facilitate the identification of allelic imbalances such as copy-
neutral LOH in the absence of a paired normal DNA reference.

The aberrations in chromosomes 1q, 2, 8, and 20 have been
noted as the most commonly occurring aberrations in all previous
reports,?'?? as well as in the present study. In the present study,
the most frequently detected aberrations were gains in chromosomes
1q and 2 (or 2g), observed in approximately 50% of the cases.

Trisomy in chromosome 1q is a well-known alteration in HBL."
Similar 1q imbalances have also been described in other pediatric
neoplastic disorders such as lymphoma,”® Wilms’ tumor,“® and
sarcoma,"” indicating that these aberrations are related to tumor
progression. The candidate genes in 1q included the NTRKI,
ABL2, CD34, DAP3 (death receptor protein-3), and caspase-3
genes.“® The anomalies in chromosome 2, which almost always
result in gains in 2q, are also common in HBL. These imbalances
are also commonly found in embryonal rhabdomyosarcoma and
other pediatric tumors related to BWS. Translocation involving
the PAX3 gene located in 2q35 has been suggested to play a cru-
cial role in the pathogenesis of alveolar rhabdomyosarcoma,®”
Based on this, a genetic link has been suggested between HBL
and alveolar rhabdomyosarcoma. The role of the PAX3 gene in
the pathogenesis of HBL is yet to be determined. Additionally,
the 2q24-32 region contains several genes that may also have an
oncogenic potential. These include a serine/threonine kinase
receptor, [TRAF, FRZB, a secreted antagonist of WNT signal-
ing, and BRCA1-associated RING domain 1 (BARDI) genes.
However, no specific gene has been identified in the previous,®'*?
and present studies.

The losses in chromosomes 4q and 11q were comprehen-
sively observed. In hepatocellular carcinoma (HCC) cells, Wong
et al. demonstrated a growth advantage following the loss in the
4q arm.“” In HCC, 4q21-q22 and 4935 have been identified as
commonly deleted regions, and allelic losses in 4g35 have been
associated with a larger tumor size and an aggressive histological
tumor type.“" Previous studies have not reported a significant
cormrelation between HBL with loss in the distal 4q arm and
prognosis, but the underlying oncogenic event might be due to
the loss of a gene on the distal 4q arm.

Many minimal regions of amplification and deletion were
detected using high-density SNP arrays, although homozygous
deletion was not identified in any sample. The SNP loci located
in 7q34 and 14q11.2 were found to be highly amplified in sporadic
HBL samples. The candidate genes at these loci are EphB6, DADI,
and BCL-like 2 (BCL2L2) genes that encode the proteins asso-
ciated with the execution of cell apoptosis. Gains as well as high
amplifications in this region have not been reported previously;
however, such an observation will be of particular interest for
the discovery of oncogenes involved in the pathogenesis of HBL.

The UPD regions were identified in five of the 17 samples.
This is chiefly important because UPD is being particularly con-
sidered as a possible mechanism of tumor initiation. During
tumorigenesis, UPD is believed to arise due to a mitotic recom-
bination caused by a rare crossover event during mitotic cell
division. The products of mitotic recombination are the regions
of the genome exhibiting UPD, and both the genomic regions
originate from the same parent. We could identify a common
UPD on chromosome 1lp that is reminiscent of BWS with
paternal UPD; in this case, the loss of function of the 11p15
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Tandem Duplications of MLL and FLT3 Are Correlated With Poor Prognoses in
Pediatric Acute Myeloid Leukemia: A Study of the Japanese Childhood AML
Cooperative Study Group
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Background. Mixed-lineage leukemia (MLL)-partial tandem
duplication (PTD) is associated with poor prognosis in adult acute
myeloid leukemia (AML), but its relationship to pediatric AML is
unknown. Procedure. One hundred fifty-eight newly diagnosed
AML patients, including 13 FAB-M3 and 10 Down syndrome (DS)
patients, who were treated on the Japanese Childhood AML
Cooperative Treatment Protocol AML 99 were analyzed for MLL-
PTD, as well as internal tandem duplication (ITD) and the kinase
domain mutation (D835Mt) in the FLT3 gene. Results. We found
MLL-PTD in 21 (13.3%) of 158 AML patients, but not in FAB-M3 or
DS patients. The differences between patients with and without MLL-
PTD were significant for 3-year overall survival (OS) (56.3% vs.
83.2%, P=0.018), disease-free survival (DFS) (41.7% vs. 69.6%,

Key words: AML; childhood; cytogenetics; FLT3; MLL; tandem duplication

P=0.010), and relapse rate (RR) (54.3% vs. 27.6%, P=0.0085) of
135 AML patients excluding the FAB-M3 and DS patients.
Furthermore, ITD and D835Mt in the FLT3 gene were found in 17
(12.6%) and 8 (5.9%) of these 135 patients, respectively. The
differences between patients with FLT3-ITD and the wild-type allele
were significant for 3-year OS (35.3% and 84.3%, P < 0.0000001),
DFS (40.0% and 66.9%, P<0.003), and RR (52.4% and 30.3%,
P < 0.005). Coduplication of both genes was found in only 3 (1.9%)
patients. Conclusion. AML patients with FLT3-1TD, but not D835Mt,
showed a poor prognosis. AML patients with MLL-PTD were also
correlated with poor prognosis in this study. Pediatr Blood Cancer
2008;50:264-269. © 2007 Wiley-Liss, Inc.

