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putative dimeric
MMP-9(180 kDa)

proMMP-9(92 kDa)
active MMP-9 (87 kDa)}—>
proMMP-2(72 kDa)
active MMP-2
(66 kDa)

1 il el AR B

E1 MMP2 BX0MMPI (B84 5 zymography (Inagaki N et al, Hum Reprod 2003;18(3):608-615 Lv5| H)

T

Lane 1 i, W7 47 -2 bo—a LT BHKI #EIEiE4€ L. Lanes 2-8 |1, BEFENERPIE LI C.
MMP 2271 ZhEh. 1, 12, 0, 3, 7, 4, 0 HEEhi, FhEROZ3 T, FROMEY MMP2 355X
MMP6 OEERST O LV HE R

Lane 2: proMMP-2: 1, activeMMP-2: 0, proMMP-9: 0, activeMMP-9: 0, dimericMMP-9: 0,

ane 3: proMMP-2: 1, activeMMP-2: 0, proMMP-9: 5, activeMMP-9: 2, dimericMMP-9: 4
Lane 4: proMMP-2: 0, activeMMP-2: 0, proMMP-9: 0, activeMMP-9: 0, dimericMMP-9: 0
Lane 5: proMMP-2: 1, activeMMP-2: 0, proMMP-9: 2, activeMMP-9: 0, dimericMMP-9: 0
Lane 6: proMMP-2: 1, activeMMP-2: 0, proMMP-9; 3, activeMMP-9: 1, dimericMMP-9: 2

ane 7: proMMP-2: 1, activeMMP-2: 0, proMMP-9: 2, activeMMP-9: 0, dimericMMP-9: 1
Lane 8: proMMP-2: 0, activeMMP-2: 0, proMMP-9: 0, activeMMP-9: 0, dimericMMP-9: 0

MMP 2227 (5 AL F A HE) BRMECLRE)  BE—BRE (1B  BRHE—RBYE (1 BE) =

X4 i (58) 36.71%4.11 36.34+4.12 38.33+0.57 N.S.

n 496 50 3 N.S.

P8R (%) (613 45.0 [223] 54.0 [27] 33.3[1] N.S.

B £ T O RS HilE 5 ([E]) 1.64+0.84 1.85+1.16 1 N.S.
EEIB RS (@) 1.82+0.59 1.85+0.54 1 N.S.
HEAER (%) [B1¥] 55.2 [123] 25.9 [7] 0 0.05

#£1 MMP JEPELUERR T 1%
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Mitochondria are More Numerous and Smaller in Pink-Eyed
Dilution Melanoblasts and Melanocytes Than in Wild-Type

Melanocytes in the Neonatal Mouse Epidermis

Tomohisa Hirobe'#*, Keniji Ishizuka®, Shigeru Ogawa® and Hiroyuki Abe*

'Radiation Effect Mechanism Research Group, National Institute of Radiological Sciences,
Chiba 263-8555, Japan
2Graduate School of Science, Chiba University, Chiba 263-8522, Japan
*Graduate School of Education, Joetsu University of Education,
Joetsu 943-8512, Japan
“Graduate School of Science and Engineering, Yamagata University,
Yonezawa 992-8510, Japan

The mouse pink-eyed dilution (p) locus is known to control the melanin content in melanocytes.
However, it was not known whether the p gene Is involved in regulating the proliferation and dif-
ferentation of melanocytes during development, especially the biogenesis of melanosomes and
other organelles. Epidermal cell suspensions of neonatal dorsal skin derived from mice wild type
for the p locus (black, C57BL/10JHir-P/P) and their congenic mutant phenotype (pink-eyed dilution,
C57BL/10JHir-p/p) were cultured in serum-free melanocyte-proliferation medium (MDMD). The sup-
plement of additional L-tyrosine (Tyr) into the MDMD stimulated the differentiation of p/p melano-
blasts into melanocytes. Electron microscopy revealed that in p/p melanoblasts and melanocytes
treated with L-Tyr, the number of stage Il and Ill melanosomes dramatically increased. Moreover, p/
p melanoblasts possessed smaller but more numerous mitochondria than P/P melanocytes. The
treatment of p/p melanoblasts and melanocytes with L-Tyr decreased the number of mitochondria.
The supplement of 2, 4-dinitrophenol (DNP), an inhibitor of mitochondrial function, into the MDMD
stimulated both the proliferation and differentiation of p/p melanoblasts. Simultaneous treatment of
DNP and L-Tyr dramatically stimulated the differetiation of p/p melanocytes. These results suggest
that L-Tyr and some unknown factors related to mitochondrial function may influence the differen-

tiation of melanoblasts in the epidermis of p/p mice.

