to find ways to protect the integrity of the study, and

to assess the risk benefit of such designs.
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Appendix
A. Calculation of the actual type I error rate under the rule (6)

From the equation (4), the value of test statistic at an intermediate stage under the assumed
CP boundary Q, zcp=g, can be written as zop=g = VE(VI— (07 (Q/100) + za). Let 2x=) =
Vi(za +28) and 2ya_n,.. /N0 = mua + z3), because there is a relationship between
z and A =0pre/d as 2° = t(za + 23)2/A%. Using these notations, the rule (6) can be written in

terms of the sample size ratio r as,

1 if z<zcp=qQ
1 if z22zcp=0 and z 2> zx=1

T = .
p if z2zop=q and 2xi_pN_ . /Ny <2< Zr=1

Nmax/No if z2z2cp=q and z< zya_n_ . /Ny

zop=q is always less than zy2_p,  /~, under the settings in Table 1. Thus, the actual type |
error rate under the rule (6) is

o+ E{I(r>1)A(rt,2)}

FA2= Nmax/Np Eal 2
~a+ [ A(r = Noas/Nost, 2}z + [ A(r = X1, 2)p(z)dz,
2CPmQ *A2=Nmax/No
where for any proposition A, I(A) equals one if A is true and zero otherwise, and () is the prob-
ability density function for a standard normal variable. The above integrations were performed
with Mathematica 6.0.

B. Calculation of the maximum type I error rate under the rule (7)
Let Tpeak is the value of 7, which gives the maximum value of A(r,t,z) given t and 2 in an

r (> 1). Since A(r,t,z) is an unimodal function of r given ¢ and z, one can obtain Tpeax =t (z—"')
FA

: a y ; ; .
by solving a—A(r,t,z) = 0. Note that rpeax is a decreasing function of z given £. When 7 > rmin
under the rule (7). the value of Agax (7., ) is determined according to the size of rpeax and rmin,
that is, Tpeak gives the maximum if Tmin < Tpeak, while rmin gives the maximum if Tpeak < Tmin-

Thus, the maximum type 1 error rate under the rule (7) is

Cmax = O+ E{](T‘ > rmm)Amu(r‘fq;)}
*Tpeak="min
=a+ / [I(z2cP=q < 2rjeay=rmin )A(T = Tpeak: b, 2)
2cp=qQ

¥ {] —I(zcp=q < ':rpralt;rmln)}"h{r = T".....!._z}]tp{:}dz

+]"A—1 A('l":?"min.f.,z]p(;}dz‘

z L
Tpeak = Tmin

2

where zr_ . =rmin = ZaV/t/Tmin is the test statistic at 7peax = t( ) = T'min. 1he above inte-

grations were performed with Mathematica 6.0.

an
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A meta-analysis is a useful method for taking the findings of many studies and combin-
ing them in the hopes of identifying consistent patterns and sources of disagreement
among those findings. While we interpret the average exposure effect, it is necessary
to examine the homogeneity of the observed exposure effects across cohort, that is,
exposure-by-cohort interaction. If the homogeneity is confirmed, the conclusions con-
cerning exposure effects can be generalized to a broader population. In this paper, a
Poisson mixed effects model is used to investigate the cohort effects on the exposure
as well as on the baseline risk. The marginal posterior distributions are estimated by
a8 Markov Chain Monte Carlo method, i.e. the Gibbs sampling, to overcome current
computational limitations. We illustrate the methods with analyses of data from
the Japan Arteriosclerosis Longitudinal Study, in which the effects of smoking on
stroke events are examined based on the individual data of 23,860 subjects among 10

cohorts,

Key words: exposure-by-cohort interaction, Generalizability, Gibbs sampling, Pois-

son mixed effects model.