INTRODUCTION

Risk classification of acute myeloid leukemia (AML) patients
based on cytogenetic abnormalities has been widely accepted in
adult and pediatric AML studies [1—-4]. AML patients with t(8;21),
inv(16), and t(15;17) have been classified into a low risk (LR) group,
those with monosomy 5 and monosomy 7 into a high risk (HR)
group, and others into an intermediate risk (IR) group [2-4].
Patients with normal karyotype were classified into the IR group and
showed various prognoses. Classification by gene alterations other
than karyotypic abnormalities would be preferable for improving
the treatment outcome of pediatric AML patients.

Chromosome 11923 abnormalities involving the mixed-lineage
leukemia (MLL) gene are found in about 5% of adult AML patients
and in ~50% of infants with AML [5-7]. MLL-partial tandem
duplication (PTD) is reported in ~10% of adult AML patients, but in
20-50% of adult AML patients with a normal karyotype and
trisomy 11 [8—13]. MLL-PTD is associated with a poor prognosis in
adult AML patients and a high relapse rate (RR) [10-13]. On the
other hand, the prevalence and prognosis of MLL-PTD in pediatric
AML patients remains obscure, although a relatively high
prevalence of MLL-PTD has been reported in a few articles [14,15].

Fms-related tyrosine kinase 3 (FLT3) is one of the class III
receptor tyrosine kinases that is normally expressed in hemato-
poietic stem cells and early progenitor cells [16,17]. Internal tandem
duplication (ITD) of the juxtamembrane domain (JM) of the FLT3
gene occurs in approximately 30% of adult AML patients [18-20]
and in ~20% of pediatric AML patients [21-23]. FLT3-ITD is
strongly associated with poor prognosis, especially in patients witha
normal karyotype [18-23]. Furthermore, ~10% of adult AML
patients have an activating loop mutation in the kinase domain
specifically, a point mutation in aspartic acid residue at codon 835
(D835Mt). These patients show a poor prognosis [19,20,24]. The
prevalence and prognostic significance of FLT3-D835Mt in
pediatric AML patients are controversial [21,23].

© 2007 Wiley-Liss, Inc.
DOI 10.1002/pbe.21318

We have previously reported the existence of the coduplication
of MLL and FLT3 in pediatric AML patients who had poor
prognoses [25]. These results were confirmed in adult patients with a
normal karyotype and trisomy 11 [12,13,26,27]. We here performed
mutation analysis of both MLL and FLT3 genes in 158 unselected
pediatric AML patients treated on the Japanese pediatric AML
collaborative treatment protocol AML99. These data suggest that
FLT3-ITD and MLL-PTD are both important markers of poor
prognosis in pediatric AML patients.

This article contains Supplementary Material available at hup://
www.interscience.wiley.com/jpages/1545-5009/suppmat.
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Tandem Duplications of MLL and FLT3 in Pediatric AML

PATIENTS AND METHODS
Patients

The diagnosis of AML was made according to the French-
American-British (FAB) classification. Cytogenetic analysis was
performed using the G-banding method. Among 318 newly
diagnosed de novo AML patients enrolled from January 2000 to
December 2002, 158 samples were available for molecular analysis
(Table I). Among the 158 patients, there were 13 patients with FAB-
M3 and 10 patients with Down syndrome (DS) who were treated
with different treatment protocols [28-30]. There were no
significant differences hetween the 135 analyzed patients without
FAB-M3 and DS and the 105 non-analyzed patients in terms of age
(median 6 years (range: 015 years) vs. 6 years (range: 0 15 years))
and initial WBC count (median 24.8 x 10°/L (range: 1.65-
621.0 x 10°L) vs. 13.8 x 10°/L. (range: 1.0-489.0 x 10°L, P=
0.0764)). Patients who were younger than 2 years old or had an
initial WBC count <100,000/ul were treated with the Induction
A regimen (etoposide (VP16), cytarabine (CA) and mitoxantrone
(MIT), (ECM)). Patients who were older than 2 years old and had an
initial WBC count > 100,000/ul were treated with the Induction B
regimen (VP16, CA and idarubicin (IDA), (ECI)). If patients
achieved complete remission (CR), the patients were classified into
three risk groups (62 in low, 57 in intermediate and 10 in high)
according to the results of cytogenetic analyses or the achievement
of CR after initial 2 courses of chemotherapy [28-30] (Supple-
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mental Fig. 1 which has been reported in Blood [30], http://
bloodjournal hematologylibrary.org/cgi/data/2005-08-3408/DC1/2).
AML patients with t(8;21) (except for those with WBC counts
>50,000/pl) or inv(16)(pl1q22) were classified into the LR group.
Patients with monosomy 7, 5g-, t(16;21), or Ph1 were classified into
the HR group. Patients were treated with additional chemotherapy
or allogeneic stem cell transplantation (allo-SCT) in each risk group
(Supplemental Fig. 1).

