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measurement device (Model MK-5000; Muromachikikai,
Tokyo, Japan). Each mouse was placed in a sealed
chamber (560 ml volume) with an air flow rate of
500 ml/min at room temperature. The amount of oxy-
gen consumed was converted to milliliters per minute
by multiplying it with the flow rate.

Statistical analysis

Data were expressed as means = SE. Differences
between two groups were analyzed by Student’s 1 test
for unpaired comparisons. Individual comparisons
among more than two groups were assessed with post-
hoc Fisher’s PLSD test. Differences were considered
significant at P<0.05.

Results

Two-fold increase of PPARy activity in the S1124
mouse adipocytes

Transgenic mice with the PPARy2 S112A mutation
expressed under the control of the aP2 promoter were
established to investigate the physiological role of
increased PPARy activity in mature adipocytes (Fig.
1A). A 13.5 kb wild-type allele and a 1.2 kb mutant
allele in the transgenic mice were identified by South-
ern blot analysis (Fig. 1B). Eleven founder mice car-
rying 2 to 10 copies of the transgene were produced
and four lines of transgenes carrying 2 copies ex-
pressed PPARY2 in the adipose tissue. While a 3-fold
higher PPARy2 mRNA expression was found in the
S112A mouse than in the wild-type mouse adipose tis-
sue, there was no significant difference in the expres-
sion level of PPARy1 (Fig. 1C). The mRNA levels of
aP2, stearoyl-CoA desaturase (SCD)l and C/EBPa,
downstream target genes of PPARy, were significantly
upregulated in the WAT of the S112A mice as com-
pared with that in the wild-type mice (Fig. 1D). con-
firming that enhanced PPARy activity in the S112A
mice.

81124 mice showed comparable WAT mass, insulin
sensitivity and serum lipid levels to wild-type mice
under the HFD condition

S112A mice showed similar body weight, epididy-
mal WAT mass and food intake to wild-type mice on a

normal diet (data not shown). Administration of a
HFD for 20 weeks, while inducing a 2-fold increase in
the PPARy2 expression in the WAT of the S112A
mice (Fig. 2A), had no significant effect on the body
weight, linear growth (Fig. 2B) or epididymal WAT
mass (wild-type: 1.58 +0.14 g; S112A: 1.78+0.17 g
(n= 7)) of these mice. Histological analyses revealed
that the adipocyte size in the WAT was notsignificantly
different between the wild-type and S112A mice under
either the normal or HFD condition (Fig. 2C). No dif-
ferences in insulin sensitivity or glucose tolerance
were found between the wild-type and S112A mice
under either the normal (data not shown) or HFD con-
dition (Fig. 2D and E). The serum FFA, TG, ad’
ponectin and leptin levels were comparable betwee
the wild-type and S112A mice mice under both normal
and HFD conditions (Fig. 2F-I). Oxygen consumption
was also similar between the two genotypes (Fig. 27J).

Gene expressions in the WAT of the wild-type and
S1124 mice under the HFD condition

We next investigated the expression of the genes in-
volved in lipid metabolism in the WAT of the S112A
mice. The expressions of aP2, lipoprotein lipase
(LPL), acyl-CoA oxidase (ACO), SCD1 and hormone-
sensitive lipase (HSL), whose promoters contain a
peroxisome proliferator response element (PPRE),
were upregulated in the S112A mice (Fig 3A and B).
The expression levels of CD36 remained unchanged,
even though the CD36 promoter also contains a PPRE
(Fig. 3A). .

Rosiglitazone increased the insulin sensitivity to a sim-
ilar degree in both the mouse genotypes

We examined the effects of rosiglitazone on the in-
sulin sensitivity and glucose tolerance in the wild-type
and S112A mice. The body weights of the wild-type
and S112A mice were comparable, and rosiglitazone
treatment did not change the body weight of either
genotype (Fig. 4A). The adipocyte size was reduced
to a similar degree in the wild-type and S112A mice
after rosiglitazone treatment (Fig. 4B). Rosiglitazone
significantly increased the insulin sensitivity to a simi-
lar degree in both the wild-type and S112A mice (Fig.
4C). Moreover, wild-type and SI112A mice freated
with rosiglitazone showed similar decreases of the
blood glucose and mnsulin levels in the glucose toler-
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ance test (Fig. 4D). Rosiglitazone treatment signifi-
cantly reduced the serum levels of FFA, but not TG, to
a similar degree (Fig. 4E and F) in both the mouse
genotypes. The serum adiponectin levels increased
(Fig. 4G) and leptin levels decreased to a similar degree

in both the mouse genotypes after rosiglitazone freat-
ment (Fig. 4H). These data suggest that rosiglitazone
increased the insulin sensitivity to a similar degree in
the two genotypes.
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2.0 25

Gene expressions in the WAT of the wild-type and S112A mice after administration of a HFD for 20 weeks (A, B). Northern

blot analysis (A), TagMan RT-PCR analysis (B). Values are expressed as means + S.E. (n = 6—7) *P<0.05, **P<0.01. NS, no

significant difference.

Discussion

S112A mice with enhanced PPARY activity in ma-
ture adipocytes showed comparable insulin sensitivity,
glucose tolerance and body weight to wild-type mice,
both under normal and HFD conditions. While a 50%
reduction of PPARy activity has been reported to exert
protection from HFD-induced obesity and insulin re-
sistance [3, 4], increased PPARy activity in mature
adipocytes had no effects on these parameters.

Whereas S112A knock-in mice of Lazar er al. [10]
showed comparable body weights to wild-type mice,
Just like our S112A mice, they exhibited increased in-
sulin sensitivity, unlike our S112A mice. What is the
reason for this difference between the S112A mice and
S112A knock-in mice? Possibly because the aP2 pro-
moter used to induce the S112A mutation in this study
is not activated before adipocyte maturation, the
PPARy S112A mutation is expressed only in the later
stages of differentiation. In contrast, PPARy expres-
sion probably occurs earlier during differentiation in
the ST112A knock-in mice due to the endogenous pro-

