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I. INTRODUCTION

In a typical clinical trial, patients are randomized to one of the treatment groups and each patient
is expected to receive that treatment throughout the follow-up to assess the effect of the treatment
on some outcome. However, most clinical trials are not ideal; hence, patients often fail to adhere to
their assigned treatment and switch to another trial treatment. Such non-compliance with assigned
treatment is a common feature of clinical trials. Recently there has been much interest in methods
for analyzing randomized clinical trials of treatments to which the subject are not compliant [1-3].

One approach for analyzing data for non-compliance is the as-treated (AT) analysis, which
compares outcomes based on the treatment that patients actually received. When non-compliance
is completely at random, that is, independent of both (observed and unobserved) baseline and time-
dependent factors, the AT analysis can give a valid test for the null hypothesis of no treatment effect
and can also give an unbiased estimate of treatment effect. In most clinical trials, however, patients
who comply with their assigned treatment are not comparable with those who do not with respect
to some important prognostic factors. In this case, both the decision to comply and the outcome
may well depend on underlying possibly unmeasured health status. Thus, when non-compliance
is non-random, the AT analysis will not be valid even under the null hypothesis because of the
comparison of selected groups (3, 4].

The more commonly used analytic approach is an intention-to-treat (ITT) analysis, which
compares outcomes based on the treatment groups randomized by design regardless of whether
the patients complied with their assigned treatment. Because the comparability of the treat-
ment groups is guaranteed by randomization, the null hypothesis of no treatment effect for
all patients (sharp causal null hypothesis) is preserved in the ITT analysis. That is, successful
randomization insures that the ITT comparison provides a valid test for the sharp causal null
hypothesis of no treatment effect even in the presence of non-random non-compliance. Moreover,
p-values have a randomization interpretation when design-based (randomization-based) analyses
are used [5]. Furthermore, the ITT estimate would correspond to the overall treatment effect that
would be realized if the treatment were actually adopted and practiced in the community, provided
the rate of non-compliance and the factors influencing non-compliance that are observed in the
trial are identical to those that would occur in the community. A point against the ITT analysis
is that the ITT parameter does not measure the true biological effect of treatment, but rather a
mixture of the effect on the compliers with the absence of effect on the non-compliers, because
the ITT estimate is the average effect of treatment assignment. Hence, the ITT analysis gives esti-
mates that are biased toward the null when treatment crossover is present, and the ITT measure of
treatment effect will diminish as non-compliance increases. Moreover, the rate of non-compliance
in the community, once the treatment is adopted, may not be the same as the rate in the original
clinical trial.

Therefore, in the analysis of non-compliance data, it is important to estimate the causal effect
of treatment, that is, the effect that would be realized if all patients complied with the treatment to
which they were assigned. Robins [6-8] has proposed a structural nested mean model (SNMM) to
estimate such causal effect in the presence of non-random non-compliance. Under the assumption
that non-compliance at each time is at random, given the observed histories that influence a patient’s
decision to comply, that is, the assumption of no unmeasured confounders, the causal parameter
in a SNMM can be estimated by the technique of g-estimation.

Recently, Brumback et al. [9] proposed the intensity score approach for the analysis of time-
varying treatments in the presence of time-dependent confounding. They provided conditions
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under which the intensity score approach consistently estimates a treatment effect in a SNMM.
The intensity score is cumulative differences over time between treatment actually received and
treatment predicted by prior observed medical history. The SNMM treatment effect can be obtained
by regressing outcomes on the intensity score. Thus, the intensity score approach can provide an
easy implementation of g-estimation for the analysis of non-random non-compliance. Since the
intensity score approach was originally proposed for continuous outcomes, we extend its use to
time-to-event outcomes with censoring. This extension is useful, because censoring due to end
of scheduled follow-up requires special care when using g-estimation based on the structural
accelerated failure time (SAFT) model [10-16], while the intensity score approach can treat
the censoring within the framework of standard regression models. Furthermore, the intensity
score approach has the advantage of providing estimates of parameters in a SNMM that allows
the treatment effects to vary across time, while it has been difficult to apply such a model in
practice using the technique of g-estimation [9].

This article is organized as follows. In Section 2, we describe the motivating study from a large
randomized primary prevention study for coronary events, the Management of Elevated Cholesterol
in the Primary Prevention Group of Adult Japanese (MEGA) study [17, 18], In Section 3, we
develop the intensity score approach for event times. In Section 4, simulation studies are conducted
to compare the performances of the proposed intensity score method with those of the AT, ITT,
and g-estimation (Semi-parametric randomization-based) analysis [10, 12]. Section 5 presents the
analysis results of the MEGA study data. Finally, Section 6 provides some discussions.

2. THE MEGA STUDY

We will briefly describe the motivating study and the data (MEGA study). Full details on the design,
conduct, and main clinical results have been reported [17, 18]. The MEGA study is a randomized
controlled trial conducted in Japan to evaluate the primary preventive effect of a statin against coro-
nary heart disease (CHD) in daily clinical practice. In this prospective, randomized, open-labeled,
blinded-endpoints design study, men and postmenopausal women aged 40-70 years with hyperc-
holesterolemia (total cholesterol (TC) level: 220-270 (mg/dL)) and no history of CHD or stroke
were randomized to diet (dict group) or diet plus pravastatin 10-20mg daily (pravastatin group).

Between February 1994 and March 1999, a total of 15210 persons visiting outpatient clinics
were registered throughout Japan. Of the 15210 subjects who met the inclusion criteria regardless
of their TC levels and who provided signed informed consent, 8214 who met the TC criterion
were randomized to either diet or diet plus pravastatin treatment using the permuted block method
with stratification according to gender, age, and medical institution. After the exclusion of 382
patients (94 withdrew consent, 224 exclusion criteria violation, and 64 no recorded data after
randomization), the remaining 7832 patients were analyzed (3966 diet group; 3866 pravastatin
group).

Table I shows the baseline characteristics of the analyzed patients. There was no clinical differ-
ence between the two groups in baseline characteristics. Women accounted for 68.4 per cent (5356
paticnts) of the study population. Mean body mass index (BMI) was 23.8 (kg/m?). Mean TC,
low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C)
levels were 242.6, 156.6, and 57.5 (mg/dL), respectively. Median triglyceride (TG) level was 127.5
(mg/dL). Of the study patients, 41.8 and 20.8 per cent had hypertension and diabetes mellitus
based on physician diagnosis, respectively.
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Table I. Baseline characteristics of analyzed 7832 patients.