Informed consent was obtained from the patients or patients’
parents, according to guidelines based on the tenets of the revised
Helsinki protocol. The institutional review board of Gunma
Children’s Medical Center approved this project.

Detection of MLL-PTD

Total RNA (4 pug) extracted from the bone marrow or peripheral
blood samples at diagnosis was reverse transcribed to cDNA with a
c¢DNA Synthesis Kit (Amersham Bioscience, Tokyo, Japan). MLL-
PTD was examined by simple first round reverse transcriptase-
polymerase chain reaction (RT-PCR) with 35 cycles using the
primer pair 6.1 (located on exon 9) and E3AS (located on exon 4),
according to the conditions previously reported [10,25,31]. We did
not use the nested RT-PCR method because a previous report
suggested that the MLL-PTD transcripts were highly detected in the
healthy controls [31]. We used the CTS cell line as a positive control
for MLL-PTD and water as a negative control for RT-PCR analysis

TABLE IL. Clinical Characteristics of Patients With MLL or FLT3 Gene Alterations

All patients MLL-PTD FLT3-ITD FLT3-D835Mt

Age, median (year) 6 (0-15) 10 (2-15) 9 (2-15) 11(2-14)
WBC count, median (x 107/L) 20.7 (1.0-620.0) 314 (3.6-343.4) 33.2 (3.0-620.0) 45.0 (3.3-440.0)
Male/female 89/69 1219 8/12 7/4
FAB classification

MO 6 1 1 0

Ml 24 7(2%) 42% 2

M2 46 5 4 2

M3 13 0 3 3

M4 22 4(1%) 1(1%) 1

M5 25 3 5 3

Mé 1 0 0 0

M7 19 1 1 0

Unclassified 2 0 1 0
Karyotypic abnormalities

Normal 33 8(2Y 9(2%) -

1(8;21) 46 4 2 1

11923 abnormalitics 20 5 0 1

(15;17) 13 0 3 3

inv(16) 7 0 0 .

ps® 10 0 0 0

Others® 27 4(1% 501 2

Unknown 2 0 1 0
Total 158 21 20 11
Risk group

Low 62 4 2 3

Intermediate 57 13(2Y 8(2Y 4

High 10 3 2 0

Non-CR 6 1(1%) 5(1% 1
Total 135 21 17 8

"Cases who showed MLL-PTD and FLT3-ITD simultaneously; "DS—Down syndrome, patients with FAB-M3 or DS were treated with the different

protocol; “others contain —7, +8 or complex karyotypes.
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Fig. 1. Probabilities of 3-year OS (A) and 3-year DFS (B)in 135 AML

patients excluding those with FAB-M3 and Down syndrome. Kaplan—
Meier method estimates for patients with and without MLL-PTD are
shown. The difference in patient numbers between OS and DFS resulted
from the death of two patients during induction therapy.

[32,33]. Furthermore, we analyzed MLL-PTD in 10 normal bone
marrow samples. Five microliter of the PCR products were
electrophoresed in a 3% agarose gel. The amplified products were
purified and directly sequenced.

Detection of FLT3-1TD and D835Mt

Using 1 pl of the cDNA, PCR amplification was performed for
the JM and tyrosine kinase domain of the FLT3 gene. The PCR
procedure has been reported previously using primer pairs RS, R6,
and 17F, TKR [30,34,35]. If a longer size product was found, the
product was cut from the gel, purified with a QIAquick gel
extraction kit (Qiagen, Chatsworth, CA), and directly sequenced on
a DNA sequencer (ABI PRISM 310 Genetic Analyzer; Applied
Biosystems, Foster City, CA) using a BigDye terminator cycle
sequencing kit (Applied Biosystems). D835Mt was confirmed using
EcoRV digestion and followed by direct sequencing as previously
reported [24,30,34,35].