Key words: pink-eyed dilution, melanocyte, melanoblast, mitochondria

INTRODUCTION

Mouse epidermal melanocytes differentiate around the
time of birth (Hirobe, 1984) from undifferentiated precursors,
melanoblasts, which originate from the neural crest in the
embryo (Rawles, 1947; Mayer, 1973). They increase in
number until 3 or 4 days after birth, and then their numbers
decrease (Hirobe, 1984). Most epidermal melanocytes
migrate into hair bulbs, and pigment-accumulating organ-
elles, melanosomes (Seiji et al., 1963), are transported to
surrounding keratinocytes to produce pigmented hairs.
Differentiated melanocytes produce two types of melanin:
brownish-black eumelanin and reddish-yellow pheomelanin
(Prota, 1980; Ito, 2003),

Numerous coat-color genes are involved in regulating
the development of murine melanocytes (Silvers, 1979), The
mouse pink-eyed dilution (p) locus controls the melanin con-
tent in melanocytes and in the retinal pigment epithelium

* Corresponding author. Phone: +81-43-206-3253/3133;
Fax : +81-43-206-4638;
E-mail: thirobe @ nirs.go.jp
dol:10.2108/2s).25.1057

(Silvers, 1979). In mouse hairs, the p mutation drastically
reduces the eumelanin content (Silvers, 1979). In addition to
a reduction in the amount of eumelanin deposited (Ozeki et
al., 1995), melanin granules within the hair shafts of p/p
mice are smaller than those in P/P mice (Russell, 1949).
The p/p melanocytes contain smaller and rounder (Markert
and Silvers, 1956, Orlow and Brilliant, 1999), immature
(Sidman and Pearistein, 1965; Moyer, 1966; Hearing et al.,
1973; Hirobe and Abe, 1999) melanosomes, and the num-
bers of stage Ill and IV melanosomes are much fewer than
in P/P melanocytes (Hirobe et al., 2002b).

Levels of tyrosinase, the rate-limiting enzyme in melanin
synthesis, are greatly decreased in the skin of p/p mice
(Tamate et al., 1989) and in cultured epidermal melanocytes
of newborn p/p mice (Hirobe et al., 1998). The product of
the p gene is an integral membrane protein that localizes in
melanosomes (Rosemblat et al, 1994); its predicted
secondary structure is a 12-transmembrane domain protein
similar to a channel or transporter (Gardner et al., 1992;
Rinchik et al., 1993). Excess tyrosine (Tyr) in a culture
medium can greatly stimulate the pigmentation of retinal pig-
ment epithelial cells and choroldal melanocytes from p/p
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mice (Sidman and Peatstein, 1965), suggesting that p pro-
tein functions as a Tyr transporter. Other groups suggest
that the p protein is involved in regulating the maturation of
melanosomes and the stabilization or trafficking of melano-
somal membrane proteins (Lamoreux et al., 1995;
Rosemblat et al., 1998; Orlow and Brilliant, 1999). Another
theory that the p protein is a transporter that controls
melanosomal acidification (Puri et al., 2000; Brilliant, 2001)
has also been presented. The p protein also controls the
processing and transport of tyrosinase (Chen et al., 2002;
Toyofuku et al., 2002). Moreaver, the p protein is reported
to increase cellular sensitivity to arsenicals and other metal-
loids and to modulate intracellular glutathione metabolism
(Staleva et al., 2002). It has also been proposed that the p
protein mediates neutralization of melanosomal pH (Ancas
et al., 2001). In addition, the proliferation and differentiation
of neonatal mouse melanocytes are greatly inhibited by the
p mutation (Hirobe and Abe, 1999; Hirobe et al., 2002a, b),
and excess L-Tyr supplemented to the cuiture medium res-
cues both proliferative and differentiative activities of p/p
melanoblasts (Hirobe et al., 2002b). Furthermore, the differ-
entiation of melanoblasts into melanocytes is gradually
induced by L-Tyr as the age of the donor mice advances,
even though eumelanin and pheomelanin fail to accumulate
in p/p melanocytes and are released from them at all stages
of skin development (Hirobe et al., 2003a). This observation
was confirmed by a study that showed that in 7.5-day-old p/
p mice, the plasma levels of a eumelanin-related metabolite,
6-hydroxy-5-methoxyindole-2-carboxylic acid, and a
pheomelanin-related metabolite, 5-S-cysteinyldopa, were
nine-fold and four-fold greater, respectively, than in 7.5-day-
old P/P mice (Wakamatsu et al., 2007).