Diet group Diet+ pravastatin group
Characteristics (N =3966) (N =3866)
Age (years), mean (SD) 58.4 7.2) 582 (7.3)
Women, no. (per cent) 2718 (68.5) 2638 (68.2)
BMI (kg/m?), mean (SD) 23.8 (3.0) 238 (3.1)
Current smoker, no. (per cent) 572 (14.4) 612 (15.8)
Current drinking, no. (per cent) 1183 (29.8) 1180 (30.5)
Hypercholesterolemia medication history, no. (per cent) 621 (15.7) 586 (15.2)
Hypentension, no. (per cent) 1664 (42.0) 1613 (41.7)
Diabetes, no. (per cent) 828 (20.9) BO4 (20.8)
TC (mg/dL), mean (SD) 242.6 (12.1) 242.6 (12.0)
TG (mg/dL), median (inter-quartile range) 127.5 (95.0-179.0) 1274 (95.7-176.5)
HDL-C (mg/dL), mean (SD) 57.5 (15.1) 575 (14.8)
LDL-C (mg/dL), mean (SD) 156.5 (17.3) 156.7 (17.6)

SD, standard deviation; BMI, body mass index; TC, total cholesterol; TG, triglyceride; HDL-C, high-density
lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol.

After randomization, patients were followed at months 1, 3, and 6 and thereafter every 6 months.
At each visit, data on treatment compliance, use of concomitant drugs, onset of events, occurrence
of adverse events, and laboratory tests including serum lipids were collected by the investigators.
Additionally, an ECG (electrocardiogram) was obtained and evaluated annually. The follow-up
period was initially scheduled for 5 years; however, on the basis of the recommendation of the Data
and Safety Monitoring Committee, the study was continued for an additional 5 years (o increase
the number of events, and thus, patients who provided written consent at 5 years to continue the
study were followed until the end of March 2004 (17, 18].

The primary endpoint was the first occurrence of CHD, comprised of fatal and non-fatal myocar-
dial infarction, angina, cardiac and sudden death, and a coronary revascularization procedure. One
of the secondary endpoints was the first occurrence of stroke events. All endpoints were reviewed
strictly by the blinded Endpoint Committee and additional information obtained from the physician
as needed [17]. A total of 7832 patients were followed by 2658 physicians in 1320 hospitals.
The follow-up period was 41195 person-years (mean follow-up period 5.3 years). CHD events
occurred in 101 of 3966 patients in the diet group (2.55 per cent) and 66 of 3866 patients in
the pravastatin group (1.71 per cent). Figure 1 shows the Kaplan—Meier curves for CHD events.
The ITT analysis indicated that the incidence of CHD was significantly lower by 33 per cent in
the pravastatin group than in the diet group (The ITT hazard ratio=0.67; 95 per cent confidence
interval (CI): 0.49-0.91; p=0.01 for the log-rank test) [18].

However, many patients changed to the other trial treatment frequently during the study period
(treatment crossover). This was because the protocol in the MEGA study stated that patients in
the diet group could be switched to pravastatin treatment when a reduction of TC level was not
observed, while patients in the pravastatin group could discontinue pravastatin treatment when
the reduction of TC level was observed. The treatment decisions for changing the treatment or
increasing the dose of paravastatin were determined by each treating physician. Patients who
changed to another trial treatment even once in the first 5 years were 19.9 per cent (n=790) in
the diet group and 53.4 per cent (n =2064) in the pravastatin group, These numbers for the whole
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Figure 1. Incidence proportion for CHD events.

10 years were 21.3 per cent (n==844) and 63.1 per cent (n=2441), respectively. The effect of
patients from onc treatment to the other is to make the treatment profiles of the two randomized
groups more similar than they otherwise would have been, and therefore to move the ITT hazard
ratio toward the null.

3. INTENSITY SCORE METHOD

3.1. The multiplicative structural nested mean model

We consider a randomized clinical trial in which two groups (test and control treatment) are
compared with respect to time-to-event outcomes and each patient i (i=1,..., N) reccives one
of the treatments at the start of each time 7 (1=0,..., M —1; time zero is the randomization time
and the start of the first treatment). However, some patients fail to comply with their assigned
treatment and cross over to the other treatment at each time f.

Suppose we have repeated measures on treatment 5;(r) (S;(t)=1 if test treatment,
S;(1)=0 if control treatment) and covariates L,(t) at time f. Let H;(1) be the observed history
of treatment and the covariates prior to treatment at time f, ie. H;(1)=(L;(0), 5 (0),...,
Li(t=1), 8i(t—1), Li(r)), with H;(0)=(L;(0)). Let Ti(Si (1), 0) denote the potential event times
in response to the hypothetical treatments (S (0), ..., 80, Si(t+1)=0,...,85(M—1)=0). That
is, Ti(5;(t),0) represents the event time we would have observed if, possibly contrary to fact,
the patient had his/her actual treatment history up to time r but was then switched to control
treatment at time r+1 and remained at that treatment until the event occumred. Our notation
for the potential outcomes implicitly assumes Rubin’s stable unit treatment value assumption,
which implies that potential outcomes of patient i do not depend on the treatment received by
any other patient [19]. We will also assume that the potential outcomes satisfy the consistency
assumption [7] that serves to link the potential outcomes with the observed outcomes 7;. This

assumption states that T,=7;(5;(1),0) for all 1 when actually S;(t+1)=-.=§(M—-1)=0
occurred.
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We introduce a simple multiplicative SNMM [6-8]
log E(T; (S;(t), 0)| H; (1), Si(t))—log E[T; (S; (t— 1), 0)| H; (1), S (£)] = By S; (1) 4))

where fiy is the constant (across f) incremental causal effect of a final treatment S;(f) at time
t on the potential outcome T;(S;(t—1),0) following a patient’s actual treatment through times
0,....1=1 and control treatment after t—1. Under this constant treatment effect model (1), f
multiplied by M (number of visit time) can be interpreted as the average causal treatment effect
that would be realized if all patients had continued to comply with the treatment to which they
were assigned. Robins [6-8] proposed the estimation method of fiy, the so-called, g-estimation
method, under the assumption of sequential conditional independence for any ¢ and k with k<r—1

T,(Si(k), ) L[ Si (1) | Hi (1) 2

which states that, when k<r—1, treatment S;(r) is independent of the potential outcomes
T, (S; (k), 0), given the observed history up to time t, H;(t). In practice, we would not expect this
assumption to be precisely true, but given a rich collection of prognostic factors that influence
a patient’s decision to comply at time t recorded in H;(t), it may well be approximately true.
Robins [6-8] has referred to (2) as the assumption of no unmeasured confounders.