Statistical Analysis

Estimation of the survival distributions was performed using the
Kaplan—Meier method and the differences were compared using the

Pediatr Blood Cancer DOI 10.1002/pbe

log-rank test. Disease-free survival (DFS) was defined as the time
from diagnosis until the date of relapse. Overall survival (OS) was
defined as the time from diagnosis until death owing to any cause or
the last follow-up. Statistical difference analysis was performed
using the %* test. The prognostic significance of the clinical
variables was assessed by using Cox proportional hazards model.
These statistical analyses were performed with statistical software
R. For all analyses, the P-values were two-tailed, and a P-value of
less than 0.05 was considered statistically significant.

RESULTS
MLL-PTD

MLL-PTD was found in 21 (13.3%) of 158 pediatric AML
patients (Table I). One type of fusion transcript (exon 9 and exon 3)
was found in 10 patients, and the other type (exon 10 and exon 3) was
foundin 11 patients. Only one patient showed both fusion transcripts
corresponding to alternatively spliced exons 10 and 11 to exon 3
(Supplemental Fig. 2). Furthermore, 10 normal bone marrow
samples did not show MLL-PTD transcripts. MLL-PTD was
frequently found in FAB-MI1, M4 and patients with normal
karyotype or 11q23 abnormalities (Table I). MLL-PTD was not
found in FAB-M3 and DS patients. Patients with trisomy 11 were
not found in this study. Remarkably, more than half of the patients
with MLL-PTD were classified into the IR group (13 of 21 (61.9%)).
The median age of patients with MLL-PTD was 10 years old (2-15)
and no patients with MLL-PTD under 2 years old were found.
Excluding the FAB-M3 and DS patients, the statistical differences in
the clinical outcome between patients with and without MLL-PTD
were significant for 3-year OS (56.3% vs. 83.2%, P = 0.018), DFS
(41.7% vs. 69.6%, P=001), and RR (543% vs. 27.6%,
P=0.0085) (Fig. 1). Allo-SCT was performed in 18 (85.7%) of
21 MLL-PTD patients, and 9 (50.0%) of them have been alive for a
median of 42.0 months. The three patients without allo-SCT are all
alive. Notably, six of the eight patients who received allo-SCT in the
Ist CR and three of four patients who received allo-SCT in the 2nd
CR are still alive.

FLT3-1TD and D835Mt

FLT3-ITD was found in 20 (12.7%) of 158 patients (Table I). All
patients except for one showed both FLT3-ITD and FLT3-WT
transcripts by RT-PCR. Half of the FLT3-ITD consisted of an in-
frame tandem repeat of exon 11 (12147 bp). The other half of
FLT3-ITD showed insertions of 1-15 bp between the duplicated
regions. FLT3-D835Mt was found in 11 (7.0%) of 158 patients.
D835Mtconsisted of D835Y (seven patients), D835V (two patients)
and D835H (two patients). Differences in the median age of patients
with FLT3-ITD, D835Mt, and the wild-type gene (WT) were not
statistically significant (9, 11, and 5 years old, respectively). All
patients with FLT3-ITD or D835Mt were older than 2 years old. The
difference in the median initial WBC count between patients with
FLT3-ITD and WT was significant (P = 0.014). Excluding FAB-M3
and DS patients, the differences between AML patients with FLT3-
ITD, D835Mt, and WT were significant for the 3-year OS (35.3%,
100% and 84.3%, P < 0.0000001), DFS (40.0%, 87.5%, and 66.9%,
P <0.003), and RR (52.4%, 11.8% and 30.3%, P < 0.005) (Fig. 2).
FLT3-ITD was found in five (83.3%) of six patients who did not
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Fig. 2. Probabilities of 3-year OS (A) and 3-year DFS (B)in 135 AML
patients, excluding those with FAB-M3 and Down syndrome. The
Kaplan-Meier method for patients with FLT3-1TD, D835Mt, and WTis
shown. The difference in patient numbers between OS and DFS resulted
from the death of two patients during induction therapy.

attain CR. Allo-SCT was performed in 12 (70.6%) of 17 FLT3-ITD
patients; of whom 4 (33.3%) were still alive for a median
43.5 months. The remaining eight patients died. Furthermore, four
of seven patients who received allo-SCT in the 1st CR are still alive.
Three of five patients without allo-SCT are also alive.

FLT3-ITD and D835Mt were found in 3 (23.1%) of 13 patients
with FAB-M3. Both alterations of the FLT3 gene did not influence
the clinical outcome of FAB-M3 patients. Furthermore, these FLT3
alterations were not found in DS patients.

Coduplication of the MLL and FLT3 Genes

Coduplication of the MLL and FLT3 genes were found in only 3
(1.9%) of 158 patients (Table I). Two patients had normal karyotype

267

and one patient had +8. All three patients received allo-SCT, and
two of them died because of disease progression.