However, it was not known whether the p mutation
affects the biogenesis of melanosomes and other organelles
in melanocytes in serum-free primary culture. In this study,
we observed in detail, by using electron microscopy, the bio-
genesis of melanosomes and other organelles in cultured p/
p melanoblasts with or without L-Tyr.

MATERIALS AND METHODS

Mice

All animals used in this study belonged to the strain C57BL/
10JHir (B10, black, P/P) and its congenic strain, B10-p/p (pink-eyed
dilution, p/p) of the house mouse, Mus musculus. They were given
water and a commercial diet, OA-2 (Clea Japan, Tokyo, Japan) ad
libitum. Congenic B10-p/p mice were established in our laboratory
(Hirobe, 1988). Originally, the mutation (p) was introduced into B10
animals with nine generations of continued backcrossing followed
by sib mating (Hirobe, 1986). After the 20th generation of sib mat-
ing, the congenic mice were continuously backcrossed with B10 for
at least three generations, followed by sib mating. This procedure
was then repeated. The genic constitution of the line differs only in
the p locus. They were maintained at 24+1°C with 40-602% relative
humidity; 12 hr of fluorescent light were provided daily, This study
was approved by the ethics committee of the National Institute of
Radiological Sciences in accordance with the guidelines of the
National Institute of Health,

Melanocyte primary culture

The source of tissue for the culture of melanoblasts and mel-
anocytes was dorsal skin from 0.5-day-old P/P and p/p mice.
Unless stated otherwise, all reagents were purchased from Sigma

Chemical Co. (St. Louis, MO, USA). The method for obtaining epi-
dermal cell suspensions was reported previously (Hirobe et al,
2002a, b). Disaggragated epidermal cell suspensions were pelleted
by centrifugation and suspended in Ham's F-10 medium (Gibca,
Grand Island, NY, USA). The cell pellet after centrifugation was
resuspended in melanocyte-proliferation medium (MDMD) consist-
ing of Ham's F-10 plus 10 ug/ml bovine insulin, 0.5 mg/mi bovine
serum albumin (Fraction V), 1 uM ethanolamine, 1 uM phosphoeth-
anolamine, 10 nM sodium selenite, 0.5 mM dibutyryl adenosine
3'5'cyclic monophosphate (DBCAMP), 100 U/ml penicilin G, 100
po/ml streptomycin sulfate, 50 ug/ml gentamyein sulfate, and 0.25
pg/ml amphotericin B. The same lots of these supplements were
used in this study. Cells in each epidermal cell suspension were
counted in a hemocytometer and were plated onto dishes coated
with type-I collagen (Becton Dickinson, Bedford, MA, USA) an Initial
density of 1x10® cells/35 mm dish (1.04x10° celis/cm?). Cultures
were incubated at 37°C In a humidified atmosphere of 5% CO; and
85% air (pH 7.2). The medium was replaced with fresh medium four
times a week. After 14 days, pure cultures of melanoblasts (p/p) or
melanocytes (P/P) were obtained. In some cases, additional L-Tyr
(2 mM) was added to the medium from initiation of the primary cul-
ture. The standard concentration of L-Tyr in Ham's F-10 is 10 uM,
Mareover, 2, 4-dinitrophenol (DNF) was added to the medium at
concentrations of 0.01, 0.1, and 1 uM from initiation of the primary
culture.