moter activity of the PPARy gene. This may explain,
at least in part, the increase in the number of small adi-
pocytes and serum adiponectin levels and thereby, the
increased insulin sensitivity, in the knock-in mice [10].
Secondly, since PPARy knock-in mice exhibit high
PPARy activity throughout the body due to intrinsic
PPARy promoter expression, the phenotype of the
knock-in mice may result from increased insulin action
in the skeletal muscles and liver. 1In fact, liver-or
muscle-tissue-specific PPARy-KO mice have been re-
ported to show glucose intolerance and progressive
msulin resistance [16, 17]. Our S112A mice showed
elevated PPARy activity only in adipose tissue.
TZD-mediated PPARy activation increases the
small adipocyte number [8], thereby increasing the
production of adiponectin, or directly upregulates adi-
ponectin by activating adiponectin gene transcription
[8]. Moreover, TZD also increases insulin sensitivity
by lowering the plasma FFA [8]. In contrast, S112A
mice with increased PPARy activity showed compara-
ble adipocyte size and serum levels of adiponectin and
FFA to those i the wild-type mice. The effects of the
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Fig. 4. Rosiglitazone increased insulin sensitivity to a similar degree in both the mouse genotypes. The mice were fed a HFD for
6 weeks and then treated or not treated with rosiglitazone for |5 weeks (A, B, E-H), or 6 weeks (C, D). body weight (A),
adipocyte size (B), insulin tolerance test (C), glucose tolerance test (D), and serum FFA (E), TG (F), adiponectin (G) and
leptin levels (H). Values are expressed as means = S.E. (n = 4) *P<0.05, **P<0.01. NS, no significant difference.

increase in PPARy activity in mature adipocytes asso- ~ PPARy activation via rosiglitazone. One possibility is
ciated with the S112A mutation on the insulin sensitiv-  that the PPARy activation induced by rosiglitazone is
ity and adipocyte size were distinct from those of  more marked than that observed in the SI12A mice. It
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might also be possible that the amount of PPARy
ligands available in adipocytes is far lower than the
amount of PPARy receptors under physiological con-
ditions.

S112A mice treated with rosiglitazone showed simi-
lar insulin sensitivity to the wild-type mice treated
with rosiglitazone. The possibility that rosiglitazone
did not activate the S112A allele cannot be excluded,
however, rosiglitazone binds PPARy and activates
both PPARy1 and PPARy2 [18]. In fact, it has been
reported that PPARy2 S112A is activated as much as
or more than wild-type PPARy by rosiglitazone [19,
20]. We also believe that PPARy S112A is activated
by rosiglitazone, although why rosiglitazone-treated
S112A mice exhibited similar insulin sensitivity to
wild-type mice still remains to be clarified.

In conclusion, whereas the 50% decrease in PPARy
activity showed protection from HFD-induced obesity
and insulin resistance, in the present study, the 2-3-
fold increase in PPARY2 expression and PPARy activi-
ty failed to show obesity and insulin resistance even
under the HFD condition.
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Crucial role of insulin receptor substrate-2 in compensatory
B-cell hyperplasia in response to high fat diet-induced
insulin resistance
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In type 2 diabetes, there is a defect in the regulation of functional f-cell mass to overcome high-fat (HF) diet-induced
insulin resistance. Many signals and pathways have been implicated in f-cell function, proliferation and apoptosis.
The co-ordinated regulation of functional p-cell mass by insulin signalling and glucose metabolism under HF diet—
induced insulin-resistant conditions is discussed in this article. Insulin receptor substrate (IRS)-2 is one of the two
major substrates for the insulin signalling. Interestingly, IRS-2 is involved in the regulation of B-cell proliferation, as
has been demonstrated using knockout mice models. On the other hand, in an animal model for human type 2 diabetes
with impaired insulin secretion because of insufficiency of glucose metabolism, decreased B-cell proliferation was
observed in mice with B-cell-specific glucokinase haploinsufficiency (Gck™'”) fed a HF diet without upregulation of
[RS-2 in B-cells, which was reversed by overexpression of [RS-2 in B-cells. As to the mechanism underlying the
upregulation of IRS-2 in B-cells, glucose metabolism plays an important role independently of insulin, and phos-
phorylation of cAMP response element-binding protein triggered by calcium-dependent signalling is the critical
pathway. Downstream from insulin signalling via IRS-2 in B-cells, a reduction in FoxO1 nuclear exclusion contrib-
utes to the insufficient proliferative response of p-cells to insulin resistance. These findings suggest that IRS-2 is
critical for B-cell hyperplasia in response to HF diet-induced insulin resistance.

Keywords: B-cell hyperplasia, cAMP response element-binding protein, forkhead protein FoxO1, glucokinase, glucose, high-fat

diet, insulin receptor substrate-2
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the adipokines, a group of hormones secreted by adipose
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Mskion tissue, have been shown to directly or indirectly affect

The prevalence of type 2 diabetes has increased markedly
in both Western and Asian countries, and this increase
can be explained by drastic changes, such as a high-fat
(HF) diet and a sedentary lifestyle. Excess white adipose
tissue is now linked to cbesity-related health problems in
the current environment of excessive nutrition. Some of
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insulin sensitivity through modulation of insulin signal-
ling and the molecules involved in glucose and lipid
metabolism [1]. Hypertrophic adipocytes secrete an
excess of certain hormones and nutrients, which have
been reported to cause insulin resistance and produce
less adiponectin, which has been reported to increase
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insulin sensitivity [2]. Under normal circumstances,
this insulin resistance would be compensated for by
increased insulin secretion, but in type 2 diabetes, there
is a defect in the regulation of functional B-cell mass to
overcome HF diet—induced insulin resistance. In fact,
decreased f-cell mass as well as impaired insulin secre-
tion was reported in both Western and Asian patients
with type 2 diabetes [3-5]. Although many signals and
pathways have been implicated in B-cell function, pro-
liferation and apoptosis, the co-ordinated regulation of
functional B-cell mass by insulin signalling and glucose
metabolism under HF diet—induced insulin-resistant
conditions has not been fully elucidated [6-10].

This article focuses on the role of insulin signalling for
the regulation of B-cell mass in knockout mouse models
[10]. We also discuss the regulation of p-cell mass by
glucose metabolism using mice with haploinsufficiency
for p-cell-specific glucokinase (Gck*/~) on a HF diet
and the striking role of insulin receptor substrate (IRS)-2
for the regulation of B-cell mass in this model [11]. In
addition, we examine the molecular mechanisms of
upstream and downstream IRS-2 signalling with discus-
sion of the recent emerging concepts that cAMP
response element-binding protein (CREB) and FoxO1
mediate B-cell-mass changes [12,13]. Finally, we frame
the challenges involved in designing therapeutic

|. Takamoto &t al.

approaches that manipulate IRS-2 signalling in f-cells
for the treatment of type 2 diabetes [14,15] (figure 1).