Multivariate Analysis of Clinical Outcome

Multivariate analysis of FLT3-1TD, MLL-PTD, M1 marrow after
induction therapy and initial high WBC count (more than 100 x 10%/
L) was carried out for 3-year OS and DFS data from 135 AML
patients. Only FLT3-ITD was significant for 3-year OS (hazard ratio
8.4, 95% confidence interval (95% CI) 3.2-21.8, P < 0.0001). For
3-year DFS, FLT3-ITD, and M1 marrow after induction therapy
were significant (hazard ratio 3.6 and 3.1,95% CI 1.7 -7.6 and 1.4 -
7.0, P<0.001 and 0.007). Moreover, multivariate analysis was
performed for 108 patients excluding those who received allo-SCT
in 1st CR. Only FLT3-ITD was significant for 3-year OS (hazard
ratio 16.0, 95% CI14.7-54.7, P < 0.00001) (Table II). On the other
hand, MLL-PTD was significant for 3-year DFS (hazard ratio 3.2,
95% CI 1.3-7.7, P < 0.01) (Table III).

DISCUSSION

In this study, MLL-PTD was found in 21 (15.6%) of 135 pediatric
AML patients excluding those with FAB-M3 and DS. We used the
simple first round RT-PCR method and not the nested RT-PCR
method to minimize the possibility of detecting false positive MLL-
PTD transcripts. MLL-PTD in pediatric AML has been reported at a
relatively high frequency in a small number of patients: 2 (20%) of
10 patients [14] and 5 (9.4%) of 53 patients [15]. These data are
compatible with our results. However, Shih et al. [36] have recently
reported that MLL-PTD was rarely found in pediatric AML patients
(one of 123, 0.8%). The difference of these frequencies in pediatric
AML remains unknown but it may be partially due to the patient’s
age: although the median age of 16 patients with MLL rearrange-
ments, including one MLL-PTD, is 1.3 years (1 day to 5.5 years) in
the paper by Shih et al. [36], that of 21 patients with MLL-PTD is 10
years (215 years), and 17 of 21 patients with MLL-PTD is more
than 6 years old in our study.

Patients with MLL-PTD showed a poor prognosis, a short
duration of remission, and a high RR, as previously reported for
adult AML patients [10-14,26]. Multivariate analysis suggested
that MLL-PTD was a marker of poor prognosis for 3-year DFS, but
not for 3-year OS, in AML patients excluding those who received
allo-SCT in 1st CR in this study. This result may be explained by the
effectiveness of allo-SCT in 2nd CR for patients with MLL-PTD.
Indeed, four patients received allo-SCT in 2nd CR, and three of these
patients are still alive.

Regarding karyotypic abnormalities, our results also confirmed
that MLL-PTD was frequently found in AML patients with a normal
karyotype as reported for adult patients [10-14]. Interestingly, MLL-
PTD was found in AML patients with 1123 translocations in this
study. Moreover, MLL-PTD was also found in AML patients with

TABLE IL Prognostic Factors for 3-year Overall Survival in 108 AML Patients Treated on AML99
Protocol, Excluding Those Who Received Allo-SCT in 1st CR

Variable P-values Hazard ratio 95% Cl
FLT3-ITD <0.00001 16.0 47-54.7
MLL-PTD 0.25 2.1 0.6-74
M1 marrow after induction therapy 0.092 53 0.8-37.3
WBC > 100 x 10°/L. 0.14 0.19 0.02-17

Pediatr Blood Cancer DOI 10.1002/pbc
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TABLE IIL. Prognostic Factors for 3 Year Disease-Free Survival in 108 AML Patients Treated on
AML99 Protocol, Excluding Those Who Received Allo-SCT in 1st CR

Variable P-values Hazard ratio 95% CI

FLT3-ITD <0.0001 77 2.9-20.6

MLL-PTD 0.0099 32 1.3-7.7

M1 marrow after induction therapy 0.028 93 2.1-40.1

WBC > 100 x 10" 0.013 3.1 1.3-75
1(8;21), which has not previously been reported in adult AML [10- REFERENCES

14.26]. Unfortunately, we could not analyze DNA because genomic
samples were not available. Two of the 4 1(8;21)-AML patients with
MLL-PTD were also found to have KIT mutations in our previous
study [30], suggesting that some patients possibly had genetic
instability. We must await further studies to clarify these issues.

As for FLT3 gene, multivariate analysis also strongly suggested
that FLT3-ITD was an independent marker of poor prognosis in
pediatric AML as previously reported [ 18,20,22]. D835Mt did not
represent a poor prognosis in this study, confirming a previous
report of pediatric AML [21], although D835Mt has been reported
to be associated with poor prognosis in adult AML [18-20,24].
The difference between adult and pediatric AML remains
unknown.