Assays for proliferation and differentiation

The number of melanoblasts and melanocytes was determined
per dish by phase-contrast and bright-field microscopy; the calcula-
tion was based on the average number of cells from 10 randomly
chosen microscopic fields covering an area of 0.581 mm®. Bipolar,
tripolar, dendritic, polygonal, or epithelioid cells, as seen in phase-
contrast, that contained brown or black pigment granules, as
observed by bright-field microscopy, were scored as pigmented
melanocytes. In contrast, bipolar, tripolar, dendritic, or polygonal
cells, as seen in phase-contrast, that contained no pigments and
were negative (no tyrosinase activity) to 3, 4-dihydroxyphenylala-
nine (dopa) ware d as melanablasts. These cells were stained
by the combined dopa-premelanin reaction (combined dopa-
ammoniacal silver nitrate staining; Mishima, 1960; Hirobe, 1984).
This preferential staining reveals undifferentiated melanoblasts that
contain stage | and Il melanosomes without tyrosinase activity, in
addition to tyrosinase-containing differentiated melanocyles. The
ammoniacal silver nitrate reaction specifically reveals both
unmelanized melanosomes and melanized melanosomes in mel-
anocytes, the metallic silver particles being deposited with a high
degree of selectivity (Mishima, 1960; Hirobe, 1984). Melanoblasts
were also stained by antibodies to the tyrosinase-related proteins
TRP-1 and TRP-2 (Hirobe et al., 2002a). A “melancblast” is defined
here as an unpigmented cell that possesses no tyrosinase activity.
The statisticai significance of differences was determined by Stu-
dent’s t-test for comparisons of groups of equal size,

Electron microscopy

Pure primary P/P and p/p melanoblasts/melanocytes cultured
for 3, 7, and 14 days were treated with a solution of 0.05% Irypsin
(Difco, Sparks, MD, USA) and 0.02% ethylenediaminetetraacetate
in Ca®-, Mg*-free phosphate buffered saline at 37°C for 10 min.
After trypsinization was inhibited by addition of 2000 U/mi of soy-
bean trypsin inhibitor, the cell suspensions were centrifuged at 1500
rpm for 5 min, The cell pellets were fixed in chilled (2°C) 2.5%
glutaraldehyde (Taab Laboratories Equipment Ltd., Berkshire, UK)
in 0.1 M phosphate buffer (pH 7.4). After washing with chilled 0.1
M phosphate buffer, the cells were postfixed in chilled 1% osmium
tetroxide (Taab Laboratories Equipment Ltd) in 0.1 M phosphate
buffer. After washing again with chilled 0.1 M phosphate buffer, the
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cells were dehydrated in a graded ethanol series and embedded in
epoxy resin (Taab Laboratories Equipment Lid.). Ultrathin sections
were cul with a diamond knife on an ultramicrotome (Leica,
Heerbrugg, Switzerland), stained with uranyl acetate and lead cit-
rate, and examined with a transmission electron microscope (JEM-
2000 EX, JEM, Tokyo, Japan).

One hundred electron micrographs of cells in each group were
surveyed for the presence of stage I, Il, lll, and IV melanosomes,
Golgi apparatus, mitochondria, and lysosomes, which were scored,
and the numbers of these organelles per unit area (100 um?) ware
calculated. The size of mitochondria was estimated as the area of
an ellipse (rab), calculated after measurement of the major (a) and
minor (b) axes. The total number of mitochondria measured was
100 for each group.

Melanosome development was categorized In the four stages
defined by Fitzpatrick el al. (1969): Stage | melanosomes initiate the
accumulation of intralumenal fibrils; stage |l melanosomes possess
completed intralumenal fibrils without pigment; stage Il melano-
somes possess longitudinal depositions of pigment in intralumenal
fibrils; stage IV melanosomes are fully deposited with pigment.

RESULTS

Light-microscopic observations

Within 1 day after the initiation of epidermal cell suspen-
sions derived from 0.5-day-old P/P mice in MDMD, small
keratinocyte colonles could be seen. Small bipolar or tripolar
cells (melanoblasts) were scattered between the keratino-