1. Introduction

Smoking is known to be associated with an increased risk of cardiovascular disease (Peto
1994). Although many epidemiologic studies in Western populations have also identified smoking
as an independent risk factor for stroke (Colditz et al. 1988; Wolf et al. 1988; Shinton and Beevers
1989), its relationship in Japanese people living in Japan remains inconclusive (Hirayama T
1981, Nakayama T et al. 1977; Kiyohara et al. 1990; Tanizaki et al. 2000; Yamagishi et al. 2003;
Mannami et al. 2004; Ueshima et al. 2004; Tso et al. 2005).

A meta-analysis is a useful method for taking the findings of many studies and combin-
ing them, in the hopes of identifying consistent patterns and sources of disagreement among

those findings. When conducting a meta-analysis, as many authors have stressed (Rothman et
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al. 2008), analysis of heterogeneity can be the most important function of meta-analysis. There
is ordinarily no basis for assuming that the relative risk is constant across study cohorts. In fact,
there are many situations that imply heterogeneity; for example, study cohorts are different not
only in distributions of background factors such as age and sex, but also in environmental factors
such as weather conditions and dietary habits, which are difficult to account for explicitly in the
analysis.

The standard form of heterogeneity analysis is to regard the cohort as a stratification vari-
able, that is, fixed effects, and to examine the exposure-by-cohort interaction by the analogy
with ANOVA F-tests for interaction. However, small numbers of events per cohort and large
numbers of confounders are often the case in most epidemiologic studies. In such cases, the loss of
efficiency of analysis may be severe, if the cohort effects are taken to be fixed ones. Alternatively,
in this article, we treat the cohort effects to be random ones in order to investigate the cohort
effects on the exposure risk as well as on the baseline risk. The resulting statistical model for
the observed data is a mixed effects model (Fitzmaurice et al. 2004; Greenland 2000), with the
effects of exposure being fixed and the effects of cohort being random.

In some special cases such as the linear mixed effects model, the integral involved the likeli-
hood function has a closed form, and ordinary iterative algorithms for maximizing the likelihood
are used to obtain maximum likelihood or restricted maximum likelihood estimates for unknown
model parameters (Laird and Ware 1982). For most nonlinear models such as the logistic and
Poisson model, however, the likelihood function does not have an analytical form. Thus, one of
the problems for fitting the generalized linear mixed effects model is the difficulty of the esti-
mation of model parameters due to the requirement of the numerical integration techniques for
calculation of the log-likelihood (Breslow and Clayton 1993). A variety of numerical approxi-
mation methods for maximizing the likelihood have recently been implemented in commercial
software packages. For example, PROC NLMIXED in SAS directly maximizes an approximate
integrated likelihood where the integration over the random effects is achieved using Gaussian
quadrature (Pinheiro and Bates 1995). PROC GLIMMIX in SAS uses the linearization (Tay-
lor series) methods known as restricted pseudo-likelihood estimation with an expansion around
the current estimate of the best linear unbiased predictors of the random effects (Breslow and
Clayton 1993; Wolfinger and O'Connell 1993).

As Fitzmaurice et al. (2004) have commented concerning the use of the above procedures,
convergence of the algorithms should never be taken for granted, that is, neither should con-
vergence to a global maximum be assumed. Their limited experience with these procedures
indicates that it can be very sensitive to poor choices of starting values and/or the numerical
accuracy of the quadrature used. In fact, in the analyses of the Japan Arteriosclerosis Longitu-
dinal Study (JALS) data which are motivated example in this paper and are described in the
next section, the algorithms by the NLMIXED/GLIMMIX procedures did not converge. For
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this estimation problem with intractable high-dimensional integrals involved in the likelihood,
Bayesian approaches have been proposed to avoid the need for numerical integration by taking
repeated samples from the posterior distributions (Zeger and Karim 1991).

In this paper, we propose to use a Poisson mixed effects model to investigate the exposure-

by-cohort interaction, and use a Gibbs sampling technique for model parameter inferences.