The coduplication of both genes was found in 3 (1.9%) of 158
patients in this study, which is compatible with previous reports (4
(1.6%) of 250 and 16 (1.7%) of 956 adult AML patients) [12,26].
The mechanism of formation of MLL-PTD and FLT3-ITD remains
unknown. MLL and FLT3 loci demonstrate similar susceptibilities
to agents that modify chromatin configuration, including top-
oisomerase Il inhibitors [27]. We conclude that the coduplication of
MLL and FLT3 genes is rare in pediatric AML as well as adult AML.

There was no definitive result as to the effectiveness of allo-SCT
for the pediatric patients with MLL-PTD or FLT3-ITD. In this study,
the majority of patients received allo-SCT due to the protocol
agreement or relapse (18 (85.7%) of 21 MLL-PTD and 12 (70.6%) of
17 FLT3-ITD). Eight MLL-PTD patients and seven FLT3-ITD
patients received allo-SCT in the 1st CR. Although similar results
for 3-year DFS were found in patients with MLL-PTD (41.7%) and
FLT3-ITD (40.0%), there was a difference in the 3-year OS between
MLL-PTD (56.3%) and FLT3-ITD (35.3%) (P=0.024). This
difference was possibly due to the effectiveness of allo-SCT for
the patients with MLL-PTD rather than those with FLT3-ITD as a
lack of effectiveness of allo-SCT has been recently reported for
patients with FLT3-ITD [37].
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Abstract To examine the prognostic significance of
minimal residual disease (MRD) in t(8;21) acute myeloid
leukemia (AML), 96 bone marrow samples from 26 Japa-
nese patients in complete remission (CR) were analyzed
regarding the RUNXI/MTGS transcript using real-time
reverse transcriptase polymerase chain reaction assay. All
patients were treated with intensive chemotherapy. The
median copy number of the RUNXI/MTGS transcript,
measured after each treatment course decreased over time.
However, an increase in the MRD level was documented in
three patients after the second consolidation, and all of them
subsequently relapsed. The relapse-free survival (RFS) did
not differ between the patients whose MRD levels were
below or above 1,000 copies/pg after the first consolidation,
with respective 2-year rates of 62 and 86% (P = 0.21).
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With respect to the MRD level after induction therapy, our
data also failed to show any favorable effect of a lower
MRD on RFS. Although these findings need to be confirmed
with a larger number of patients, our data indicate that the
MRD level at a given time during the early course in CR
does not predict the outcome in Japanese patients.

Keywords Acute myeloid leukemia - t(8;21) -
RUNX/MTGS - Minimal residual disease - Prognosis

1 Introduction

1(8:21)(q22:922) is one of the most common karyotype
abnormalities in acute myeloid leukemia (AML), occurring
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in 7-8% of adult patients [1-3]. This translocation leads to
the formation of the chimeric RUNX1(AMLI1)/MTGS8(ETO)
transcript, which enables detection by polymerase chain
reaction (PCR) assay. Since the introduction of real-time
reverse transcriptase (RT)-PCR [4], prognostic significance
of minimal residual disease (MRD) quantified using this
method has been intensively investigated. Several studies
from Western countries showed that MRD levels during or
after treatment are associated with a risk of relapse on the
basis of results from 21-51 patients [5-9].

We previously reported that Japanese patients with t(8;21)
AML could have a more favorable outcome than the Western
patients [ 1 0]. Marcucci et al. [ | 1] also showed the difference
in the outcome between the white and non-white patients
enrolled in successive Cancer and Leukemia Group B trials.
Given that clinical characteristics of t(8:21) AML can differ
according to ethnicities, prognostic significance of MRD
may also differ between Japanese and Western patients.

Here we examine the relationship between MRD status
during intensive chemotherapy and the outcome in Japa-
nese patients with t(8;21) AML.

2 Patients and methods
2.1 Study patients

We retrospectively reviewed the medical records of a total
of 46 adults, who were newly diagnosed to have t(8:21)
AML, at nine collaborating hospitals between January
2000 and December 2005. Induction therapy was given to
45 patients, and 41 (91%) achieved complete remission
(CR). Data on MRD after the first or second consolidation
were available for 27 of the 41 CR patients. We excluded
one patient who received low-dose cytarabine-containing
therapy, leaving 26 patients eligible for this study. We did
not exclude any patient who relapsed after the first con-
solidation therapy. All patients provided their informed
consent before the initiation of any medical procedure.