Regulation of 3-Cell Mass by Insulin Signalling
in Knockout Mouse Models

IRSs are evolutionarily conserved adaptor proteins,
which are required for various biological processes,such
as nutrient metabolism, cell-cycle control, apoptosis and
differentiation. IRS-1 and IRS-2 are the two major sub-
strates for insulin receptor tyrosine kinase and insulin-
like growth factor (IGF)-1 receptor kinase [16—18]. The
physiological roles of these proteins in vivo have been
evaluated using gene-targeting strategies [10,20]. Total
IRS-1 knockout (IRS-17'") mice are growth retarded and
insulin resistant [21,22], but because of compensatory
hyperinsulinaemia associated with B-cell hyperplasia
in response to insulin resistance, they do not develop
diabetes. Total IRS-2 knockout (IRS-27/~) mice, on the
other hand, develop type 2 diabetes associated with
hepatic insulin resistance, a lack of compensatory f-cell
hyperplasia and leptin resistance [23—26] (figure 2).
Considering that insulin resistance caused by the
absence of IRS-2 in peripheral tissues may affect leptin
sensitivity and p-cell proliferation, specific disruption of
the IRS-2 gene in p-cells and the hypothalamus is needed
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Fig. 1 Schema showing adaptive p-cell growth with crucial signals and pathways. Many signals and pathways have been
implicated in p-cell function, proliferation and apoptosis. The coordinated regulation of functional p-cell mass by insulin
signalling and glucose metabolism under high-fat diet-induced insulin resistance is discussed in the body of this article.
CREB, cAMP response element-binding protein; GLP, glucagon-like peptide; IGF, insulin growth factor; IRS, insulin

receptor substrate; PI, phosphoinositide.
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to determine the roles of IRS-2 at these sites more precisely.
Recently, we generated B-cell-specific IRS-2 knockout and
hypothalamus-specific IRS-2 knockdown (BHT-IRS-2 KO)
mice by crossing IRS-2 floxed (IRS-2 flox/flox) mice and
transgenic mice expressing Cre recombinase under the
control of the rat insulin IT promoter (RIP-Cre mice) [27].
The expression of IRS-2 mRNA in BHT-IRS-2 KO mice
was reduced by approximately 90% in islets and mark-
edly reduced in the arcuate nucleus of the hypothalamus,
whereas the expression of IRS-2 in the liver, muscle and
adipose tissue of BHT-IRS-2 KO was indistinguishable
from that in control mice. The BHT-IRS-2 KO mice were
obese and leptin resistant. Furthermore, despite normal
insulin sensitivity during caloric restriction, these mice
also displayed glucose intolerance and impaired glucose-
stimulated insulin secretion. Both the B-cell mass and B-
cell proliferation rate were significantly reduced in adult
BHT-IRS-2 KO mice, but not in the young animals, Using
the same gene-targeting strategy, another group indepen-
dently revealed that [RS-2 signalling promoted regenera-
tion of adult B-cells and central control of nutrient
homeostasis, which prevented obesity and diabetes in
mice [28].

As Cre recombinase expression in the hypothalamus
seen in our RIP-Cre mice resulted in the development of
obesity and leptin resistance, which potentially influence
B-cell function, pancreas-specific IRS-2 knockout mice
(P-IRS-2 KO) were generated in which Cre recombinase
expression was driven by the promoter of the pancreatic
and duodenal homeobox factor 1 (Pdx-1) gene [29]. Mor-
phometric analysis in adult P-IRS-2 KO mice revealed
a reduced total - and a-cell masses but preservation of
pancreatic mass. Moreover, reduced KiB7 staining was
detected in B-cells in P-IRS-2 KO mice, demonstrating
a reduced proliferation rate. Together, these findings
suggest that the expression of IRS-2 in B-cells plays cru-
cial roles in the regulation of p-cell mass.
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[RS-2 function was clearly shown to be sufficient for
regulation of proliferation and apoptosis in p-cells
in vitro. High expression of IRS-2 by adenoviral infec-
tion, but not of IRS-1, induced proliferation and pro-
tected human B-cells from hyperglycaemia-induced
apoptosis [30]. In contrast, decreasing endogenous IRS-2
in a f-cell line, using adenoviral-mediated expression of
IRS-2 antisense, caused marked apoptosis, which was
further enhanced in the presence of FFA. This was
associated with decreased phosphorylated Akt and
increased caspase-9 activation [31].

To more precisely determine the roles of IRS-2 in f-
cells, we attempted to establish a pancreatic B-cell line
lacking IRS-2 expression. Considering the difficulty of
directly establishing a f-cell line from IRS-2 knockout
mice, we first established several SV40-transformed
IRS-2 flox/flox p-cell lines and selected one line in which
functional glucose-stimulated insulin secretion was pre-
served [32]. In the [RS-2 flox/flox B-cell line, the expres-
sion of IRS-2 was efficiently disrupted by infection with
an adenovirus expressing Cre recombinase. When the
expression level of the IRS-2 protein virtually dis-
appeared (1 week after infection with the adenovirus),
cell proliferation was arrested, whereas no morpholo-
gical changes were seen after infection of the wild-type
B-cell line with the same adenovirus. These findings
clearly indicate that IRS-2 is crucially involved in
the regulation of physiological f-cell proliferation
(I. Takamoto, University of Tokyo, N. Kubota, Univer-
sity of Tokyo, ]. Miyazaki, Osaka University and
T. Kadowaki, University of Tokyo, unpublished results).
The cell cycle-related and apoptosis-related molecules
involved in B-cell survival via downstream IRS-2 signal-
ling should be examined in the future.

On the other hand, even in the absence of insulin re-
sistance, B-cells deficient in IRS-1 exhibit a compen-
satory increase in IRS-2, which is associated with islet
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growth and is characterized by both proliferative and anti-
apoptotic effects in experiments using a transplantation
approach [33]. Furthermore, isolated islets from IRS-1
knockout mice and SV40-transformed IRS-1-deficient
B-cell lines exhibit marked insulin secretory defects in
response to glucose. This defect can be partially re-
stored by transfecting the cells with IRS-1 [34]. IRS-1 ap-
pears to have different biological functions from IRS-2
because IRS-1 has no apparent influence on p-cell growth
or survival. Rather, IRS-1 possibly plays a role in regulat-
ing intracellular calcium ion handling in B-cells at the
level of the rough endoplasmic reticulum [35]. Interest-
ingly, analysis of gene expression patterns in P-IRS-2 KO
islets revealed that IRS-1 mRNA levels were unaltered,
demonstrating that there is no compensatory upregula-
tion of this gene [29], which contrasts with the upregula-
tion of IRS-2 reported in IRS-1 deficient islets [33].

In summary, IRS-1 and IRS-2 appear to have distinct
roles in p-cell function and mass for reasons that are still
unclear. The underlying molecular mechanisms also
await full clarification in future studies.