2. Methods
2.1 Study Population

The aim of the Japan Arteriosclerosis Longitudinal Study (JALS) is to investigate the risk
factors for arteriosclerotic disease specific to Japanese population (Japan Arteriosclerosis Lon-
gitudinal Study (JALS) Group. 2008). The JALS is composed of two studies: one is a pooled
study based on individual patient data of existing prospective cohort studies in Japan, which
has been conducted between 1985 and December 2001, the other is a prospective cohort study,
which is on-going since 2004. In this paper, we used data from the former study, in which a total
of 66,691 men and women with baseline records on such as age (year), gender, BMI (body mass
index) (kg/m?) and history of smoking were registered in 17 regional cohorts and 4 occupational
cohorts. The subjects had also several medical check-up data including medical history and
laboratory tests.

In this paper, we excluded following subjects from the analyses; those who belonged to the
occupational cohorts, because our focus was on the regional cohorts, those who belonged to the
regional cohorts where data on stroke event was not observed, those aged under 40 or over 90
years old, because of the small numbers of subjects and stroke events in those age categories,
those who with a history of stroke, and those who have missing data on a history of smoking
and confounders. The final analysis population consisted of 9,087 men and 14,773 women in 10
cohorts. The endpoint was the first occurrence of stroke, comprising fatal and nonfatal event of
ischemic stroke, hemorrhagic stroke and subarachnoid hemorrhage. All outcomes were classified
according to the ICD-9 (9th revision of the International Classification of Diseases) until the end
of 1994, and according to the ICD-10 since the beginning of 1995.

2.2 A Poisson Mixed Effects Model

We propose to use a Poisson mixed effects model to investigate a smoking-by-cohort interac-
tion adjusted for age (< 65 or > 65 years), SBP (systolic blood pressure; < 140 or > 140mmHg),
BMI (< 25 or > 25kg/m?), current alcohol drinking status (yes or no) and history of DM (dia-
betes mellitus; present or absent). All analyses were stratified by gender.

A form of the Poisson mixed effects model used for the analyses can be expressed as,
log E(yi; | bi) = logti; + Bo + Bixiy; + vzi; + boi + brixy; (1)

where y,; represents the event variable (y;; = 1 if stroke is observed, y.; = 0 otherwise) for the jth
subject (j = 1,...,n;) in the ith cohort (i = 1,..., N); t;; represents the person-year of follow-up;
Jpn J Biomet Vol 29, No.2, 2008
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x4, represents a smoking status; z,; represents a vector of covariates stated above; the parameters
3 and ~ represent the fixed effects corresponding to x;; and zy;, respectively; bog and by, represent

the random effects for the ith cohort, which are assumed to be normally distributed,

bos ~N 0 ‘ din  diz ‘ (2)
by 0 dia da2
In the model (1), the random effect bg: is the deviation of the ith cohort from a baseline risk,
while by; is the deviation of the ith cohort from an average smaoking effect 5, that is, smoking-by
cohort interaction.
2.3 TFull Conditional Distributions for Each Parameter
The Gibbs sampling is simply a technique for generating random variables from a difficult
joint distribution indirectly without calculating the density. The mechanism is based only on
elementary properties of Markov chains (Gelfand and Smith 1990). Gilks et al. (1993) have
reviewed some applications of the Gibbs sampling to Bayesian models in medicine. To perform the
Gibbs sampling, we require the full conditional distributions for each of the unknown parameters
of the model.
In the Bayesian approach to analyzing the model (1), the parameters a = (§,7) and D are
random variables and treated symmetrically with the observed y and unobserved b;. The marginal

posterior distribution over the random effects corresponding to the model (1) is proportional to
N L
$(@D |y) =TT [ w1 a,bi) x DI exp(~5b] D™*bu)(er, D), 3)
i=] -

where f(y: | o,b:) is the conditional Poisson likelihood given b; with mean expressed through (1),
D is the variance-covariance matrix for b;, and 7(a, D) is the joint prior distribution for @ and
D). The necessary full conditional distributions for model (3) at iteration k (k=1,...,K) are
given as follows.
2.3,1 Sampling of the Fixed Effects