3.2. Estimarion of By via the intensity score method

Brumback ef al. [9] proved that the SNMM treatment effect, that is, g-estimator of ff;, can be
obtained by the intensity score method, in which outcomes are regressed on the cumulative intensity
score. We utilize their results and consider the accelerated failure time (AFT) model to obtain the
consistent estimator of fiy in the multiplicative SNMM (1). Here, we assume that the observed
event time 7; is subject to independent random censoring such as an end-of-study censoring, where
T; for censored subjects is either the time until dropout or the time until end of study.

We assume the following exponential regression model (log-linear model) for T; [20]:

M=1
logTy=u+pB; ¥ Li(t)+e 3)
1=0

where u is the intercept parameter, I;(1) = §;(t) — E[S5; (t)| H;(1)] is the intensity score at time f, and
g; follows the extreme value distribution. For binary treatment S;(r), the time-dependent intensity
score I;(r) measures departures of actual treatment from the propensity score Pr{S; ()| H;(1)] of
Rosenbaum and Rubin [21]. Since the propensity score is usually unknown, it must be estimated
from the data, If we assume a parametric model for Pr[S;(r)| H; ()] such as

logitPr(S; (1) = 1| H; (1)) =6" H; (1) )

then the intensity score at time f can be estimated by !:-(:}:S,- ()= E[S;(1)|H; (1); 0], where 0 is
the maximum likelihood estimator of @ under model (4). Here we assume that the intensity score
at time [ is not equal to zero with probability 1 for each patient, that is, Ji(1) #0 for any f. This
assumption will be satisfied unless there is a covariate level H;(t) such that all patients with that
level of the covariate are certain to receive the treatment.

The estimate for fi; in model (3) can be obtained via the ordinary-weighted least-squares (WLS)
method. However, the cumulative intensity score is generally uncorrelated with the cumulative
propensity score, although E[1; (1) E(S; (t)|H;(£))]=0 for any t. Therefore, as Brumback ez al. [9]
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have pointed out in the case of linear model, to obtain a consistent estimator of f; via
the WLS method for model (3), the correction term NJB,;C must be subtracted from the
WLS estimating function, where C=(1/N)(LM5' li(0))wi (TN E(Si(1)|Hi(1); 8)) and
wy=exp(—p)-Ti-exp(—f; 3 Ji(2)). The corrected estimating function for model (3) is

N R " =
U, B =Y (=di L)+ L 1it) expllogty — p—f; 3 i (1)) —NB,C=0 (5)

where d; is the event indicator that takes the value of one if the subject failed and zero if the
subject is censored. In Appendix A, we show the proof that the correction term must be subtracted
from the WLS estimating function to obtain a consistent estimator.

QOur estimating function has the form }:f Ui(y) =0, where y=(, fi;, 6) represents the intercept,
coefficient of the intensity score, and parameter used to model the propensity score. To correct for
having the estimated 6, the asymptotic variance of § was obtained by using a sandwich estimator,
which was computed as

(E@U /op)1 (EUUNE @U; /a1 " T IN

where the estimated expectations were computed using the empirical distribution of the sample.

3.3. Time-dependent treatment effects

An extension of the multiplicative SNMM (1) is to allow the treatment effects to vary across time,
IogE[T}(E;(l).ﬂ)lb',-(t).S.-(r]]—logE[T,-(E.-(r— 1), 0) | H(t), 5; ()] = By(t)S; (1) (6)

where fi,(1) is the causal parameter at each time ¢. Since Bo(1) is the incremental causal effect of
a final treatment S; (1) at time f, the cumulative effect ZL,U Bo(k) is the average causal treatment
effect that would be realized if all patients had continued to comply with the treatment to which they
were assigned until time ¢, Assuming the consistency assumption and the sequential conditional
independence (2), the time-dependent causal parameters in model (6) are consistently estimated
by fitting the following model [9]

M-1 -
logTi=p+ 3 By (1) +e& )]
=0

where the correction term zl[f, (1) -w;- f__'B’{B; (O E(S;i (D] H;(1); é):'] must be subtracted from
the WLS estimating function for model (7).

4. SIMULATION STUDY

4.1. Simularion design

To evaluate the performance of the AT, ITT, g-estimation (see Section 4.2) and intensity score
methods, we carried out simulation studies under non-random non-compliance. We simulated data
from two treatment groups, coded as R=0 (control treatment) or R=1 (test treatment). About
cqual sample size of 1000 for each group was randomly generated (total sample size was 2000).
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The simulations were based on 1000 replications so that the estimated coverage probability of a
true 95 per cent Cl would have a simulation accuracy of approximately 1.35 per cent.

For each subject i (i=1,...,2000), a baseline covariate L; was generated from the normal
distribution with mean of 2 and variance of 1. The potential baseline failure time U; was generated
from the following exponential model:

Ui =Upexp(ato+a1 L) (8)

where Uy was an exponential random number with mean of 1 and (ag, o) =(3.2, —0.5) so that
the larger the value of L;, the shorter the baseline failure time U;. We evaluated the treatment
actually received Si(r) at three time points 1=0, 2, and 4, where all subjects were assumed to
take the assigned treatment at 1=0 (5;(0) = R;) and the treatment crossover occurred at t =2 and
4 according to the following model:

logit Pr{S; (N]=yo+71Li+728(t—2) &)

where (y;,7;)=(1.2,4.5) so that patients with poor prognosis and taking the test treatment at
previous time point tended to receive the test treatment. The non-compliance rate was adjusted by
the value of the intercept parameter yg, where two settings were considered: 45 per cent (R=0)
versus 15 per cent (R=1) and 30 per cent (R=0) versus 10 per cent (R=1). In this non-
compliance rate, the subject was considered as a non-complier when the subject received another
treatment even once during the study period.

The observed failure time 7; was calculated from the SAFT model

i
U,-=f expl—yoS; (1)]dr (10)
0

where 1/, is the causal treatment effect, which was sel to y=0.5. The observed failure time T;
was censored at the fixed censoring time C, where C=5, 70, and oo, so that the overall censoring
proportion was nearly 90, 30, and 0 per cent, respectively.

