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FIGURE LEGENDS

Fig. 1: New vessel distribution in the skin flap.

A: The vascular distribution in the skin flap was observed in arcas every 2 mm interval
from the necrotic edge. CD31 (red) is a marker for ECs, and «SMA (green) is a marker
for mural cells. Scale bars are 200 um. B: The dashed line indicates the necrotic edge.
The vascular area and vascular density per high power field were determined from
every 2 mm interval from the necrotic edge. Data are expressed as the means and SDs

of each area.

Fig. 2: The spatio-temporal expression profile of VASHI,

A: Immunostaining of CD31 (red). aSMA (green), PCNA (green), and/or VASHI
(green) was performed using the indicated area of the skin flap. B: Total RNA was
isolated from each area of the skin flap. Quantitative real time RT-PCR was performed
to show mRNA levels of VASH1 in each area. Each value was standardized with B-actin.
C: HUVECs of sparse, subconfluent and confluent conditions were treated with or
without VEGF (1 nM) for 12 h, and the expression of VASHI was determined by

Northern blotting.
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Fig. 3: The spatio-temporal expression profile of VASH2.

A: Immunostaining of VASH2, CD11b and F4/80 in the arca 0-2 mm from the necrotic
edge. Scale bars are 200 um. B: Total RNA was isolated from each area of the skin flap.
Quantitative real time RT-PCR was performed to show mRNA levels of VASH2 in each
area, Each value was standardized with 3-actin, C: The basal level of VASH2 mRNA in
HUVECs or THP-1 cells was determined by RT-PCR. D: After confirming bone
marrow reconstitution, the subcutaneous angiogenesis experiment was performed.
Immunostaining of VASH2 in the area 0-2 mm from the necrotic edge is shown. Arrow

heads indicate GFP positive and VASH2 positive cells. Scale bar is 50 pm.

Fig. 4: Effects of exogenous VASH1 or VASH2 on angiogenesis in the skin flap

AdVASHI or AdVASH2 was injected into the tail vein to supply sufficient exogenous
proteins to the site of angiogenesis. A: Immunostaining of CD31 (red) and cSMA
(green) positive cells in the indicated area of the skin flap. Scale bars are 50 um. B:
Vascular area was determined from 5 different fields in each area. Data are expressed as

the means and SDs. *p<0.01, **p<0.05,

Fig. 5: Generation of FASH! and VASH2 knockout mice and their steady-state
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subcutaneous vascular architecture

A: VASHI and VASH2 knockout mice were generated as described in Materials and
Methods. Genotyping and the analysis of each transcript by RT-PCR were shown. B:
Ear skin was used to show the steady-state vascular architecture of ear skin. Upper
panels show immunostaining of CD31 (green) and LYVE-1 (red). Lower panels show

SEM of capillary vessels.

Fig. 6: Vascular distribution in the skin flap of FASHI knockout mice

FVASHI knockout mice were applied to the model of subcutancous angiogenesis. A:
Immunostaining of CD31 (red) and ¢«SMA (green) in the area 6-8 mm from the necrotic
edge is shown. Scale bars are 200 um. B: The vascular arca was determined from 5
different fields in each area. Data are expressed as the means and SDs. *p<0.01,
*¥p<0.05. C: Lectin staining (green) shows the perfusion of new vessels in the area 6-8
mm from the necrotic edge. The same section was immunostained for CD31 (red). Scale
bars are 200 um. D: Adenoviral-mediated gene transfer was performed to supplement
the deficient protein in VASH! knockout mice. AdLacZ was use as the control.
Immunostaining of CD31 (red) and aSMA (green) in the indicated area of the skin flap

is shown, Scale bars are 200 pum.
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Fig. 7: Vascular distribution in the skin flap of VASH2 knockout mice

VASH?2 knockout mice were applied to the model of subcutaneous angiogenesis. A:

Immunostaining of CD31 (red) and «SMA (green) in the area 2-4 mm from the necrotic

edge is shown. Scale bars are 200 um. B: The vascular area was determined from 5

different fields in each area. Data is expressed as the means and SDs. *p<0.01,

**p<0.05. C: Immunostaining of CD11b (red) in the area 0-2 mm from the necrotic

edge is shown in wild-type and FASH2 (-/-) mice. Scale bars are 200 um. D:

Adenoviral-mediated gene transter was performed to supplement the deficient protein in

VASH2 knockout mice. AdLacZ was use as the control. Immunostaining of CD31 (red)

and otSMA (green) in the indicated arca of the skin flap is shown. Scale bars are 200

pm.
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