Given the random eflects bfk], the Poisson mixed effects model (1) reduces to the usual
Poisson regression model with offset bg:] - bg'f}.r.;, for each subject. If we assume a uniform prior

for a, the full conditional posterior distribution for a is proportional to the Poisson likelihood
N ny

function n l__[ Sl | bf'” ). In larger samples, this can be closely approximated by a multivariate
i=1:4=1

normal distribution with mean vector &'*, the maximum likelihood estimate, and covariance
matrix l"c.f“. the inverse of the corresponding observed Fisher information. That is, to sample
from full conditional distributions for a at iteration k, we find a'* and l:"if“ by performing
Poisson regression of y;; on x,, using the simulated (fixed) values b‘gf‘ +b‘l":].r,3 as offsets and

- o LR Z 3 . : . i =Lk) vrik
generate a random variate a Y from a multivariate normal distribution N(&'%, lfd“").
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2.3.2 Sampling of the Random Effects
The full conditional posterior distribution for b, dose not have a closed form and we cannot
draw samples directly from its distribution, because it involves the same intractable integral
with respect to b; that we avoided in the maximum likelihood analysis. The distribution can be
expressed as
f(v: | & b:)g(bi | D)m(a, D) (4)
J £(yi | a,b)g(b: | D)w(a, D)db
where g(b, | D) is the normal density given in (2). Although the numerator in (4) is easily
evaluated, the scale factor in the denominator cannot be evaluated explicitly. In Gibbs sampling,

however, only a random variable from the conditional distribution is needed. It can be obtained
using random variate generating methods such as rejection sampling without evaluating the
integral. We used the normal rejection sampling method of Zeger and Karim (1991). Their
method is to find the mode and curvature of the numerator of (4), call it p;(b;), and to match
a Gaussian kernel with the covariance matrix multiplied by an inflation factor to p:(b;). This
Gaussian kernel is then rescaled to be at least as large as pi(b;) at the mode, and used as
the envelope function. We used SAS/IML nonlinear optimization subroutines, Newton-Raphson
optimization, to find the mode and curvature of p;(b;), and a variance inflation factor of 2.5 was
used.
2.3.3 Sampling of the Random Effects Variance

We have assumed that the random effects b; are independent normal N(0, D) random vari-
ables. A non-informative prior for D is P(D) o |D|"+I. where ¢ = 2 in the model (1). Then the
full conditional posterior distribution of D™" follows a Wishart distribution with parameter ma-

N
trix (Z bib! )™ with (N — g+ 1) df (Gelman et al. 2004). Simulation from the Wishart distribu-
i=1

tion for 2 x 2 matrix D! is easily accomplished using the algorithm of Odell and Feiveson (1966).
Their algorithm is as follows: with Ga(:,) and N(-,-) denoting gamma and normal distributions,

respectively, draw independently from Uy ~ Ga{g, %). Uz ~ Ga[u—_—l : %), and Uy ~ N(0,1), set

2
W= U Us/U,
UsvVTi Ua+U3 )’

then if S™' = (H'?)"(H'/?), D™ = (H'*)TW(H"?) ~ Wishart(S™',v).
2.4 Implementation of the Gibbs Sampling

The estimation of model parameters was conducted using SAS/IML (SAS Institute Inc.,
Cary NC). We simulated independent sequences of length 2,000 with three kinds of starting
values, where the procedure entailed sampling from 1,000 post-convergence iterations in each

sequence, thus yielding 3,000 total iterations upon which we based our posterior estimates. We

set three kinds of initial values of the random effects variances (dy;,di2,d22) at (1.0,0,0.1),
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(0.1,0,0.6), (0.1,0,1.0), respectively. First one represents the large baseline risk and small inter-
action effect, second one represents small baseline risk and medinm interaction effect, and third
one represents small baseline risk and large interaction effect. For the random effects, initial
values were drawn from the multivariate normal distribution (2) with each initial value of the
random effects variances.

Convergence of the Markov chains was assessed by the Gelman-Rubin statistic, that is,
potential scale reduction (PSR) factor (Gelman and Rubin 1993). Details of the PSR are given
in Appendix.