Simulations were evaluated in terms of the bias, mean-squared error (MSE), mean length of
the 95 per cent CI (length), 95 per cent coverage probability (CP), power for rejecting the null
hypothesis, and a-error.

4.2. g-estimation (semi-parametric randomization-based analysis)

A semi-parametric randomization-based approach to estimate the causal effect has been developed
by Robins and coworkers [10, 12]. For time-to-event outcomes, their approach is based on the
causal AFT model (10), which relates a patient’s observed event time T; to the potential baseline
event time U;, that would have been observed if no treatment had been given, and the treatment
actually received S;(t) via a causal parameter 5. Note that if §;(r)= 0, then equation (10) gives
T; = U as expected, while if §; (1) = 1, (10) gives T; = U; exp(y). Therefore, equation (10) implies
that for continuous treatment the potential event time U; is prolonged by the factor exp(y).
A positive value of | represents a beneficial treatment effect.

To estimate the causal parameter |, they choose to avoid all assumptions about both observed
and unobserved factors that influence an individual’s decision to comply such as (2), while
comparing outcomes based only on the treatment groups randomized by design, that is, their
analyses are randomization-based analysis. The key to understanding their estimation method
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(g-estimation) is to realize that U; is a baseline variable identically distributed across the random-
ized groups. We define U;(y) to equal the right-hand side of (10) for given . We also define Z(y)
to be a test statistic comparing the distribution of U(y) in the two randomized groups, where we
will use the log-rank test. The point estimate of Vg is the value for which Z()=0, and this can
be found by a search over a grid. A 100(1 —a) per cent confidence interval for y, is the range of
values for which |Z()| <z1-as2, Where z1_4/2 is the 1 —a/2 percentile of the standard normal
distribution. One attractive point of this approach is that at the null value, it is non-parametric,
because U;(0)=T;; hence, Z(0) is the usual ITT log-rank test statistic.
However, if T is a censored time, then U; () is censored at

Cl
D))= fu expl—ySi (1)) dr

where C; is defined as the time between subject i’s randomization and the fixed end of the follow-
up date. Although C; is known for uncensored as well as censored subjects, D;(i) is a function
of §;(1) and may depend on the underlying prognosis. Therefore, even when censoring on the
T-scale is non-informative, that is, an administrative censoring, censoring on the U-scale is likely
to be informative, if \/g# 0 and there is non-random non-compliance. Thus, we cannot replace T;
by X; =min(T}, C;) to calculate the pseudo-treatment-free event time.

To avoid this problem, Robins and Tsiatis [10] defined a new censoring time C;(y)=C; if
W<0 and Ci(y)=C;exp(—y) if >0, according to the direction of treatment effect. For given
¥, let X;(Y)=min[C; (), Ui(¥)] and A;(y)=1{U;(y)> Ci(¥)] to be the new follow-up time
and censoring indicator, respectively. X;() is observable since T;2C; implies U;(y)> Ci ().
Because any function of {U; (), C;) is independent of random treatment assignment R;, we have
(Ui (o), Ai (W) )L Ri, where the symbol | | means independent.

4.3. Results of simulations

Table II shows the results. The constant treatment effect model (3) with M =3 was applied in the
intensity score analysis, where a logistic regression model (9) was used for the estimation of the
propensity score at £=2 and 4. From Table II we see that both the AT and ITT estimates were
largely biased toward the null in all situations (true value of treatment effect=0.5). The biases
increased as the difference of non-compliance proportion between groups increased and as the
censoring proportion decreased. The x-errors for the ITT estimate were close to the nominal level
of 5 per cent, reflecting that the ITT approach provides a valid test for the null hypothesis of no
treatment effect even in the presence of non-random non-compliance.

As expected, the g-estimates performed well in all situations, because the data generation
process was based on the SAFT model (10). Note that the powers for the ITT and g-estimate
were about the same, reflecting that even though the g-estimation approach uses non-compliance
information it does not increase the power against the null hypothesis when compared with the ITT
approach.

The intensity score estimates were nearly unbiased and their coverage probabilities were
close to the nominal level of 95 per cent in all situations, The «-errors were controlled
under the correctly specified parametric model (9). The intensity score estimates gave
smaller MSE and narrower confidence intervals than those of the g-estimates, except in the
censoring proportion=90 per cent. The powers were slightly increased compared with the
g-estimates.
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Table II. Results of simulation studies for AT, ITT, g-estimation, and IS method.

Censoring

Method Non-compliance  (per cent) Bias MSE CI length 95 per cent CP Power « Error
0 —0.415 0175 0.183 0.0 443  100.0

45 versus 15 per cent 30 —0.405 0.170 0.216 0.0 414 1000

AT 90 —0.230 0.074 0.564 64.0 475 304
0 —=0.363 0.134 0.180 0.0 843 95.0

30 versus 10 per cent 30 —0.353 0127 0.212 13.7 777 100.0

90 =0.190 0.056 0.559 737 578 222

0 —0.305 0.095 0.176 0.0 99.4 56

45 versus 15 per cent 30 -0.295 0.09 0.209 0.1 97.0 5.8

ITT 90 —0.138 0.041 0.567 82,6 71.1 4.8
0 —=0.253 0066 0.177 0.0 99.9 4.3

30 versus 10 per cent 30 —0.243 0.062 0.209 04 99.8 6.1

920 —0.108 0.033 0.566 872 78.4 4.6

0 0.006 0.013 0.541 95.1 99.4 5.6

45 versus 15 per cent 30 0.008 0018 0.615 943 97.0 58

g-estimation 90 0.001 0.037 0.854 94.6 709 4.9
0 0.001 0.009 0454 954 99.9 43

30 versus 10 per cent 30 0.003 0.015 0.509 97.0 100.0 6.1

20 —0.001 0.032 0.825 96.5 783 4.6

0 —0.046 0.005 0.274 95.7 100.0 5.2

45 versus 15 per cent 30 —0.019 0.005 0.287 94,5 100.0 4.6

Intensity 90 0.060 0.061 0.959 97.8 74.3 4.7
score 0 —0.045 0.004 0,257 952 100.0 4.5
30 versus 10 per cent 30 —0.018 0.005 0.262 95.2 100.0 4.6

90 0.053 0.046 0.840 98.0 82.4 4.7

AT, as-treated; MSE, mean-squared error; CI, confidence interval; CP, coverage probability.

