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Figure 6 The phosphorylation of ERK is induced by HMGB1 and linked to
HMGB1-induced migration of RPE cells. (a) ARPE-19 cells were stimulated
with HMGB1 (100 ng/ml) for §, 15, 30, or 60 min, and total cell lysates were
analyzed by western blot. ERK-1/2 activation was detected with anti-
phospho-ERK-1/2 antibody (p-ERK-1/2). Stripped membrane was reprobed
with the antibody against total ERK-1/2 (ERK-1/2). Results are representative
of three | it experi HMGB1 aug the ERK-1/2
phosphorylation from

to 60min after stimulation. (b) Pretreatment of
ARPE-19 with UD126 inhibits the cell migration toward HMGB1 (100 ng/ml)
in a dose-depend: The data rep it the mean +sd. (n=13).
Similar results were obtained from three independent experiments.

“P <005, **P<0.01, compared with vehicl d control,

Furthermore, exploring human vitreous samples by ELISA,
we found that both HMGB1 and MCP-1 are increased sig-
nificantly in eyes with RD. Although MCP-1 is a well-known
mediator for RD,” to our knowledge, this is the first report
indicating that extracellular HMGB1 might also be of re-
levance to human RD. HMGBI concentration tended to be
high in the eye without PVR, but not so with PVR. One
possible explanation for this tendency is that HMGB1 might
be sequestered and/or masked in PVR, the advanced stage of
RD. HMGRI binds tightly to heparin and proteoglycans with
heparan sulfate,’ and it is also reported that such pro-
teoglycans are abundantly present as the ocular extracellular
matrix, even in RD,*® Hence, these molecules might affect the
HMGBI concentration in the vitreous humor. Nevertheless,
this possibility does not negate the presence of HMGBI.
Considering the resulis obtained with the rat RD model,
extracellular HMGBI could be present at much higher levels,
at least in the subretinal fluid of RD, and it might serve as a
persistent signal adhering to the local damaged retina and/or
surrounding matrix as previously described.®

It is also of importance that HMGB1 is significantly cor-
related with MCP-1 in RD vitreous. The secretion of MCP-1
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might parallel the extent of photoreceptor degeneration of
RD. Nakazawa er al® recently suggested that MCP-1 is a
potential proapoptotic mediator during RD through the ac-
tivation of microglias and/or macrophages. In their study,
Miiller-glial cells were observed to upregulate MCP-1, leading
to activation and increased infiltration of microglias/macro-
phages in the detached retina. These cells induced further
photoreceptor apoptosis through local oxidative stress. Cor-
responding to this report, RAGE was also reported to be
prominently expressed in the Miiller-glial cells." Therefore,
HMGB1 might influence MCP-1 expression through Miiller-
glial cells. Conversely, HMGBI is known to be released by
activated monocytes/macrophages.” MCP-1 is a potent sti-
mulator and chemoattractant for monocytes/macrophages,*
and these cells were observed in the subretinal space of RD
with abundant HMGB1 expression. This would also be an-
other possible explanation for the parallel increases of
HMGBI and MCP-1. Nevertheless, the positive correlation of
these molecules indicates that cell death-related mediators
might be highly orchestrated in ocular degenerative tissue
damage. Several studies suggest that extracellular HMGBI
can aggravate tissue damage in neuronal tissues.'™ In these
studies, extracellular HMGBI plays a key role in the deve-
lopment of neuronal injury through the induction of inflam-
mation, microglial activation, and neuronal excitotoxicity.
According to these recent reports, the presence of extracellular
HMGBI concomitantly with MCP-1 is a possible deteriorating
factor for RD, in spite of its essential role in the nucleus.
PVR is one of the most threatening complications of RD, It
is thought to be a reactive process to retinal injury, in other
words, it is one of the wound-healing responses in the eye.
RPE cells are known to be detectable in the fibrotic pro-
liferative membranes of PVR, and play an important role in
the pathogenesis of PVR.** Thus, the effects of a molecule on
PVR formation could be traced to RPE migration, at least in
part. Here, we demonstrate that extracellular HMGB1 pro-
maotes RPE cell migration by chemotaxis in vitro. This result
is consistent with previous reports of HMGBI-induced cell
migration in various cell types, such as smooth muscle
cells, 2" fibroblasts,*® and chondrocytes.” We also found
that HMGBI activated phosphorylation of ERK-1/2 in RPE
cells and the migration induced by HMGBI1 was dependent
on ERK phosphorylation. The phosphorylation of ERK is
associated with cell proliferation and cell migration through
effects on cell-matrix contacts.”® It was also reported to be
found in Miller-glial cells after RD.*”” Taken together, our
results suggest that extracellular HMGBI from dying ocular
cells might affect retinal cells through ERK phosphorylation
and potentially serve to promote the formation of PVR,
which is wound healing, but has a pathological meaning in
the eye. Several new strategies for prevention of ocular
fibrosis, especially targeting specific signaling pathways, have
been proven to be beneficial in animal models.”*™" We
propose that the identification and further characterization
of danger signals, including HMGB1, would provide a novel
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perspective for better understanding the molecular patho-
genesis of PVR before applying these promising therapeutic
manipulations to human subjects.

It has been suggested that post-transcriptional modifica-
tions of HMGBI, such as acetylation, methylation, and
phospharylation, might influence its activity,*' Some recent
reports also demonstrate that the proinflammatory activity of
HMGBI is due to combined action with other molecules.*
The present data are mostly limited to the presence of
HMGBI rather than its biological activity, and we do not
address what modifications or molecules are involved in in-
traocular HMGBI1. However, we identify for the first time
that HMGBI is evident in a typical retinal injury of human
RD, in which nuclear HMGBI1 is a crucial nuclear protein
and extracellular HMGBI is a danger signal that might be
required for the ocular wound-healing response. Our find-
ings might have relevance for the underlying mechanisms of
degenerative neuronal diseases, Further detailed studies will
be needed to obtain more accurate knowledge and ther-
apeutic value of HMGBI in human diseases.
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