Regulation of B-Cell Mass by Glucose

While it has long been known that glucose and its metabo-
lism can stimulate B-cell proliferation in vitro and in vivo
[6,36,37], the precise mechanism of this process remains
largely unknown. To unravel the molecular mechanism
by a gene-targeting strategy, we used mice with hap-
loinsufficiency for B-cell-specific glucokinase (Gck™'~) as
an animal model of human type 2 diabetes with impaired
insulin secretion [11,38). As glucokinase (Gek) catalyses
the conversion of glucose into glucose 6-phosphate,
which is a critical process in glucose sensing for insulin
secretion in pancreatic B-cells, Gek™'~ mice display glu-
cose intolerance associated with a reduction in insulin
secretion in response to glucose [38]. Therefore, Gek*'~
mice fed a HF diet are an appropriate animal model for
human type 2 diabetes [11]. In addition, mutations of the
Gck gene in humans have been identified in maturity
onset diabetes of the young (MODY2) patients [39].

On a HF diet, the wild-type mice maintained normal
glucose tolerance as a result of compensatory hyperin-
sulinaemia, whereas the Gek'’~ mice developed severe
diabetes because of the lack of compensatory hyper-
insulinaemia, despite similar degrees of obesity and insu-
lin resistance. A histological analysis showed that the HF
diet caused islet hyperplasia in the wild-type mice but,
surprisingly, not in the Gek™'~ mice. In addition, the
estimation of B-cell proliferation based on the rate of
5-bromo-2'-deoxyuridine incorporation revealed that the
failiire of compensatory B-cell hyperplasia in the Gek*'~
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mice fed with the HF diet was associated with lack of
a compensatory increase in B-cell proliferation, in con-
trast to the situation in wild-type mice fed with the HF
diet [11].

A DNA microarray analysis as a means of systemati-
cally examining the gene expression profiles of the islets
again pointed out the striking role of IRS-2 in the control
of B-cell mass in response to HF diet—induced as well as
genetically determined insulin resistance [25]. Of all
genes that were examined, the expression of IRS-2 was
most downregulated in the islets of Gek™'~ mice fed
with the HF diet, compared with the islets of wild-type
mice fed the HF diet [11] (figure 3). In addition, the
expression of PDK-1, IGF-1 receptor the prolactin recep-
tor and cyclin D2 were also markedly lower. Moreover,
by western blot analysis, upregulation of IRS-2 expres-
sion in the islets occurred in the wild-type mice fed the
HF diet, but not in the Gek*’'~ mice on the same HF diet
[11]. Taking into consideration the crucial roles of IRS-2
in the knockout mouse models, a reduction in [RS-2
seemed to explain the impaired B-cell hyperplasia in
Gek '™ mice fed the HF diet (figure 4).

To directly test our hypothesis that a reduction in IRS-2
explains the impaired p-cell hyperplasia in Gek™ ™ mice
fed the HF diet, Gek*/~ mice crossed with f-cell-specific
IRS-2 transgenic (PIRS-2Tg) mice were analysed [11].
When the expression of IRS-2 protein in BIRS-2TgGek' "~
mice was comparable to that in the wild-type mice, f-cell
proliferation was rescued. This resulted in a significantly
larger B-cell area in BIRS-2T, *+/~ mice than in Gek™'~
mice and partially prevented diabetes development on
the HF diet [11]. Consistent with the experiments involv-
ing p-cell-specific IRS-2 transgenic mice that were inde-
pendently reported by others, the upregulation of [RS-2
in B-cells promoted B-cell growth and survival, prevent-
ing the onset of diabetes caused by IRS-2 disruption or
HF diet-induced obesity [40].

Mareover, our experiments using other animal models
with hyperphagia and insulin resistance, such as ob/ob
mice, db/db mice and KKAy mice, have shown that the
expression level of IRS-2 in islets consistently correlated
with the p-cell mass (. Takamoto and M. Ohsugi, Univer-
sity of Tokyo, unpublished results). Thus, IRS-2 is critical
for the regulation of f-cell mass in response to both HF diet—
induced and genetically determined insulin resistance.

Mechanism for the Upregulation of IRS-2 in
B-Cells

What is the impact of HF diet on IRS-2 in B-cells? To
address this simple question, we initially investigated
the mechanisms of upregulation of IRS-2 in B-cells under

¢ 2008 The Authors
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HF diet-induced insulin resistance conditions. Two
mechanisms are theoretically possible. One is a direct

a challenge to separate the proper effects of glucose from
those of insulin in experiments using p-cells.

effect of specific nutrients of the HF diet, but there is little
evidence to support this hypothesis. The other possibility
isan indirect effect of the elevation of plasma insulin and/
or glucose secondary to insulin resistance. Because of the
complexity of the mechanisms by which glucose and its
metabolites can exert their effects on B-cell proliferation
and because glucose also stimulates insulin secretion,
which in turn can feed back on B-cell proliferation, it is

It is well known that the hepatic IRS-2 mRNA level is
very high during fasting and markedly reduced by refeed-
ing, whereas hepatic IRS-1 levels do not show a significant
change [41]. At least in the liver, the IRS-2 promoter was
reported to be activated by forkhead protein FoxO1
through an insulin response element and nuclear sterol
regulatory element-binding protein (SREBP)-1c inter-
fered with the binding of FoxO1. During refeeding, the
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Fig. 4 Schema showing how the upregulation of insulin receptor substrate (IRS-2) is required for compensatory p-cell
hyperplasia in response to high fat (HF) diet-induced insulin resistance. Lacking the upregulation of IRS-2 in f-cells is
critically responsible for the impaired B-cell hyperplasia in Gek' mice fed with the HF diet.
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increase in insulin levels inactivated hepatic FoxO1 by
phosphorylation and nuclear exclusion, but the elevation
of glucose and insulin markedly induced hepatic SREBP-
1c expression. Thus low FoxO1 and high SREBP-1c lev-
els in liver nuclei were prominent in the fully fed state,
resulting in a reduction of IRS-2 expression [41].
However, this is not the case in the islets. In striking
contrast to the decrease observed in the liver, the mRNA
level of IRS-2 in pancreatic islets was markedly increased
by refeeding (I. Takamoto and M. Ohsugi, unpublished
results). Recent publications support the concept that glu-
coseitself, within physiologically relevant levels, can regu-
late IRS-2 expression levels in a dose-dependent manner
[43]). Experiments in rat primary islet p-cells suggested
that glucose metabolism was necessary for increased IRS-
2 expression and that inhibition of glucose-induced rise
in B-cell cytosolic calcium prevented the increase in IRS-
2 expression, indicating that this process was calcium
dependent. In addition, glucose stimulation of IRS-2
expression can be separated from effects of insulin by
using somatostatin that inhibits insulin secretion. More-
over, we have also observed that glucose metabolism in
B-cells can upregulate [RS-2 expression levels independ-
ently of insulin both in vitro and in vivo, and the Ser 133
phosphorylation of CREB triggered by calcium-depen-
dent signalling may be the critical pathway (M. Ohsugi,
University of Tokyo, unpublished results) (figure 5).
Glucagon-like peptide-1 (GLP-1) receptors are abun-
dantly expressed in B-cells and neurons [44]. The GLP-1
receptor, which has seven transmembrane-spanning