5. ANALYSIS OF MEGA STUDY DATA

In the analysis of the MEGA study data, we divided the follow-up period into 10 time intervals
with equal space (1 year). Patients were classified as a non-complier in a time interval if he/she
switched to the other trial treatment at least once during the interval.

5.1. Estimation of the propensity score

To estimate the propensity score at each time f (1=0,...,9), the logistic regression model (4)
was used, in which four time-dependent factors as well as 12 baseline factors shown in Table I
were included as covariates H;(1). For the four time-dependent factors, the most recent recorded
values were included as covariates H; (1) in model (4). All TC values were excluded accounting
for the multicollinearity of covariates. Among baseline factors, missing data were observed in the
values of BMI (0.24 per cent), current smoking (0.18 per cent), and drinking (0.17 per cent). The
missing values of BMI were imputed by the mean value of 23.8 (kg/m?). The latter two factors
were imputed by zero (no smoking and no drinking, respectively). Four time-dependent factors
were three lipids (TG, HDL-C, and LDL-C) and treatment actually received before time ¢. For the
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Table III. Predictors of receiving the pravastatin treatment at =3,

Predictors Odds ratio 95 per cent ClI
Baseline covariates

Assigned treatment 4.645 3.536,6.102
Age (years) 1.008 0.991,1.026
Women 0.916 0.663, 1.264
BMI (kg/m?) 1.008 0.968, 1.050
Curmrent smoker 1.262 0.884, 1.800
Current drinking 0.932 0.684,1.271
Medication history 1.484 1.086,2.029
Hypertension 1.169 0.915,1.493
Diabetes 1.247 0.938, 1.658
TG (mg/dL) 1.001 0.998,1.003
HDL-C (mg/dL) 0.992 0.974, 1.010
LDL-C (mg/dL) 1013 1.003,1.023
Time-dependent covariates

TG (mg/dL) at 1=2 1.003 1.001, 1.005
HDL-C (mg/dL) at r=2 1.030 1.014,1.046
LDL-C (mg/dL) at 1=2 1.010 1.001,1.015
Treatment received at =2 240.2 179.2,321.7

CI, confidence interval, medication history: hypercholesterolemia medication history.

missing data of lipid values (21.5 per cent), the regression imputations were separately conducted,
where 11 baseline factors, allocation group, and the last observed lipid value were included as
covariates in each prediction model.

Table III shows the odds ratio of each factor associated with receiving the pravastatin treat-
ment at time r=3. The results for other time points (not shown) were essentially similar to
those shown in Table III. For the baseline covariates, patients who were assigned to the pravas-
tatin gronp and have hypercholesterolemia medication history tended to receive the pravastatin
treatment. As expected, the previous use of pravastatin also predicted the use of pravastatin
subsequently.

5.2. Estimation of treatment effect adjusting for treatment changes

Table IV shows the estimates of treatment effect by several methods, Hazard ratios for stroke event,
which was one of the secondary endpoints in the MEGA study, were also presented. Analysis
models for stroke were the same as those for CHD events, and similar results for factors associated
with receiving the pravastatin treatment were observed (not shown) as shown in Table III. For
both CHD and stroke events, two analyses were conducted, where each endpoint was evaluated at
5 or 10 years, respectively. Two intensity score estimates were obtained: one (intensity score 1)
was the constant treatment effect by applying model (3) and the other (intensity score 2) was the
cumulative treatment effect by applying model (7).

Both the intensity score and g-estimation methods gave the larger treatment effects for pravastatin
than the ITT ones for all endpoints. The adjustment effects were larger in the stroke events. The
statistically significant effect in the stroke event at 10 years was observed by the intensity score 1
(hazard ratio=0.51; 95 per cent CI: 0.28-0.95). The results from intensity score 2, in particular
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Table I'V. Estimates of treatment effect for CHD and stroke events.

CHD Stroke
5 years 10 years 5 years 10 years
Method HR 95 percent CI HR 95 percent CI HR 95 per cent CI HR 95 per cent CI
ITT 070  0.50,0.97 0.67 049,09 065 043,097 083 057,121

Intensity score 1 0.68 0.44,1.05 0.59 0.36,0.99 0.44 0.25,0.79 0.51 0.28,0.95
Intensity score 2 0.68 0.46,1.02 0.66 0.27,1.60 053 0.31,0.90 0.45 0.17,1.21
g-estimation 0.65 0.30,0.91 0.64 0.39,0.83 0.54 0.26,0.87 0.63 0.33,1.26

HR, hazard ratio; Cl, confidence interval; intensity score 1, constant treatment effect from model (3); intensity
score 2, cumulative treatment effect from model (7); g-estimation, semi-parametric randomization-based analysis
using model (10).

at 10 years, gave the wider confidence intervals than those from intensity score 1, which probably
reflects the sparse data problems in estimating f§; (7). The confidence intervals for the g-estimates
contained the null value of 1 whenever the ITT result was not significant.

6. DISCUSSION

In this paper, we developed the intensity score approach for time-to-event oulcomes with censoring
to estimate the causal treatment effect in the presence of non-random non-compliance. The proposed
approach has three major advantages over the g-estimation based on the SAFT maodel (10). The
first advantage is that an artificial recensoring scheme (Section 4.2) is necessary requirement for
the g-estimation to account for administrative censoring correctly, while the proposed approach
can treal the censoring uniquely within the framework of standard regression models. The rationale
for recensoring in the g-estimation is that if the potential baseline failure time U; is independent
of treatment assignment, the same should be true for any function of U; and C; since C; is a
baseline covariate. Therefore, there are several choices for an observable random variable that is
a function of {U;, C;) as a basis for inference [13, 16, 22].

The second major advantage of the proposed approaches is that they can be easily extended to the
estimation of time-dependent treatment effects such as (6), where the technique of g-estimation has
been difficult to apply in practice to the multi-parameter model. Although the constant treatment
effect model (1) is very simple, model (6) is more robust to the estimation of dynamic sequential
treatments conditional on past medical history. This robustness property of model (6) will be
compromised with the sacrifice of the precision as shown in Table IV. To avoid the sparse-data
problems, Brumback er al. [9] proposed the use of parametric constraints among the f;(r) such
as fi;(t)=ap+ayt depending on context.