Fig. 1. Melanoblasts and melanocytes derived from epidermal cell suspensions of 0.5-day-old P/P (A, D) and p/p (B, C, E, F) mice. They
were cultured with (C) or without (A, B) 2 mM L-Tyr. They were also cultured with 1 uM DNP (D, E) or with 1 uM DNP + 2 mM L-Tyr (F). L-Tyr
stimulated the differentiation of p/p melanoblasts into melanocytes after 14 days in culture. (C); arrows indicate differentiated p/p melanocytes.
DNP (E) as well as DNP + L-Tyr (F) stimulated the ditferentiation of p/p melanocytes. Arrows indicate differentiated melanocytes (E, F). Phase-

contrast microscopy. Scale bar, 100 um.
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cyte colonies. After 2 or 3 days, pigment granules appeared
in the cytoplasm and processes of melanoblasts. After 4 or
5 days, melanocytes increased in number. They were more
pigmented than before and extended dendrites into the sur-
rounding keratinocytes. After 8 or 9 days, the keratinocyte
colonies gradually decreased in number, and by 12-14
days, cultures contained pure melanocytes with intense pig-
mentation (Fig. 1A). When epidermal cell suspensions from
p/p mice were cultured in MDMD, a similar proliferation of
keratinocytes was observed. However, the proliferation and
differentiation of melanoblasts were greatly inhibited. No pig-
mented melanocytes were found during the culture (Fig.
1B). When epidermal cell suspensions from p/p mice were
cultured with L-Tyr (2 mM), keratinocyte proliferation showed
no change. However, many differentiated melanocytes
appeared; the percentage of melanocytes In the
melanoblast-melanocyte population gradually increased
(Fig. 1C), and exceeded 40% at 14 days.

Electron-microscopic observations

Electron microscopic observations showed that melano-
somes of P/P melanocytes cultured for 14 days (Fig. 2A)
were ellipsoidal or ovoid, with intralumenal depositions of
melanin. Mature stage IV melanosomes were predominant
in P/P melanocytes (Fig. 2A). Golgi apparalus and mito-
chondria were also observed (Fig. 2A). On the other hand,
p/p melanoblasts cultured for 14 days possessed a few
stage | and Il melanosomes, whereas they possessed
numerous Golgi apparatus and mitochondria (Fig. 2B). No
stage lll and IV melanosomes were found (Fig. 2B). How-
ever, excess L-Tyr dramatically increased stage Il and Ill
melanosomes in p/p cells cultured for 14 days (Fig. 2C).
This increase in the number of stage Il and Il melanosomes
was much higher than that in stage IV melanosomes (Fig.
2C).

The number of Golgl apparatus in p/p melanoblasts was
much greater than in P/P melanocytes (Fig. 3A). The num-
ber (p/p) increased as culture proceeded (Fig. 3A). The
number of Golgi apparatus in p/p melanoblasts at 14 days
was four-fold greater than in P/P melanocytes (Fig. 3A). L-
Tyr decreased the number of Golgi apparatus in p/p
melanoblasts/melanocytes, though the number was still
higher than in P/P melanocytes (Fig. 3A). Although why the
number of Golgi apparatus in p/p cells cultured with L-Tyr at
3 days is high cannot be explained well at present, L-Tyr
possibly stimulates the development of Golgi apparatus to
induce the differentiation (de novo stage Il and IV
melanosome formation) of p/p melanocytes. The number of
Golgi apparatus may gradually decrease with increasing for-
mation of melanosomes during culture.

The numbers of mitochondria in p/p melanoblasts at 3,
7. and 14 days were roughly two-, four-, and five-fold greater
than in P/P melanocytes, respactively (Fig. 3B). L-Tyr
decreased the number of mitochondria in p/p melanoblasts/
melanocytes, though the number was still higher than in P/
P melanocytes (Fig. 3B). The size of mitochondria in p/p
melanoblasts was smaller than in P/P melanocytes (Fig. 4),
suggesting that mitochondria in p/p melanoblasts may
divide, and this division may produce more numerous and
smaller mitochondria. L-Tyr failed to increase the size of
mitochondria in p/p melanoblasts/melanocytes.