|. Takamoto &! &

regions, is coupled to Gs, which increases cAMP levels
through the activation of adenylyl cyclase. GLP-1 is
involved in the protein kinase A (PKA) pathway via the
elevation of cAMP, which enhances glucose-stimulated
insulin secretion in B-cells. In addition, GLP-1 report-
edly increases pancreatic B-cell survival, leading to an
increase in B-cell mass [14]. Exendin-4 (Ex-4) is a long-
acting GLP-1 receptor agonist that is now used in the
treatment of human diabetes. In fact, Ex-4 increased
cAMP levels in a murine p-cell line (MING cells) and in
human islets, subsequently promoting IRS-2 expression
— in which CREB phosphorylation was crucially invol-
ved [45]. Furthermore, in human islets, the anti-apoptotic
action of Ex-4 exposed to cytokines was partially lost
when CREB function was impaired by adenoviral infec-
tion with dominant negative mutant forms of CREE [45].
To date, cAMP and the subsequent phosphorylation
of CREB are thought to be regulators of IRS-2 expression
in B-cells [12]. While the activation of PKA is a common
consequence of the activation of GLP-1 activation of the
tyrosine phosphorylation of IRS-2, downstream [RS-2
activates the phosphoinositide (PI) 3-kinase cascade and
appears to be important for p-cell survival and growth.

In accordance with the critical role of CREB in theregu-
lation of IRS-2 expression in B-cells, Ser 133 phosphory-
lation of CREB was also impaired in Gek*'~ mice feda HF
diet compared with the wild-type mice fed a HF diet,
despite the cAMP content of the islets in both groups
being unchanged [11]. We hypothesized that impaired
calcium signalling in B-cells caused by the glucokinase

l_ Phosphorylation of CREB [ ______ o
cAMP ca?* ’
PKA CaMK Il or IV
[ \"* Svr<. Ser133
v @ zp o

Q1 & 2: Glutamine Rich Domain

KID: Kinase Inducible Domain J
bZIP: basic DNA binding & Leucine Zipper Domain /

Fig. 5 Schema showing phosphorylation of cAMP response element-binding protein (CREB) triggered by cAMP—protein
kinase A (PKA) pathway and calcium-dependent signalling in B-cells. Phosphorylation of CREB is thought to be a key

regulator of insulin receptor substrate-2 expression in f-cells.
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haploinsufficiency failed to promote the full Ser 133
phosphorylation of CREB in response to HF diet—
induced insulin resistance.

Downstream from Insulin Signalling Via IRS-2
in B-Cells

As mentioned above, FoxO1 has been reported to be an
activator of IRS-2 in the liver, but there is no clear evidence
that the promoter of IRS-2 is activated by FoxO1 in B-cells.
Rather, B-cell FoxO1 is recognized as a prominent tran-
scriptional effector downstream from insulin signalling
via IRS-2. FoxO1 activity is inhibited by PI 3-kinase/Akt
signalling by phosphorylation-dependent nuclear exclu-
sion. The most brilliant genetic result is that FoxO1 hap-
loinsufficiency reverses B-cell mass in IRS-2~'~ mice [13].
This appears to be mediated, at least in part, by increased
Pdx-1 expression. The transcription factor Pdx-1 plays
important roles in -cell differentiation, proliferation and
function [47]. Pdx-1 transcription is regulated by another
forkhead transcription factor, FoxA2 (also known as
HNF3p) [48]. As FoxO1 and FoxA2 share common DNA-
binding sites in the Pdx-1 promoter, FoxO1 competes
with FoxA2 for binding to the Pdx-1 promoter, resulting
in the inhibition of Pdx-1 transcription [13]. Conversely,
a decrease in Akt phosphorylation results in enhanced
nuclear Fox01, which is inhibitory toward B-cell mass
expansion [49]. Thus, FoxO1 seems to play an important
role as a prominent transcriptional effector of down-
stream from insulin signalling in B-cells.

The impact of insulin signalling in ‘insulin-producing’ p-
cells has been intensively investigated. As the insulin-
signalling pathway in peripheral tissues plays an essential
role in glucose and lipid homeostasis, B-cell-specific gene-
targeting strategies are needed to estimate the direct effects of
insulin-signalling deletion in B-cells. In this context, a more
precise role of FoxO1 in p-cells can be estimated. Mice with
B-cell-specific deletion of either the insulin receptor (BIR ™"~
mice) or the IGF-1 receptor (BIGF1R™'~ mice) have already
been generated and reported. BIR™'~ mice have defects in
glucose sensing and reduced f-cell mass [8,50], whereas
BIGF1IR™"" mice show defective glucose-stimulated insu-
lin secretion without alteration in B-cell mass [51,52]. In
addition, mice lacking both insulin and IGF-1 receptors
only in B-cells (BIR™/~ : BIGFIR™'~ mice) were born with
a normal complement of islet cells, but they soon devel-
oped diabetes [9]. Even in the younger normoglycemic
stage, BIR™'" : BIGFIR™'~ mice showed reduced [-cell
mass and severely compromised (B-cell function with
reduced PDK-1 protein expression, undetectable phos-
phorylated Akt and enhanced nuclear FoxO1 localization,
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which would lead to accelerated B-cell death owing to
absence of anti-apoptotic signalling. Furthermore, when
either IR~ mice or BIGF1R™"~ mice were fed a HF diet,
only BIR™'" mice failed to expand their B-cell mass accom-
panied by an increase in nuclear FoxO1 expression and
a corresponding decrease in Pdx-1 expression, although
BIGF1R '~ mice were able to expand their B-cell mass [53].

