A NOTE ON PARAMETERIZATIONS IN PHARMACOKINETIC COMPARTMENT MODELS 9

volunteers reported in Kwan et al. (1974) and analyzed subsequently in Davidian &
Giltinan (1995) and Pinheiro & Bates (2000). Each subject received an intravenous dose,
D = 25mg - kg~'. Then, indomethacin was labeled by a radioisotope 'C, and the con-
centrations were observed at n = 11 times, using a radioactive counting device. Using a
compartment model function, the concentration at time ¢ is given by

D(x} — &:1)

D(x21 — k3)
Visi —r3) °F

J(t:8) = Vix: —k3)

(—Kit) + exp(—~3t), (10)
where 8 = (V, k12, K21, k)T, V is the volume of distribution, k12 and xa; are the transfer
rate constants, and x, is the elimination rate constant. Here, k] + k3 = K, + Kj2 + K21,
K1K3 = KK, and &) > k3. This original function of Eq.(10) is derived from ordinary
differential equations (Gibaldi & Perrier, 1982).

In practice, pharmacokinetic investigators often apply the parameterization for Eq.(10)
to facilitate the compartment model:

J(6:8%) = B exp(—B3t) + B3 exp(-Fjt), (11)

where 8% = (87, 3,03,5;)T. B has no direct pharmacokinetic interpretation. Further-
more, since the parameter 3 is positive, the following function can also be utilized:

J(t;B7) = exp(B") exp(— exp(83°)t) + exp(F5*) exp(— exp(8;")t), (12)

where 8°* = (B1*, 53", 83", 6;*)T = (In 81, 1n 53, 1n 83, In 87) .

The parameterized function of Eq.(12) was utilized in Davidian & Giltinan (1995), and
the heteroscedastic model of Eq.(1) was applied with the variance function g(t; 3, f =
[r(e; ,6)]’ and I'(a) = I, for an subject (No.5)’s concentration-time profile. To illustrate,
we also focus on this subject, but of course data relating to other subjects could also have
been considered. The nonlinearity underlying their models that are expressed in terms
of compartment model functions, namely, the original function Eq.(10), the parameter-
ized function Eq.(11) and the parameterized function Eq.(12), are assessed by using the
relative curvature measure, and especially the performances of the parameterizations are
evaluated. The log-likelihood is calculated by substituting the GLS-MPL estimates into
Eq.(2). The results are shown in Table 2.

As shown in Table 2, the estimates of # and &, the log-likelihood values, and the values
of the intrinsic curvature measure for all the functions of the compartment model coin-
cides with one another. For fitting each of the functions of the compartment model, the
value of the parameter-effects curvature measure is larger than that of the corresponding
intrinsic curvature measure. All the RMS values of the intrinsic and parameter effects
curvature measure are greater than 1/,/Fy11-4.1-0.0s = 0.493. This suggests that intrin-
sic nonlinearity as well as that due to parameter-effects might be quite large, and that the
linear approximation and the results of inference based on it (for example, the parameter
estimate and its standard error given here) might not be reliable. To reduce the intrinsic
nonlinearity, we could reconsider the design of sampling times of blood drug concentra-
tion data, by using concepts of the optimal design. On the other hand, to reduce the
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Table 2: Results for the indomethacin data.
Original parameterization: Eq.(10) Estimate Standard error

v 6.788 1.154
K 1.377 0.213
K1z 1.100 0.169
Ka 0.335 0.085
o 0.131
] 0.819
‘r;frs 4177
vk g 0.615
Parameterization 1: Eq.(11) Estimate Standard error
By 3.445 0.609
B 2.639 0.364
f 0.240 0.056
83 0.175 0.046
a 0.131
0.819

Yhrts 2.737
VM 0.615
Parameterization 2: Eq.(12) Estimate Standard error
(il 1.237 0177

Ty 0.970 0.138
Bs* ~1.428 0.232
8" —-1.742 0.263
o 0.131
[ 0.819

PE
YRAS 2.929
vﬁs 0.615
Log-likelihood 21.383

parameter-effects nonlinearity, we can find that the parameterization may be useful, as
also shown in the results. Although all the values of the parameter-effects curvature mea-
sures are greater than 0.493, as compared with that of Eq.(10) the RMS parameter-effects
curvatire measure values for the parameterized functions of Eq.(11) and (12) are rela-
tively small, and the difference between them are small (2.737 versus 2.929). Therefoer,
parameterization 1 or 2 could be valid from the viewpoint of the linear approximation.

4. Discussion

Statistical inference in the compartment model is based on the linear approximation. In
this article, the validity of linearization was investigated using the relative curvature mea-
sure, and especially the parameterization checking was focused on. We can recommend
that pharmacokinetists or pharmacokinetic investigators check whether both of results of
fitting the compartment models based on the linear approximation and applied param-
eterizations are reliable, by using the presented approach. A large value of the relative
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curvature measure indicates that inference based on the linear approximation might not
be valid, and that results obtained from the linear approximation, e.g., the parameter
estimate, standard error, confidence region, or hypothesis test results, could be suspect.
Furthermore, the comparison among the values of the parameter-effects curvature measure
for the applied parameterizations provides a suggestion about suitable parameterizations.
In other words, a suitable parameterization could reduce parameter-effects nonlinearity,
thus improving the reliability of the results obtained from the linear approximation. As
shown in our results, it is noted that a typical parameterization adopted for pragmatic
reasons, for example, log-parameterization, was not always appropriate. To select the
optimal parameterization in any data sets, cosequently, it will be necessary to compare
the values of the parameter-effects curvature measure among the parameterizations used
in various data sets. In order to understand the parameter-effects nonlinearity visually,
it will be also so helpful to draw contour plots based on both likelihood ratio and linear
approximation for the pair of parameters and to compare them (see Bates & Watts (1988)
and Seber & Wild (1989)), and find out the relation between their plot's deviation and
the values of the relative curvature measure.