3. Results

Table 1 and 2 show the baseline and stroke events characteristics of the analysis 10 cohorts,
respectively. The total number of stroke events was 345 among 9,087 men (3.8%) and 368 among
14,773 women (2.5%). The total incidence rate (/year) for stroke events was 4.59%107% in men
and 2.90 x 10”2 in women, where substantial variations across cohorts were seen in women. The
incidence rate ratios (IRRs) for current smoking were not consistent across cohorts, particularly,
in women.

Table 3 shows the posterior summaries of the model parameters in (1). The last column in
Table 3 shows the estimate of PSR comparing three runs for each of several model parameters.
The estimates were all near 1, indicating that convergence occurred for these parameters. Table 4
shows the estimates of IRR for each fixed effects parameter. After adjustment of age, SBP, BMI,
current alcohol drinking status and history of DM, an association between current smoking status
and stroke events was observed among men (IRR = 1.55, 95% confidence region (CR) = 1.22-
2.02), while the significant association was not observed among women (IRR = 1.32, 95% CR =
0.76-2.18).

In Table 4, results from the ordinary Poisson model are also shown, that is, estimates of
IRR based on the fixed effects model where random effect terms were excluded from the model
(1). The posterior features for smoking effects changed little compared with the ordinary model
ignoring cohort effects. This indicates that incorporating cohort effects was not critical for
drawing conclusions on the overall smoking effects. However, the mixed effects model can be
used to evaluate the cohort effects on the smoking risk as well as on the baseline risk.

The posterior summaries of the random effects variances, which represent the volumes of
cohort differences, are also shown in Table 3. For both genders, baseline variability (di1) was
larger than variability of smoking effect (dzz). The variances in women were larger than those
of men in both risks. Because the random effects were assumed to be normally distributed in

(2), the posterior mean of the variance of random effects indicates that 95% of cohorts have the
baseline risk (exp(£1.96 d11)) in the range 0.48 to 2.08 for men and 0.34 to 2.98 for women.

Likewise, the variability of smoking-by-cohort interaction (exp(#41.96 ng)) was in the range
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Table 2. Stroke events of analysis 10 cohorts stratified by gender.

Stroke events  Person-ume  Incidence rate IRR for
Gt N % (year) (/year) Current smoking
. 4.0 4173 6.47 x 1073 0.79
2 2 4.7 5278 4.17x 1073 1.29
3 56 5.2 11284 4.96 x 1072 1.44
4 59 9.3 6285 9.39 x 1079 1.40
5 68 3.7 17953 3.79 % 1079 1.83
Men 6 38 3.0 11633 3.27x 1073 1.08
7 31 2.6 8413 3.68 x 1073 203
8 18 1.8 4925 3.65x 1073 0.94
9 14 48 2747 5.10 x 1079 1.19
o 12 18 2542 472x107° 1.23
total 345 3.8 75233 4.59 x 1079 1.29
1 27 3.0 5792 4.66 x 1072 0.52
2 24 25 11553 2.08 x 1073 6.39
3 58 4.0 15520 3.74 x 1073 0.90
4 66 55 12940 5.10 x 1073 1.26
5 70 2.8 25261 2.77 x 1073 1.35
Women 6 3 14 23915 1.42 x 1073 2.36
7 38 2.3 12166 3.12x 1073 0.91
8 16 0.7 11664 1.37 x 1073 0.00
9 3l 6.8 4457 6.96 x 103 0.77
total 368 25 127050 2.90 x 10~3 1.15

IRR: Incidence rate ratio

Table 3. Posterior summaries for the model parameters in (1).