i

Fig. 2. Electron micrographs of epidermal P/P melanocytes (A)
and p/p melanoblasts (B) or melanocytes (C) cultured for 14 days in
MDMD with (C) or without (A, B) 2 mM L-Tyr. (A) Numerous stage
Iil and IV melanosomes (indicated in the figure by corresponding
roman numberals) are seen in P/P melanocytes. (B) In contrast,
only a small number of stage | and Il melanosomes are seen in p/p
melanoblasts. In p/p melanoblasts (B), well-developed Golgl appa-
ratus (G) and mitochondria (M) are seen. However, in p/p melano-
cytes cultured with 2 mM L-Tyr (C). all stages (I, Il, lli, and IV) of
melanosomes are seen, including numerous stage Il melano-
somes. Scale bar, 1 um,
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Fig. 3. Changes in the number of (A) Golgi apparatus, (B) mitochondria, and (C) lysosomes in cultured P/P melanocytes, p/p melanoblasts,
and p/p melanoblasts/melanocytes in the presence of 2 mM L-Tyr. Epidermal cell suspensions were derved from 0.5-day-old mice and cul-
tured for 14 days. The cells were fixed at 3, 7, and 14 days, and 100 melanoblasts or melanocytes for each group were recorded for the detec-
tion of organelles. The number of Golgi apparatus (A) in p/p melanoblasts is more numarous than in P/P melanocytes. The number of Golgi
apparaius in p/p melanoblasts increased dramatically as the culture prc ded. L-Tyr reduced the ber of Golgt apparatus, though the
number still exceeded that of P/P melanocytes. The number of mitochondria (B) in p/p melanoblasts is much greater than in P/P melanocytes.
The number of mitochondria in p/p melanoblasts Increased dramatically as the culture proceeded. L-Tyr dec 1 the number of mitochon-
dria, though the number was still higher than in P/P melanocytes. The number of lysosomes (C) in p/p melanoblasts is higher than in P/P mel-
anocyles, especially at 14 days. L-Tyr completsly reduced the number of lysosomes in p/p melanoblasts/melanocytes, which was comparable
to that In P/P melanocytes. The data are the averages of results from 100 electron micrographs of cells. Bars Indicate the standard error of the
mean (SEM) and are shown only when they were larger than the symbols. *P<0.05.

The number of lysosomes in p/p melanoblasts was
L greater than in P/P melanocytes, especially at 14 days (Fig.
+ 3C). L-Tyr completely reduced the number of lysosomes in
p/p melanoblasts/melanocytes, and the number was com-
parable to that in P/P melanocytes (Fig. 3C).
"g 121 These results suggest the possibility that changes in
o Golgi apparatus, mitochondria, and lysosomes in p/p
§ . melanoblasts may influence the formation and maturation of
g AT i melanosomes.
;

Effects of DNP on melanocytes
In P/P melanocytes, the proliferation of melanocytes
was inhibited by DNP, an inhibitor of mitochondrial function
(Figs. 1D, 5A), though the differentiation of melanocytes was
not affected (Figs. 1D, 5D). In contrast, in p/p melanoblasts,
both proliferation (Figs. 1E, 5B) and differentiation (Figs. 1E,
5E) were stimulated by DNP. The number of melanoblasts
and melanocytes was significantly increased at 14 days by
= e T DNP treatment at a concentration of 1 uM (Fig. 5B, P<0.05),
and many mitotic figures of p/p melanoblasts and melano-
S:;;' “3';;,‘“ mitochondria in P/P m’mm";’ mﬁ_’“" cytes cultured with DNP were observed. Moreover, the

¥ melanoblasts/melanocytes cu mM L-Tyr.

percentage of melanocyles in the melanoblast-melanocyte
Epidermal cell suspensions were derived from 0.5-day-old mice and population was also increased at 7 and 14 days at all

cultured for 7 days. The cells were fixed, and size measurements
were made for 100 milochondria. The size of mitochondria in p/p concentrations tested (0.01. 0.1.1 HM: P<0.05) Ca. 20% of

melanoblasts is smaller than in P/P melanocytes. L-Tyr failed to cells were induced to differentiate at 1 uM DNP at 14 days
increase the size of mitochondria in p/p melanoblasts/melanocytes. (Fig. 5E). Simultaneous treatment with DNP and L-Tyr
The data are the averages of results from 100 mitochondria in elec- resulted in a greater increase in the percentage of melano-
tron micrographs of cells. Bars indicate SEM, *P<0.05. cytes in the melanoblast-melanocyte population (Figs. 1F,
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Fig.5. Kinetics of the proliferation (A, B, C) and differentiation (D, E, F) of epidermal P/P melanocytes (A, D), p/p melanoblasts (B, E), and p/
p melanoblasts/melanocytes cultured with 2 mM L-Tyr (C, F). Epidermal cell suspensions were derived from 0.5-day-old mice. DNP at
concentrations of 0 (0), 0.01 (@), 0.1 (&), and 1 (A) uM was added to each culture from initiation of the primary culture. Pure cultures of
melanoblasts or melanocytes were obtained after 14 days. The number of melanoblasts and melanocytes was counted by phase-contrast and

bright-field microscopy at 1, 7, and 14 days. The data are the averages of results from three exp

ts. Each experiment was performed with

different litters of mice. Bars indicate the SEM and are shown only when they wera larger than the symbols, *P<0.05.