2.2 Diagnosis of t(8:21) AML and MRD evaluation

The diagnosis of t(8;21) AML was established based on
chromosomal analysis (G-banding) and/or detection of the
RUNX1/MTGS fusion gene by real-time RT-PCR. The
molecular quantification of the RUNX1/MTGS fusion gene
was performed as described previously [12]. The results
were reported as the number of transcript copies, which
were normalized by means of GAPDH and then converted
into copies/pg RNA. The molecular quantification of the
RUNX1/MTGS fusion gene was conducted each time after
the induction and consolidation therapies. Bone marrow
samples were used for all the MRD analyses.

2.3 Statistical analysis

The relapse-free survival (RFS) was calculated as the time
from diagnosis to relapse or death, using the Kaplan—Meier
product limit method. A log rank test was applied to assess
the difference between the groups. The estimated survival
was calculated as of 7 May 2008. Differences in distribu-
tion of categorical variables were compared with the
Fisher’s exact test. All analyses were conducted using the
STATA version 9.2 software program (StataCorp, College
Station, TX).

3 Results
3.1 Patient characteristics

The characteristics of the 26 patients are shown in Table |.
The median age was 50 years (range, 25-64 years), with
19 males and 7 females. Details of treatments are also
summarized in Table |. For induction therapy, 24 received
idarubicin and cytarabine, and 2 received daunorubicin and
cytarabine. Consolidation therapy included high-dose cyt-
arabine in 12, and standard-dose cytarabine in 14 patients.
The median follow-up of the surviving patients was
39.2 months (range, 14.0-92.4 months).

3.2 Clinical outcome

Of the 26 patients, 17 had continued first CR until the time of
last observation. Relapse occurred in the remaining nine
patients at a median of 9.9 months (range, 7.5-81.6 months).
Five patients died due to the primary disease (n = 3), sudden
cardiac disorder (n = 1) and cardiac arrhythmia (n = 1).
The probability of RFS was 73% at 2 years for the entire
population. The rate was 67% for patients who received
high-dose cytarabine for consolidation therapy, whereas it
was 79% for patients who received standard-dose cytarabine
(P = 0.87).

3.3 Kinetics of MRD of each patient

The MRD levels were measured in a total of 96 samples
from the 26 patients. Samples were available from 18
patients after induction therapy, 20 patients after the first
consolidation, 18 patients after the second consolidation,
and 13 patients after the third consolidation. The kinetics of
MRD of each patient is shown in Fig. |. The median copy
number of the RUNXI/MTGS transcript decreased over
time, for example 4,750 copies/pg after induction, 480
copies/pg after the first consolidation, 240 copies/pg after
the second consolidation, and <100 copies/pg after the
third consolidation. All the 15 patients whose MRD data
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Table 1 Characteristics of the patients with (8;21) AML at diagnosis

Variables Number
Age (years) Median, range 50 (25-64)
Sex Male/female 1977
Karyotypic abnormality®
(A) 1(8;21)(q22; q22) without additional karyotypic abnormality 7
(B) «(8;21)(g22; q22) with loss of sex (Y) chromosome 6
(C) t(8;21)(q22; g22) with abnormal chromosome 9 2
(D) t(8;21)(q22; q22) with >3 additional abnormalities 7
(E) 1(8;21)(q22; q22) with loss of X chromosome 1
(F) Other karyotypic abnormality” 1
White blood cell count (/uL) Median, range 7750 (900-54970)
Lactate dehydrogenase level (IU/L) Median, range 44] (186-3354)
Extramedullary involvement Present/absent 5121
Induction therapy
Idarubicin 12 mg/m* d1-3 + cytarabine 100 mg/m* d1-7 24
Daunorubicin 50 mg;’m2 d1-5 + cytarabine 100 mg/m® d1-7 2
Consolidation therapy High-dose cytarabine-based chemotherapy 12
No. of courses (2/3/4) 1/8/3
Standard cytarabine-based chemotherapy 14

Hematopoietic stem cell transplantation

In other stage (autologous/allogeneic)

In first complete remission (autologous/allogeneic)  2/1

* Two patients were diagnosed by the detection of RUNXI/MTGS fusion gene using reverse transcriptase-polymerase chain reaction

® 46,XX.1(2;19)(q37;p13).1(8;21)(g22;q22)

¢ Patients who underwent allogeneic stem cell transplantations in second complete remission

Fig. 1 Kinetics of the RUNX1/ 10E7
MTGS level in bone marrow.