rF 7
Gender Parametes Mean g:?ndtﬁ pcf:cemi]c gcrgemi!e PSR
Intercept -6.39 0.24 -6.85 -5.91 1.00
Current smoking (yes vs no) 0.44 0.13 0.20 0.70 1.00
Age (> 65 years vs < 65) 1.03 0.11 0.81 1.25 1.00
SBP (> 140 mmHg vs < 140)  0.88 0.11 0.65 1.10 1.00
Men BMI (> 25 k_glmz vs < 25) 0.03 0.13 -0.22 0.28 1.00
Current drinking (yes vs no) -0.04 0.08 -0.21 0.13 1.00
DM (present vs absent) 0.57 0.14 0.29 0.85 1.00
diz -0.01 0.07 -0.11 0.05 1.01
daa 0.03 0.10 0.00 0.17 114
Intercept -6.72 0.22 -7.15 -6.28 1.04
Current smoking (yes vs no) 0.28 0.27 -0.28 0.78 1.04
Age (> 65 years vs < 65) 1.20 0.12 0.97 1.43 1.04
SBP (> 140 mmHg vs < 140) 0.87 0.10 0.67 1.07 1.04
Women  BMI (> 25 ke/m? vs < 25) 0.22 0.11 0.00 0.44 1.04
Current drinking (yes vs no) -0.08 0.19 -0.45 0.31 1.04
DM (present vs absent) 0.24 0.17 -0.11 0.58 1.04
di2 -0.02 0.19 -0.48 0.30 1.00
dao 0.18 0.39 0.00 1.07 1.04

SBP: Sytolic blood pressure; BMI: Body mass index; DM; Diabetes mellitus

PSR: Potential scale reduction
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Table 4. Comparison of the results between mixed effects and ordinary Poisson model

Poisson mixed effexcts model Ordinary Poisson model
Clepdes S [RR 95% CR R BRCR
Current smoking (yes vs no) 1.55 1.22-2.02 1.53 1.22-191
Age (> 65 years vs < 65) 279 2.24-3.49 1.86 2.29-3.57
SBP (= 140 mmHg vs < 140) 241 1.91-3.01 2.38 1.91-2.96
Blm BMI (> 25 kg/m? vs < 25) 1.03 0.80-1.32 1.0 0.82-1.35
Current drinking (yes vs no) 0.96 0.81-1.14 0.96 0.76-1.20
DM (present vs absent) 1.76 1.34-2.33 1.80 1.34-2.40
"Current smoking (yes vs no) 132 0.76-2.18 130 085200
Age (> 65 years vs < 65) 332 2.64-4.17 343 2.77-424
SBP (> 140 mmHg vs < 140) 239 1.96-2.93 235 1.90-2.91
Women  pMI (> 25 kg/m? vs < 25) 1.25 1.00-1.56 132 1.07-1.63
Current drinking (yes vs no) 092 0.64-1.36 0.88 0.60-1.29
DM (present vs absent) 1.27 0.90-1.78 137 0.97-1.95

IRR: Incidence rate ratio; CR: Confidence region; Cl: Confidence interval
SBP: Sytolic blood pressure; BMI: Body mass index; DM; Diabetes mellitus

0.71 to 1.40 and 0.44 to 2.30, respectively.

Figures 1 and 2 summarize the posterior distributions of the cohort effects for the baseline
risk and smoking effects, respectively. These are the box plots of the posterior sample values of
generated ones for each of the 10 cohorts. The baseline risk, exp(bg;), is the deviation in the ith
cohort from an overall baseline risk, and the smoking effect, exp(f + b1i), is the deviation in the
ith cohort from an overall smoking effect. Figure 1 indicates substantial variation in the baseline
risk across cohorts, particularly in women. The baseline risk seems to vary considerably across
cohorts (prior mean of the baseline risk is one). On the other hand, Figure 2 appears to indicate
the homogeneity in the effect of smoking across cohorts in both genders, that is, there is little

smoking-by-cohort interaction in this data. Thus, there is little difference in the smoking effects

Posterior distribution of exp(bi0)
Posterior distribution of exp(biD)
-

1 ] 3 a H 3 ¥ 8 L 10 1 2 3 4 5 £ 7 8 9 10
Cohort number Cohort number

(a) Men (b) Women

Fig. 1. Posterior distribution of baseline risk (exp(bg,)) in each cohort.
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