The third advantage is its ease of application, that is, the g-estimate can be obtained in three
sleps: we compute propensity scores, derive intensity scores, and fit an ordinary regression model
for any outcome variable, although the correction term must be subtracted from the estimating
function to obtain the consistent estimator.

Nevertheless, the g-estimation has a number of advantages over the proposed approach. First
one is that it is a semi-parametric randomization-based approach, that is, it preserves the validity
of tests of the null hypothesis regardless of what determinants of outcome have influenced a
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patient’s decision to comply. Furthermore, the g-estimation provides estimated effects that are of
the same sign as the ITT effect and that are only statistically significant if the ITT analysis is
statistically significant. In relation to this point, a2 major drawback of the intensity score approach
is that one must be able to specify a comrect model for the conditional probability of treatment,
Pr[S; ()| Hi(1)], for each 1 up to the end of follow-up, although the increase of power will be
anticipated. Unfortunately, the assumption of no unmeasured confounders (2) is a non-identifiable
assumption and is not testable from the observed data. Furthermore, even when assumption (2) is
approximately true, we require strong modeling assumptions, since there are many covariates in
Hi(r). It is unlikely that these modeling assumptions would be precisely correct. In the MEGA
study, many clinically important prognostic factors were measured and all of them were used as
covariates to estimate the propensity score at each time. In addition to the prediction model shown
in Table III, the analyses based on other prediction models, such as a parsimonious model using
a variable selection procedure or full models in which time-dependent covariates, were entered as
the difference from the baseline or the absolute past two values, and the intensity score estimates
were shown to be insensitive to the selection of the prediction models conditional on the measured
covariates.

Another advantage of the g-estimation over the intensity score approach is that one can use the
SAFT model (10) to estimate the effect of a treatment on outcome in studies, where at each time ¢
there is a covariate level such that all patients with that level of the covariate are certain to receive
the identical treatment. For example, this circumstance implies that the intensity score approach
should not be used for the analysis of non-compliance data, in which treatment switching was
observed in only one group, because the intensity score at each time will be zero for patients in the
complete compliance group. Robins [23] and Robins er al. [24] discussed a similar problem, that
is, structural zero, for the adjustment of time-dependent confounding and showed that the IPTW
(inverse probability of treatment weighted) estimators, which are based on the propensity score,
are biased for the data with structural zero.

As Brumback er al. [9] have discussed, the intensity score approach resembles the IPTW
estimation method based on the marginal structural model (MSM). Although the MSM is useful
for estimating the causal effect of the pre-specified treatment regime such as always treat or treat
on alternate month [23, 24], it is much less useful for modeling the interaction of treatment with
a time-dependent covariate and for estimating the effect of a dynamic treatment plan in which the
treatment on a visit depends on a subject’s evolving covariate history. It is imporiant to recognize
that actual medical treatment regimes including non-compliance data are usually dynamic, and
the SNMM is more suitable for parametrizing such dynamic effects. Another difference between the
SNMM and the MSM is that the latter makes fewer assumptions than the former by not requiring
treatment effects to be constant across strata of covariate history, because the [IPTW estimators can
be interpreted as standardized parameters [24, 25]. Thus, in theory, the IPTW estimator is more
robust than the intensity score one.

In the analyses of the MEGA study data, we observed the larger adjustment effects in the stroke
events in spite of the fact that factors associated with non-compliance were nearly the same for
CHD and stoke events in each group. The explanatory analyses among the non-compliant cases
were conducted to investigate the relation between the non-compliance rate (/year) of each case
and the occurrence of each event. These analyses showed that, in the diet group, the effect of
non-compliance rate on the non-occurrence of stroke events (odds ratio=144; 95 per cent CI:
1.3-00; 5 stroke events among 865 non-compliant cases) was larger than that of CHD events (odds
ratio=14.5; 95 per cent CI: 1.7-150; 19 CHD events among 844 non-compliant cases), while,
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in the pravastatin group, the effect of non-compliance rate on the occurrence of stroke events
(odds ratio=5.7; 95 per cent CI: 1.2-26; 16 stroke events among 2440 non-compliant cases) was
also larger than that of CHD events (odds ratio=1.3; 95 per cent CI: 0.3-5.3; 20 CHD events
among 2441 non-compliant cases). These facts may explain the larger discrepancy between the
ITT estimate and the causal one observed in stroke events.

In the MEGA study, like any other clinical trial, dropout of patients during the study period
was observed. In addition to the usual loss to follow-up cases, there was another problem of
dropouts due to the refusal of further follow-up at 5 years [17, 18]. In this paper, we considered
all these dropout cases as non-informative censoring cases, Because observed dropout proportions
were not different among treatment groups (loss to follow-up: 546/3966=0.14 in diet group and
594/3866=0.15 in pravastatin group; refusal of follow-up by patients: 278/3966=0.07 in diet
group and 270/3866=0.07 in pravastatin group), the effect of these dropouts on the comparison
of treatment group may seem to be small. However, these non-administrative censorings may
be informative and hence a source of selection bias. To adjust for selection bias due to non-
administrative censoring, the IPCW (inverse probability censoring weighted) method has been
proposed [26-28). The underlying idea of the IPCW method is to base estimation on the observed
outcomes but weight them to account for the probability of being uncensored. We analyzed
the MEGA study data using the IPCW method which can adjust for some types of dependent
censorings, and confirmed that there were no large differences between the ITT estimates and the
IPCW ones for both CHD and stroke events [29]. Our intensity score method can also incorporate
the IPCW method, and this will be a future work.

APPENDIX A

We show that the correction term Nf;C must be subtracted from the WLS estimating function
to obtain a consistent estimator of f; in (1), where C:(l}N)(Z,tEI ff(r])w"(z'H:EI E(S;(1)]
H,-(I);é)) and w; =exp(—p)-T;-exp(—pf; ):fi(t]). We define the ‘estimated’ potential outcome
under no treatment;

= M=1
log Foi=log T~y X Si()
1=0

Under model (1) and assumption (2), the estimated potential outcome is mean independent of future
treatment given past history, which implies that E[J; (1) - w;- (log Toi — )] =0, <M — 1. Therefore,

M=1_ M-I
E( X L) -wi-|logTy—p—fy 3 Si1) | | =0 (A1)
=0 =0
Now, the WLS estimating equation that B, solves under model (3) has unconditional mean

ZECORE R it . 1 E(E;‘;E‘ Ji(0)-w; -[log T; — p— By M5! I;(1)1)=0. Substituting J; (1) = S; (1) —
E[S; (1) H; (1); 8] yields