Kinetics of the RUNXI/MTGS

level (copies/pg RNA) is shown 10E6
for the 17 patients who
remained in remission (squares)
and for the 9 patients who had
experienced a relapse (circles).
The increases of the RUNX1/
MTGS level were documented
in three patients and all of them 10E4 |
subsequently relapsed

10E5

10E3 |-

<10E2

Relapse 8.0 months after diagnosis

Relapse 28.9 months after diagnosis

Relapse 9.4 months after diagnosis

were available both after induction and first consolidation 3.4 Effect of MRD level on relapse-free survival

showed reduction in varying degrees. On the other hand,

the increments were documented in 3 of the 16 patients =~ We next evaluated the prognostic relevance of the MRD
who had MRD levels measured both after the first and  level at a specific time point. Given that an increase in the
second consolidation, and all of them subsequently = MRD level was observed in none of the patients after the
relapsed (Fig. 1). first consolidation, but in three patients after the second
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Fig. 2 Relapse-free survival according to the level of minimal
residual disease after the first consolidation course. No difference was
found between the patients with the RUNXI/MTGS level above
(n = 7) and below 1,000 copies/ug RNA (n = 13)

consolidation, we examined the effect of MRD level after
the first consolidation on RFS. The copy number of the
RUNXI/MTGS transcript at this time point was less than
1,000 copies/pg in 13 patients (65%). Six patients (30%)
exhibited less than 100 copies/pg. Figure 2 compares RFS
according to the MRD level after the first consolidation.
Here, a cutoff of 1,000 copies/pug was chosen in accordance
with the findings of Tobal et al. [6]. RFS did not differ
between the patients with an MRD level below or above
1,000 copies/pg (P = 0.21), with respective 2-year rates of
62 and 86%. The results were similar when we used dif-
ferent cutoffs such as 100 copies/pg (P = 0.74), the
median value of 480 copies/ng (P =028) or 3 log
reduction from the time of diagnosis (P = 0.41). With
respect to the MRD level after induction therapy, our data
also failed to show any favorable effect of a lower MRD on
RFS. Rather, an inferior RFS was observed in patients
whose MRD level was less than the median value
(P = 0.03).

4 Discussion

This is the first report from Japan, which investigated the
prognostic value of MRD in t(8;21) AML. The study
highlights two principal results. First, an increase in the
RUNXI/MTGS level strongly predicted a subsequent
relapse, and it was observed after the second consolidation
or later. Second, unlike previous studies from Western
countries [5-9], the MRD data obtained during the early
course in CR did not correlate with outcome. A lack of
difference in RFS by MRD level in this study might be
attributable to the relatively favorable outcome of the
patients with a higher RUNXI/MTGS level. Although the
cutoffs of the MRD level vary from study to study, the RFS

rate of 69% at 2 years for the patients with lower MRD
level was closely comparable with other studies [5-9]. In
contrast, the 2-year RFS rate was 85% for our patients with
higher RUNXI/MTGS level, which was much better than
10-40% in those reports [5-9]. Although it is not clear why
the prognosis of such “poorer responders” was different
between the Western reports and ours, this difference might
contribute to the more favorable overall outcome observed
in Japanese patients with t(8;21) AML [10]. Recent studies
have shown that the kinase domain mutations of the KIT
gene are detected in a substantial proportion of patients
with ©(8:21) AML and are associated with poor prognosis
[13=15]. Further investigations on molecular pathogenesis
may therefore provide further insights into this issue. On
the other hand, it has been well documented that non-leu-
kemia stem cells in t(8;21) AML patients during CR
possess the AMLI-MTGS fusion gene.[16] Therefore, in
patients with a high MRD, AML1-MTGS transcripts might
derive from non-leukemia cells. Further basic research on
the leukemia genesis of t(8;21) AML are thus warranted.

It should be noted that the patients were not treated with
uniform regimens due to the retrospective nature of the
study. We therefore restricted the analysis to patients who
were given intensive chemotherapy. Accordingly, all but
two patients received the same induction therapy consisting
of idarubicin and cytarabine, and the other two received
daunorubicin and cytarabine, another standard induction
regimen for AML. Regarding consolidation therapy, 46%
of the patients received high-dose cytarabine, while others
received standard-dose cytarabine. However, there was no
difference in RFS between these two groups. Notwith-
standing, such limitations make it necessary to confirm our
results with a larger number of patients in prospective
studies.

In conclusion, our data raise an important issue that the
clinical significance of MRD in t(8:21) AML may differ
between Japanese and Western patients. The MRD level
measured at a given time during the early course in CR
may not be useful in predicting the outcome of Japanese
t(8:21) AML patients. Although this needs to be verified by
future studies, clinicians should note the possibility of such
potential differences among ethnicities.
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Appendix

This study was conducted at the following institutions:
Toyohashi Municipal Hospital, Toyohashi; Yamanashi
Prefectural Central Hospital, Kofu; National Hospital
Organization Nagoya Medical Center, Nagoya; Komaki
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City Hospital, Komaki; Nagoya University Hospital,
Nagoya; Yokkaichi Municipal Hospital, Yokkaichi; Oka-
zaki City Hospital, Okazaki; Meitetsu Hospital, Nagoya;
Fujita Health University Hospital, Toyoake, Japan.
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