Back to ouranimal model for human type 2 diabetes: on
aHF diet, FoxO1 was also restricted to the nucleus in most
B-cells of Gek™~ mice, and not in wild-type mice. In
addition, Pdx-1 nuclear expression in p-cells was lower
in Gek™'~ mice fed with the HF diet than in wild-type
mice fed with the HF diet. Moreover, overexpression of

Insulin/IGF-1 signalling

via IRS-2
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phosphorylation
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Fig. 8 Schema showing how insulin receptor substrate
(IRS)-2 regulates B-cell proliferation through FoxO1 nuclear
exclusion. p-cell FoxO1 is recognized as a prominent tran-
scriptional effector downstream from insulin signalling

via IRS-2. FoxO1 activity is inhibited by phosphoinositide
3-kinase/Akt signalling by phosphorylation-dependent
nuclear exclusion. IGF. insulin growth factor.
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IRS-2 in B-cells decreased nuclear FoxO1-positive cells
in the Gek*'™ mice fed with the HF diet, indicating that
the upregulation of IRS-2 in P-cells stimulated FoxO1
nuclear exclusion efficiently [11] (figure 6).

Conclusions and Prospects

An HF diet is a pivotal factor in the aetiology of type 2
diabetes patients with decreased insulin secretion. To
improve the functional f-cell mass in these patients, the
molecular links between decreased insulin secretion and
decreased p-cell mass should be unravelled. Our findings
clearly suggest that IRS-2, beyond one of the mere adaptor
proteins intermediating insulin signalling, and glucoki-
nase, beyond one of the mere enzymes in glucose metab-
olism, co-ordinately regulate the B-cell mass in response
to HF diet—induced insulin resistance [11].

Recent publications have indicated that GLP-1, an incre-
tin hormone that promotes insulin secretion and p-cell
proliferation, enhanced nuclear exclusion of FoxO1 in
a Pl 3-kinase-dependent manner [54]. Furthermore,
glucose-dependent insulinotropic polypeptide (GIP),
another incretin hormone, was reported to stimulate Ser
133 phosphorylation of CREB with an increase in the
nuclear localization of transducer of regulated CREB
activity 2 (TORC2), leading to activation of the anti-apo-
ptotic Bel-2 gene [55]. As we now recognize that the insu-
lin-signalling cascade via IRS-2 is tightly linked to FoxO1
activity and that CREB activation with TORC2 requires
calcium ion influx probably in response to glucose
metabolism in B-cells [56], it seems more convincing that
incretins mediate B-cell proliferation and apoptosis.

Finally, IRS-2 is critical for integrating insulin signal-
ling and glucose metabolism in B-cells. Upregulation of
IRS-2 via glucokinase activators in combination with

| Diabetes, Obesity and Metabolism, 10 (Suppl. 4), 2008, 147-156

incretin derivatives could be an effective therapeutic
strategy to improve the functional B-cell mass in type 2
diabetes [14,15] (figure 7). Identification of the molecu-
lar mechanisms of p-cell survival via IRS-2 signalling is
a promising approach to developing novel medications.
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Rimonabant Ameliorates Insulin Resistance via both
Adiponectin-dependent and Adiponectin-independent Pathways”
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Rimonabant has been shown to not only decrease the food
intake and body weight but also to increase serum adiponec-
tin levels. This increase of the serum adiponectin levels has
been hypothesized to be related to the rimonabant-induced
amelioration of insulin resistance linked to obesity, although
experimental evidence to support this hypothesis is lacking.
To test this hypothesis experimentally, we generated adi-
ponectin knock-out (adipo(—/—))ob/ob mice. After 21 days
of 30 mg/kg rimonabant, the body weight and food intake
decreased to similar degrees in the ob/ob and adipo(—/—)-
ob/ob mice. Significant improvement of insulin resistance
was observed in the ob/ob mice following rimonabant treat-
ment, associated with significant up-regulation of the plasma
adiponectin levels, in particular, of high molecular weight
adiponectin. Amelioration of insulin resistance in the ob/ob
mice was attributed to the decrease of glucose production and
activation of AMP-activated protein kinase (AMPK) in the
liver induced by rimonabant but not to increased glucose
uptake by the skeletal muscle. Interestingly, the rimonabant-
treated adipo(—/—)ob/ob mice also exhibited significant
amelioration of insulin resistance, although the degree of
improvement was significantly lower as compared with that
in the ob/ob mice. The effects of rimonabant on the liver
metabolism, namely decrease of glucose production and acti-
vation of AMPK, were also less pronounced in the adipo(—/—)-
ob/ob mice. Thus, it was concluded that rimonabant amelio-
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rates insulin resistance via both adiponectin-dependent and
adiponectin-independent pathways.

The prevalence of obesity has increased dramatically in
recent years (1, 2). It is commonly associated with type 2 diabe-
tes, coronary artery disease, and hypertension, and the coexist-
ence of these diseases in subjects has been termed the metabolic
syndrome (3). There is a demand for effective and safe anti-
obesity agents that can produce and maintain weight loss and
improve the metabolic syndrome.

The newly discovered endocannabinoid system, consist-
ing of the CB-1 (cannabinoid type-1) receptor and endoge-
nous lipid-derived ligands, contributes to the physiological
regulation of energy balance, food intake, and lipid and glu-
cose metabolism, through both central orexigenic effects
and peripheral metabolic effects (4—-11). The endocannabi-
noid system is overactivated in genetic animal models of
obesity (4, 6), and the selective CB-1 blocker, rimonabant,
produces weight loss and ameliorates metabolic abnormali-
ties in obese animals (12, 13). Patients with obesity and
hyperglycemia associated with type 2 diabetes exhibit higher
concentrations of endocannabinoids in the visceral fat and
serum, respectively, than the corresponding controls (14).
Rimonabant has been shown to produce substantial weight
loss and reduction of waist circumference and also improve
insulin resistance and the profile of several metabolic and
cardiovascular risk factors in diabetic as well as nondiabetic
obese patients (15-18).

Adiponectin is an adipokine that is specifically and abun-
dantly expressed in the adipose tissue and released into the
circulation, which directly sensitizes the body toinsulin (19,
20). Administration of recombinant adiponectin to rodents
increases the glucose uptake and fat oxidation in muscle, reduces
hepatic glucose production, and improves whole body insulin sen-
sitivity (21-23). Adiponectin-deficient (adipo(—/—)) mice exhibit
insulin resistance and glucose intolerance (24, 25). Previous stud-
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ies have shown that adiponectin stimulates fatty acid oxidation in
the skeletal muscle and inhibits glucose production in the liver by
activating AMP-activated protein kinase (AMPK)? (26 -29). We
also reported that pioglitazone may induce amelioration of insulin
resistance and diabetes via an adiponectin-dependent mechanism
in the liver and an adiponectin-independent mechanism in the
skeletal muscle (30).