M—1 M—1 M=1 s
E( Y5 f.(f)-ws'[lﬂgﬂ—ﬂ—ﬂ: X Si+p; T EISi(DIHi(); 9]]) =0 (A2)
1=0 =0 =0
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Comparing (Al) with (A2), it follows ll_ml B, is consistent for f, if for any ¢, i.{:);‘-ﬂ and
E(TiL T0)-wi- X355 ELS(0)| Hy(e): ) =0,
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Recently, flexible approaches with updating of sample size during the course of clinical
trials have been proposed; the weighted Z-statistic approach and the 50 %-conditional
power approach. In this paper, we propose a modification of the 50 %-conditional
power approach, which increases the sample size only when the conditional power
based on the unblinded interim results is greater than 50 %. Our method can control
the type | error rate due to the restriction on the minimum required sample size ratio
under the decision of increasing sample size. Simulation studies showed that the
proposed method increased power about 10% compared with the fixed sample size
design and attained higher power than the original 50 %-conditional power approach.
Compared with the weighted Z-statistic approach, the proposed method had several
promising operating characteristics; a substantial gain in conditional power given the
decision of sample size adjustment, a low probability of reaching the maximum sample
size, a substantial decrease in the conditional type Il error rate given the maximum
sample size, and a conservative property of not increasing sample size erroneously

under no treatment effect.

Key words: adaptive design; conditional power; interim look; sample size re-

estimation; type | error.

1. Introduction

The sample size calculation is an important element in the design of a clinical trial. Typically,
determination of sample size rests on knowledge of the expected treatment effect size, which is
a function of the expected treatment difference and the variance of an outcome variable. These
are usually obtained from previously completed small size clinical trials or historical data. If the
actual treatment difference is smaller and/or the actual variance is much larger than expected,
the planned sample size will be severely underestimated and consequently it may fail to detect

a treatment effect of clinical interest and waste limited resources. It is thus appealing to use
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the information from the current trial at interim stages, updating the initial assumptions and
adjusting the sample size if necessary, to ensure adequate power to detect a clinically meaningful
treatment difference while maintaining the type I error rate (Chow and Chang, 2007).

If sample size re-estimation is based on estimates of nuisance parameters such as within-
group variance, the type I error rate will not be materially inflated (Wittes and Brittain, 1990;
Gould, 1992; Wittes et al., 1999; Zucker et al., 1999). However, if sample size re-estimation is
based on the observed treatment difference, the type I error rate could be substantially inflated
and an appropriate statistical adjustment may be needed to control it (Gould, 2001; Proschan
and Hunsberger, 1995; Shun et al., 2001). Mid-course sample size modification methods based
on the observed treatment difference have been developed over the last decade by many authors.
These include Bauer and Kohne (1994), Proschan and Hunsberger (1995), Fisher (1998), Shen
and Fisher (1999), Cui, Hung, and Wang (1999), Lehmacher and Wassmer (1999), and Chen,
DeMets, and Lan (2004), and some of them are briefly reviewed in the next section.

In this paper, we will focus our attention on the 50 %-conditional power (CP) approach of
Chen, DeMets, and Lan (2004), which is the only method with no need of statistical adjustments
to control the type I error rate. The final analysis of their approach is conducted as usual, and
that is the merit for a clinician to understand it easily. Furthermore, some authors point out
the problem that the weighted Z-statistic approach of Cui, Hung, and Wang (1999) including
the methods listed above other than the 50 %-CP approach can reject the null hypothesis even
when the usual test used in a fixed sample design fails to reject (Denne, 2001; Posch, Bauer, and
Brannath, 2003; Burman, and Sonesson, 2006). Such inconsistency of rejection region occurs,
because those methods essentially allocate unequal weights to equally informative observations.
Thus, we propose a modification of the 50 %-CP approach using the usual test statistic. Simula-
tion studies are conducted to compare several operating characteristics among the original CP,

our proposed CP, and the weighted Z-statistic approach.

2. Sample size re-estimation methods based on the observed treatment difference
2.1 Problems posed by re-estimation using an interim estimate of treatment dif-
ference
We consider a situation which is common in phase Il clinical trials that involve the com-
parison of a new treatment with a placebo or standard therapy. A statistical design is specified
in the protocol based in part on the specification of a type | error rate a and a power 1 - at
a given effect size §. At some intermediate point during the course of the trial, researchers ex-
amine the outcome data collected so far and decide they wish to modify the original design. For
example, the choice of design effect size 6 has been over-optimistic, whereas it is now apparent
that the benefit of the new treatment is liable to be somewhat less than 4 and it is unlikely that
a significant result will be achieved at the planned end of the trial. Even so, the estimated effect
may still be large enough to be deemed clinically significant and worthwhile.
Jpn J Biomet Vol. 29, No. 1, 2008
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Consider an outcome variable Y;; for subject 7 in group j (j = 1,2), which is normally dis-
tributed with their mean, p; and uz, respectively, and common within variance &, The variance
o2 is assumed known or otherwise it can be estimated from the data. Without loss of generality,
we assume o2 = 1, and thus, the effect size is § = uy — p2. For our purpose, we consider a two
sample test Hy: 4 =0 versus Hy: & = 8y (> 0) using the one-sided two sample mean test with
the significance level a =0.025. Let Np denote the initial planned sample size per group for
detecting a pre-assumed effect size §pre with a desired power 1 — 4. Thus,

No = 2{(za + 28)/8pre }*, (1)

where z, denotes the (1 —u)th quantile of the standard normal distribution.
Now suppose the data are examined at an intermediate stage of the trial when n out of Ny
subjects have been collected. Denote the estimate of § computed from the n subjects per group

accumulated so far by
s gD
0= ;Z(Kl — Yi2).
i=1

Consider the situation where § is positive but somewhat smaller than the planned effect size dpr.
at which power 1 — 3 was specified. If the true value of § is close to &, it is unlikely that Ho
will be rejected, that is, the conditional power at & =4 is low. However, the researchers now
realize that the magnitude of § is clinically meaningful and the original target effect size §pr was
over-optimistic. This would have required the larger sample size A2 Ny, which can be obtained
by substituting & for &re in (1), where A = Spre /8.

A naive approach to this trial would be simply to increase the numlzmer of remaining subjects
on each group from (1 —t)No to ¥(1 — t)No, where t =n/Ng and v = H, and proceed to use
the naive final test statistic

A?Ng

ZLnaive = \/Z(AQ—N z [Yul YI?)