5F). More than 80% of cells were differentiated at 14 days
at all concentrations tested (Fig. 5F; P<0.05). However, the
proliferation of melanoblasts and melanocytes was not stim-
ulated by simultaneous treatment with DNP and L-Tyr (Fig.
5C). These results suggest that DNP may rescue the
reduced proliferation and differentiation of p/p melanablasts,
and that DNP may restore the reduced differentiation of plp
melanoblasts in cooperation with L-Tyr.

DISCUSSION

Our present study demonsirated that the proliferative
and differentiative activity of p/p melanoblasts cultured from
neonatal murine epidermis was greatly reduced compared
with that of P/P melanocytes. The differentiative activity of p/
p melanoblasts in culture was increased by the addition of
L-Tyr to MDMD in this study. Our previous study showed
that L-Tyr increased the tyrosinase activity of p/p melano-
cytes in primary culture (Hirobe et al., 2002b). It is possible
that increased tyrosinase activity in cultured p/p melano-
cytes by L-Tyr stimulates their differentiation. The question
arises as to what mechanisms are involved in regulation by
L-Tyr of the differentiation of p/p melanocytes. One possible
explanation is that L-Tyr acts directly on melanocytes and
activates factors involved in regulating signal transduction
pathways required for cell differentiation, such as the protein
kinase A (PKA; Hirobe, 1992), tyrosine kinase (TK, Coughlin
et al., 1988), and PKC (Imokawa et al., 1997) pathways.
Indeed, in mouse melanoma cells, L-Tyr stimulates the
capacity of melanocyte-stimulating hormone (MSH) to bind

the MSH receptor, and consequently the PKA pathway is
activated through the elevation of cAMP level in the cells
(Slominski et al., 1989). Thus, the activation of PKA is
thought to stimulate the differentiation of p/p melanocytes.
Another explanation is that L-Tyr acts on the tissue environ-
ment, especially keratinocytes, and induces or stimulates
the synthesis of melanogens, such as MSH (Thody et al.,
1983), basic fibroblast growth factor (Halaban et al., 1988),
nerve growth factor (Yaar et al., 1991), endothelins (Yada et
al.. 1991; Imokawa et al., 1992; Yohn et al., 1993; Hirobe,
2001), granulocyte macrophage colony-stimulating factor
(Imokawa et al., 1996; Hirobe et al., 2004a), steel factor
{(Kunisada et al., 1998; Hirobe et al, 2003b), hepatocyte
growth factor (Kunisada et al., 2000; Hirobe et al., 2004b),
and leukemia inhibitory factor (Hirobe, 2002). This hypothe-
sis may be partially supported by the observation that L-Tyr
falled to stimulate the differentiation of cultured melanocytes
in the absence of keratinocytes (Hirobe et al., 2002b).

Our present study showed that the formation and matu-
ration of melanosomes was greatly inhibited in p/p melano-
blasts, but that L-Tyr induced the de-novo formation and
maturation of melanosomes. Although L-Tyr dramatically
increased stage Il and Il melanosomes, mature stage IV
melanosomes were not dramatically increased. These
results suggest that the rescue by L-Tyr of the impaired
melanocyte differentiation is incomplete, and that other,
additional factors are required for the complete rescue.