Rimonabant has been shown to increase the plasma adi-
ponectin levels in animal models of obesity and diabetes as well
as in both diabetic and nondiabetic subjects (15, 31, 32). The
results of the RIO-Lipids study provided evidence of a weight
loss-independent effect of rimonabant on the plasma adi-
ponectin levels (15). Furthermore, the metabolic improve-
ments induced by rimonabant could be attributed, at least in
part, to a moderate but significant increase in the plasma
circulating adiponectin levels (15). However, whether the
rimonabant-induced increase in the plasma levels of adi-
ponectin might be causally involved in the effects of rimon-
abant, in particular its insulin-sensitizing effects, has not
been addressed experimentally.

To address this issue, in the present study, we used
adipo(—/—)ob/ob mice (30) to investigate whether rimonabant
might be capable of ameliorating insulin resistance in the
absence of adiponectin. We found that rimonabant signifi-
cantly decreased the body weight and food intake to similar
degrees in the ob/ob and adipo(—/—)ob/ob mice. Furthermore,
we found significant amelioration of the insulin resistance in
the ob/ob mice, in association with significant up-regulation of
the serum adiponectin levels after 21 days of treatment with
rimonabant at 30 mg/kg, body weight. The amelioration of
insulin resistance in the ob/ob mice was attributed to the
decrease of glucose production and activation of AMPK in the
liver but not the increased glucose uptake by the skeletal mus-
cle, induced by the drug. Interestingly, insulin resistance was
also significantly, although only partially, improved in the
adipo(—/—)ob/ob mice. Thus, the results suggest that rimon-
abant ameliorates insulin resistance via both adiponectin-de-
pendent and adiponectin-independent pathways.

EXPERIMENTAL PROCEDURES

Animals and Genotyping—The mice were housed under a
12-h light/dark cycle and fed standard chow, CE-2 (CLEA Japan
Inc., Tokyo, Japan). The composition of the chow was as fol-
lows: 25.6% (w/w) protein, 3.8% fiber, 6.9% ash, 50.5% carbohy-
drates, 4% fat, and 9.2% water. Ob/ob and adipo(—/—)ob/ob
mice were generated by intercrossing adipo(+/—)ob/+ mice.
All the mice were maintained on a C57Bl/6 background (30).
All of the experiments in this study were conducted on 16 -20-
week-old male littermates. The animal care and experimental
procedures were approved by the Animal Care Committee of
the University of Tokyo.

Rimonabant Treatment Study—Rimonabant (SR141716) or
vehicle (0.1% Tween 80 in saline) was administered to ob/ob
and adipo(—/—)ob/ob mice at a dose of 30 mg/kg body weight

? The abbreviations used are: AMPK, AMP-activated protein kinase; PEPCK,
phosphoenolpyruvate carboxykinase; WAT, white adipose tissue; TG, trig-
lyceride; FFA, free fatty acid; HMW, high molecular weight.
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by oral gavage, once daily for 21 consecutive days. Rimonabant
was kindly provided by Sanofi-Aventis (Montpellier, France).
We measured the body weights and food intake of the mice
once daily for 21 consecutive days.

Hyperinsulinemic-Euglycemic Clamp Study—Clamp studies
were carried out as described previously (30) with slight modi-
fications. In brief, 2 days before the study, an infusion catheter
was inserted into the right jugular vein under general anesthesia
induced by sodium pentobarbital. Studies were performed on
the mice under conscious and unstressed conditions after 8 h of
fasting. A primed continuous infusion of insulin (Humulin R;
Lilly) was administered (25.0 milliunits/kg/min), and the blood
glucose concentration, monitored every 5 min, was maintained
at 100-130 mg/dl by administration of glucose (5 g of glu-
cose/10 ml enriched to ~20% with [6,6-’H,]glucose (Sigma))
for 120 min. Blood was sampled via tail tip bleeds at 90,105, and
120 min for determination of the rate of glucose disappearance
(R,). R, was calculated according to nonsteady-state equations
(30), and endogenous glucose production was calculated as the
difference between the R, and the exogenous glucose infusion
rate (30).

Western Blot Analysis—Tissues were excised and homoge-
nized in ice-cold buffer A (25 mm Tris-HCI (pH 7.4), 10 mm
sodium orthovanadate, 10 mm sodium pyrophosphate, 100 mm
sodium fluoride, 10 mm EDTA, 10 mm EGTA, and 1 mm phen-
ylmethylsulfonyl fluoride). The sample buffer for analysis under
reducing conditions was composed of 3% SDS, 50 mum Tris-HCI
(pH 6.8), 5% 2-mercaptoethanol, and 10% glycerol. Samples
were mixed with 5> sample buffer, heated at 95 “C for 5min for
heat denaturation, separated on polyacrylamide gels, and then
transferred to a Hybond-P polyvinylidene difluoride transfer
membrane (Amersham Biosciences). Bands were detected with
ECL detection reagents (Amersham Biosciences). To examine
the Akt and AMPK phosphorylation and protein levels, lysates
ofliver and muscle were analyzed using anti-phospho- Akt (Cell
Signaling Technology, Inc., Beverly, MA), anti- Akt (Cell Signal-
ing Technology, Inc.) antibody, anti-phospho- AMPK (Cell Sig-
naling Technology, Inc., Beverly, MA), and anti-AMPK (Cell
Signaling Technology, Inc.) antibodies. For the analysis under
nonreducing conditions, 2-mercaptoethanol was excluded
from the sample buffer described above. To examine the iso-
forms of adiponectin, the serum samples were diluted 20-fold.
Anti-mouse adiponectin antiserum was obtained by immuniz-
ing rabbits with the globular domain of mouse recombinant
adiponectin produced in Escherichia coli (21).

Tissue Sampling for Insulin Signaling Pathway Study—Mice
were anesthetized after 16 h of starvation, and 0.05 unit of
human insulin (Humulin R; Lilly) was injected into the inferior
vena cava. After 5 min, the liver was removed, and the speci-
mens were used for protein extraction as described above.