However, since the random variable ) is a function of the first stage data, this Z-statistic does
not follow a N(0,1) distribution under Hy and the test that rejects Ho when Znawe > 2o does
not have type I error rate a. Cui, Hung, and Wang (1999) shows that, typically, the type I error
rate of such a test is inflated by 30% to 40%; using other rules to determine the second-stage
sample size, it can more than double (Proschan and Hunsberger, 1995; Shun et al., 2001).
2.2 The weighted Z-statistic approach

The weighted Z-statistic approach assigns less weights to subjects enrolled after the decision
of increasing the sample size than to those enrolled before the decision (Fisher, 1998; Shen and
Fisher, 1999; Cui, Hung, and Wang, 1999). Here, the two-stage version of their approach is
shown. Let N denote the re-planned sample size per group and let M = A?Nq. In practice, there
is always an upper limit for the number of available subjects in a trial, then let Nmax be the
Jpn J Biomet Vol. 29, No.1, 2008
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maximum number of re-planned sample size per group. We will not decrease sample size when
the interim result & is larger than what was expected (Shih, 2001). Thus, re-planned sample size
N is determined as,
No if M <Ny
N={M if No<M < Nmax- (2)
Nmax if M 2 Npax

If the sample size is increased to N, which may depend on the observed value of test statistic
based on the first stage n subjects, 2" the weighted Z-statistic is defined as,

Z" = viz™ + v1—12'" ", (3)

where 2™ = (2n)" ”'zi(lf.; ~Ya), ZW=" = (2(N —n))~*/? ZN: (Yiy — Yi2) are the test sta-
i=1 i=n+t1

tistics based on n and (N — n) subjects, respectively. Under Hp, Z™ and Z'¥~™ are two inde-
pendent standard normal variables. Note that the (N —n) subjects enrolled after the decision
to increase sample size contribute to a constant amount of information fraction (1 — t) regardless
of N. Hy is rejected if the weighted Z-statistic Z\M) > 2, and the type I error rate is controlled
exactly at the nominal level & (Cui, Hung, and Wang, 1999). The weighted Z-statistic approach
can be easily extended to a group sequential trial (Cui, Hung, and Wang, 1999), which is equiv-
alent to a variance-spending approach proposed by Fisher (1998) and Shen and Fisher (1999).
2.3 The 50 %-conditional power approach

The basic idea of the 50 %-conditional power (50 %-CP) approach is that the initial planned
sample size is increased if and only if the interim result is promising, where a treatment effect
is said to be promising if the conditional power under the current trend is greater than 50 %,
or the sample size increment to achieve a desired power is no more than a prespecified upper
bound Numax (Chen, DeMets, and Lan, 2004). This approach is intended to save the marginally
significant result based on Ny subjects.

In this paper, we define the conditional power CP(t,z,6 = 3) based on the estimate of effect

size at an intermediate stage of the trial when n out of Ny subjects have been collected, such as,

CP(t,2,6 =8) = Pr(Z™) > 24|12 = 26 = §) x 100 = B((2/VE — 2a)/VI—1) x 100,  (4)
No
where Z!Me) = (2No)~ 33 Z(Y,; — Yi2) is the test statistic at the end of study based on the initial

planned Np subjects and ®(-) is the cumulative distribution function for a standardized normal
variable. In this approach, if CP(t,z.d = 5} > 50, M = A%Nj is calculated at the intermediate
stage and the re-planned sample size N is determined using the rule (2). If CP(t,z,6 = 8) < 50,

N is set to Np. The final test statistic is a simple one based on N subjects,

-
Z‘NJ = L (Y — ¥i2). (3)
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where Hyp is rejected if the Z-statistic Z'™) > z,. Chen, DeMets, and Lan (2004) showed that
increasing the sample size without any adjustment to the test statistic or the final critical value
will not inflate the type I error rate if the interim result is promising, that is, CP(t, 2,6 = §) > 50.
However, their simulation results suggested that the actual type I error rate of the 50 %-CP
approach was strictly less than the nominal level for all scenarios and that the type | error rate
reduction was substantial, especially in the case of late stage sample size re-estimation, such
as t = 0.8. Thus, their approach will be too conservative for sample size re-estimation and the
power will not be increased so much.
2.4 The proposed modified conditional power approach

To improve the conservative property in power of the 50%-CP approach, we consider a
modification of it, where the conditional power boundary to decide whether or not to increase
the initial sample size is set to a lower value Q % than 50 %. If one increases the sample size at Q <
CP(t,z,6 = §) < 50, the type | error rate may be inflated. However, the type I error reduction at
CP(t,z,6 =48) > 50 might be able to compensate for such inflation. The CP approach including

50 % one determines the re-planned sample size per group according to the following rule,

No if CP(t,z2,6=08)<Q

i No if CP(t,2,6=6)>Q and M <N i
M if CP(t,z56=8)>Q and No<M < Nuax '

Nmax if CP(t,2,6=6)>Q and M > Npax

where M = A*No,

To investigate the effect of lowering the value of Q on the type I error rate, we calculated
the actual type I error rate under the rule (6) with different conditional power boundaries @ = 5,
10, 15 and 20%. To calculate the actual type I error rate without any statistical adjustment, we

define the change in the type I error rate conditional on the observed data as,

A(r,4,2) =Pr(Z™ > 24| 2™ = 2,7,6 =0) - Pr(ZM) > 2,|Z2™) = 2,r,6 = 0)
= ®((2/t/r — 2a)/ /1 = t]7) = ®((2V1 - 20)/VT = 1)

where r = N/N,. The change depends on the magnitude of sample size ratio (r), the information
fraction at which the interim decision is made (¢) and the observed test statistic at an intermediate
stage (z). The actual type I error rate is a + E{I(r > 1)A(r,t,z)}, where for any proposition A,
I{A) equals one if A is true and zero otherwise.

Table 1 gives the actual type I error rates in various scenarios, where the desired powers
1 —f8=08, 0.9, the nominal level o = 0.025, the maximum number of re-planned sample size
Nias = 1.25Ng, 1.5Ng, 1.75Ng, 2Ng, 2.5Ng, and the information fraction of intermediate stage
t =0.2,0.5, 0.8 (see Appendix A). Table 1 shows that lowering the value of Q less than 50 % does
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