Our present study demonstrated that p/p melanoblasts
possess much more Golgi apparatus than P/P melanocytes.
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The number of Golgi apparatus in P/P melanocytes in the
epidermis of newborn mice is known to decrease as the
developmental age advances (Hirobe and Takeuchi, 1978).
Since melanosomes may at least in part originate from Golgi
apparatus (Seiji et al., 1963; Novikoff et al., 1968; Maul,
1969; Imokawa and Mishima, 1981; Hirobe, 1982), the latter
is thought to gradually decrease in number with increasing
formation of melanosomes. However, in this study, L-Tyr
failed to reduce the number of Golgi apparatus in p/p mel-
anoblasts/melanocytes. Although this discrepancy between
P/P melanocytes and p/p melanoblasts/melanocytes cannot
be fully explained at present, it might be attributed to differ-
ences in the formation and maturation of melanosomes
between P/P melanocytes and p/p melanoblasts/melanc-
cytes. In P/P melanocytes, the formation and maturation of
melanosomes may be fully activated, and thus a small
number of Golgi apparatus may exist under normal circum-
stances. In contrast, in p/p melanoblasts, the formation and
maturation of melanosomes may not be fully activated, and
thus a large number of Golgi apparatus may be present
under normal circumstances. Moreover, the stimulation of
melanosome formation and maturation by L-Tyr in p/p
melanoblasts/melanocytes was incomplete (stage IV
melanosomas did not increase greatly), and thus the
number of Golgi apparatus falled to reach the level of P/IP
melanocytes. This hypothesis may be partially supported by
the finding that the total numbers of both melanosomes and
Golgi apparatus were not affected by the treatment with L-
Tyr in cultured P/P melanocytes (Hirobe et al., 2007). There-
fore, it is reasonable to assume that the number of Golgi
apparatus in p/p melanoblasts is greater than in P/P
melanocytes because of the reduced formation and matura-
tion of melanosomes.

In our present study, p/p melanoblasts possessed many
more lysosomes than P/P melanocytes, especially at 14
days in culture. In contrast, L-Tyr dramatically decreased the
number of lysosomes at all days tested, and their numbers
were comparable to those of P/P melanocytes. These
results suggest that the increased melanosome formation
and maturation induced by L-Tyr in p/p melanoblasts/
melanocytes may elicit the decrease In the number of
lysosomes. Melanosomes are thought to be specialized
organelles of lysosomes (Orlow, 1995). Indeed in the P/P
mouse epidermis, differentiated melanocytes possess a
small number of lysosomes, whereas undifferentiated mel-
anoblasts possess many lysosomes (Hirobe and Takeuchi,
1978). The relationship batween melanosome formation and
lysosome formation should be precisely investigated in a
future study.

In our present study, many more mitochondria were
present in p/p melanoblasts than in P/P melanocytes. More-
over, the number of mitochondria increased as the culture
proceeded. L-Tyr decreased the number of mitochondria in
p/p melanoblasts and melanocytes, though the number was
still greater than in P/P melanocytes. From these results, we
assume that the mitochondria in p/p melanoblasts influence
the formation and maturation of melanosomes. This
assumption may be partially supported by the findings that
L-Tyr decreased the number of mitochondria in p/p melano-
blasts/melanocytes, whereas L-Tyr increased the number of
melanosomes. The size of mitochondria in p/p melanoblasts

was smaller than in P/P melanocytes. Therefore, it is rea-
sonable to conclude that the division of mitochondria may
occur in p/p melanoblasts, resulting in numerous small-
sized mitochondria. Although the theory that melanosomes
originate from mitochondria (du Buy et al., 1963) was not
supported by the study of Saiji et al. (1963), in the present
study we propose the new theory that mitochondria may
influence the formation and maturation of melanosomes in
melanocytes by an unknown mechanism.

DNP inhibits oxidative phosphorylation in mitochondria
(Han et al., 2008). In our presant study, this inhibition of
mitochondrial function by DNP stimulated the proliferation
and differentiation of p/p melanoblasts. In contrast, DNP
inhibited the proliferation of P/P melanocytes, whereas it did
not affect the differentiation of P/P melanocytes. Therefore,
it is reasonable to conclude that the dysfunction of mito-
chondria caused by DNP in P/P melanocytes may inhibit cell
proliferation, due to a reduced energy supply. In contrast,
the dysfunction of mitochondria caused by DNP in p/p mel-
anoblasts may stimulate the proliferation of melanocytes,
without a severe reduction in the energy supply, since p/p
melanoblasts possess numerous mitochondria. DNP possi-
bly stimulates the signaling pathway of PKA, PKC, and TK,
and consequently the proliferation and differentiation of p/p
melanoblasts are increased. This hypothesis may be
partially supported by our findings that DNP and L-Tyr
synergistically stimulated the differentiation of p/p melano-
blasts.

Taken together, our present results suggest that the p
gene exerts its influence by affecting the proliferation and
differentiation of melanocytes through regulating melano-
some formation and maturation, or through regulating the
uptake of L-Tyr and the function of other organelles.
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