Plasma Adiponectin and Lipid Measurements—The mice
were deprived of access to food for 16 h before the measure-
ments. The plasma adiponectin levels were determined with a
mouse adiponectin enzyme-linked immunosorbent assay kit
(Otsuka Pharmaceutical Co., Ltd., Tokyo, Japan). Serum trig-
lyceride and free fatty acids (Wako Pure Chemical Industries
Ltd., Osaka, Japan) were assayed by enzymatic methods.
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Measurement of Adipocyte Size—Epididymal white adipose
tissue and subcutaneous fat were routinely processed for paraf-
fin embedding, and 4-pum sections were cut and mounted on
silanized slides. The adipose tissue sections were stained with
hematoxylin and eosin, and the total adipocyte area was man-
ually traced and analyzed using the Win ROOF software
(Mitani Co. Ltd., Chiba, Japan). The white adipocyte area was
measured in 200 or more cells/mouse in each group, in accord-
ance with a previously described method (30), with slight
modifications.

il Red O Staining and Quantification—Lipid accumulation
was assessed by Oil Red O staining in 6-pum frozen sections of
the liver fixed in phosphate-buffered 4% paraformaldehyde,
according to a previously described method (33) with slight
modification. In brief, the livers were washed once for 1 min
with H,O. After an additional wash for 1 min with 60% isopro-
pyl alcohol, the livers were stained for 10 min at 37 °C with
freshly diluted Oil Red O solution (6 parts of Oil Red O stock
solution and 4 parts of H,O; the Oil Red O stock solution con-
tained 0.5% Oil Red O in isopropyl alcohol). After one wash for
2 min with 60% isopropyl alcohol and one wash for 1 min with
H,O, the livers were stained for 5 min with hematoxylin. The
stain was then washed off with running water, and the silanized
slides were stained. Oil Red O staining was quantified on digital
images. Color images were acquired with a Nikon digital cam-
era and analyzed using the Image ] software. The percentage of
the area of Oil Red O staining was measured from 9-10 differ-
ent sections/mouse in each experimental group. Values were
expressed as percentage of area.

Analysis of O, Consumption—Oxygen consumption was
measured every 3 min for 24 h in the fasting mice using an
0,/CO, metabolism measurement device (model MK-5000;
Muromachikikai, Tokyo, Japan). After rimonabant treatment
for 21 days, each mouse was placed in a sealed chamber (560-ml
volume) with an air flow rate of 500 ml/min at room tempera-
ture. The amount of oxygen consumed was converted to
ml/min by multiplying it with the flow rate.

RNA Preparation and Tagman PCR—Total RNA was
extracted from various tissues in vive with TRIzol reagent
(Invitrogen), in accordance with the manufacturer’s instruc-
tions. After treatment with RQ1 RNase-free DNase (Promega,
Madison, W1) to remove genomic DNA, cDNA was synthe-
sized with MultiScribe reverse transcriptase (Applied Biosys-
tems, Foster City, CA). Total RNA was prepared from 3T3L1
cells in vitro with an RNeasy Mini Kit (Qiagen Co., Diisseldorf,
Germany), in accordance with the manufacturer’s instructions.
mRNA levels were quantitatively analyzed by fluorescence-
based reverse transcriptase-PCR. The reverse transcription
mixture was amplified with specific primers using an ABI Prism
7000 sequence detector equipped with a thermocycler. The
primers used for MCP-1 (monocyte chemoattractant protein-
1), resistin, phosphoenolpyruvate carboxykinase (PEPCK), car-
nitine palmitoyltransferase-1A, the hepatic isoform of carnitine
palmitoyltransferase-1, protein phosphatase 2C, and cyclophi-
lin were purchased from Applied Biosystems (Foster City, CA).
The relative expression levels were compared by normalization
to the expression levels of cyclophilin.
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Cell Culture and Differentiation of 3T3L1 Adipocytes and
Rimonabant Treatment—3T3L1 preadipocytes were cultured
in Dulbecco’s modified Eagle’s medium containing 25 mm glu-
cose and 10% fetal bovine serum at 37 °C. Confluent cultures
were induced to differentiate into adipocytes by incubation in
Dulbecco’s modified Eagle’s medium containing 25 mM glu-
cose, 10% fetal bovine serum, 0.25 units/ml insulin, 0.25 um
dexamethasone, and 0.5 mm isobutyl-1-methylxanthine. After
2 days, the medium was changed to Dulbecco’s modified Eagle’s
medium containing 25 mm glucose, 10% fetal bovine serum,
and 0.025 units/ml insulin. All studies were performed on adi-
pocytes 10 days after the initiation of differentiation (Day 0).
Rimonabant treatment (100 nm and 1 um) was started on Day 0,
and DMSO was used as the vehicle. Prior to the start of the
experiments, the differentiated adipocytes were serum-starved
in Dulbecco’s modified Eagle’s medium containing 25 mm glu-
cose for 16 h at 37 °C.

RESULTS

Absence of Adiponectin Had No Effect on Rimonabant-in-
duced Suppression of Body Weight and Daily Food Intake—The
body weight gain was similar between the untreated ob/ob and
adipo(—/—)ob/ob mice (Fig. 1A4), as reported previously (30).
The food intake was also comparable between the untreated
ob/ob and adipo(—/—)ob/ob mice (Fig. 1B). Rimonabant sig-
nificantly decreased the body weight and food intake to similar
degrees in the ob/ob and adipo(—/—)ob/ob mice (Fig. 1, A and
B). After 21 days of rimonabant treatment, both the ob/ob and
adipo(—/—)ob/ob mice weighed 10% less than the correspond-
ing untreated mice (Fig. 1A). Moreover, rimonabant treatment
significantly decreased the white adipose tissue (WAT) mass
in both subcutaneous and visceral (epididymal, mesenteric,
and retroperitoneal) fat to similar degrees in the ob/ob and
adipo(—/—)ob/ob mice (Fig. 1C). To determine whether the
presence of adiponectin is required for the reduction of the
average adipocyte size induced by rimonabant treatment, we
histologically analyzed the epididymal fat pad and subcuta-
neous WAT after fixation and quantitation of the adipocyte
size. The distribution of the adipocyte size in the rimon-
abant-treated ob/ob and adipo(—/—)ob/ob mice was simi-
larly narrowed to that in the untreated ob/ob and adipo(—/
—)ob/ob mice (Fig. 1, D and E), and rimonabant treatment
significantly reduced the average adipocyte size in the ob/ob
and adipo(—/—)obj/ob mice to a similar degree (Fig. 1F).
These findings indicate that the absence of adiponectin had
no effect on either the rimonabant-induced decrease of the
body weight or the food intake of the mice and that rimon-
abant treatment can induce a reduction of adipocyte size in
the absence of adiponectin or leptin or both.

Rimonabant Increased the Energy Expenditure and De-
creased the Serum Triglyceride and Free Fatty Acid Levels to a
Similar Degree in the ob/ob and adipo(—/—)ob/ob Mice—In
addition to suppressing food intake, rimonabant has been dem-
onstrated to increase the energy expenditure (10, 34), and the
increase in energy expenditure has also been shown in CB-1
receptor knock-out mice (35). Since the involvement of adi-
ponectin in this action of rimonabant remains unclear, we
investigated the effects of rimonabant on energy expenditure.

JOURNAL OF BIOLOGICAL CHEMISTRY 1805