To reduce intrinsic nonlinearity, we can reconsider the design of sampling times of blood
drug concentration data, by using concepts of the optimal design. Daimon & Goto (2007b)
have proposed the curvature adjusted design of sampling times. In addition, our results
suggest that a recommended way to find intrinsic curvatures under various parameteriza-
tions is to refit the model with a different parameterization, then to recalculate derivatives
curvatures based on new estimates. In fact, in Bates & Watts (1988), it is recommended
to appropriately adjust the curvature obtained from the original fit. In other words, values
for the relative curvature measure can vary considerably, depending on both parameter
values and sampling times.

The linearization is also used to fit population pharmacokinetic/pharmacodynamic
models. It would be interesting to know the implications of a curvature on parameter
estimates, but the relative curvature measure for the mixed effects model has not been
developed yet and it will take considerable effort. Thus in this article we have applied
the relative curvature measure to only the fixed effects model, but our results could have
provided a guideline for the parameterizations in the nonlinear mixed effects model.
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Appendix. Calculation for the relative curvature measure

The relative curvature measure is calculated by using the following algorithm (see Bates
& Watts (1980, 1988) and Seber & Wild (1989)):
Step.1: Calculate the n x p first-derivative matrix of the function f*(t;8) in Eq.(4),

namely, o Aﬂf‘{i:ﬁ”g:f] &= [(%;_ﬂl) Y = [(‘;k) Bu=ﬁ.]'

1,...,n, k=1,...,p, evaluated at the parameter estimate 3, and the n x p x p second

3} e e . of"(t;; B
derivative array, namely, ¥ = Vaf*(t; B)ls, -5, 5=3 = (—a;q(-éz;l) ]
Ayl kO ] | gu=Br =y

51' j=1,...,n, k=1...,p, I = 1,...,p. In addition, calculate
L

J

~ePE 8‘--%:??;{': -3 PE B oy ) o ZuPE 20 el = =
¥ and ¥V, FTF = [E)7F] _J(f,-,,, )]s 5 = deeim b= eipy 1 =
- oPE

1,...,pisthe n x px p array, and f; = (fRE,...,f:FF)T is the n x 1 vector,
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) wePE \o faoT oo\ =1 caTuu o
given by fi, = F (F F) F* Fl, where fi = (fiu---, fow)™ On the other

hand, £ = [E"] = [(fm W 7 5= sy B = Gowaay £ Byos Pl
the n x p x p array, and }“ = (fil¥, ..., falN)T is the n x 1 vector, given by
?;:N = {1.. - (F.TF-) F }fu, where I, is the n x n identity matrix.

Step.2: Calculate the QR decomposition of f-‘., that is,

F' =QR, = [Q,,Q.,) [ o ] =Q,Ru,

where Q is the n x n orthogonal matrix which rotates the axes of the sample space, how-
ever, Q7Q = L, R, is the n x p matrix, O is the (n — p) x p zero matrix, Q, is the
n X p matrix whose columns form a basis for the plane tangent to the expectation surface,
Q,._, is the n x (n — p) matrix, whose columns form a basis for vectors normal to the
tangent plane, and R, is the nonsmgu]n.r p % p upper triangular matrix. Since R.“Rn
is the Cholesky decomposition of o F , Ry is unique if its diagonal elements are all
positive or all negative. If Ry, is unique, Q, is also unique. In fact, Q, = F Rul (On
the other hand, Q,,_,, is not unique). Then, F"h = Q Ry h = Q,d, where d = Ry h,
p x 1 vector. That is, Q,, in the new coordinate system plays the same role as the first
derivative matrix F" in the original coordinate system.

Step.3: Scale the clements of the matrix F~ and array ¥~ by p=a/p.

Step.4: Reparameterize v/'F and v/ in Eq.(5) by ¢ = R,,8 and multiply their de-
nominators and numerators by Q7. We can ensure that ||d|| = 1, since vFE and -
depend on the direction of d and h, but do not depend on their sizes. That is, since
el o

TRTE PR T4T (R=1\T §PER
r - T (T ED 2 g
|Q7E" ] |Q"F"Rid]
and
e ||QTh"F"”u}| a7 mi)" ¥ Ra‘dH e,
| Q" i
(13)
where f‘:fs t:Ethe p % p x p parameter-effects curvature array, given by f‘:fg =
(R ) QTE" "R;} and #27V is the p' % p x p intrinsic curvature array (p’ is at most
p(p+1)/2), given by Fo-" = (Ri)" QTF VR, However, it is noted that the following

relation in the expansion of Eq.(13) is satisfied:

§PE -« PE -« PE
¥ F =
Q QT [ - ] = [ QP ] [ »:. ] - Foor
F IN Q:' PF P IN
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where ., is the (p+p’) X p x p curvature array.
The root mean square (RMS) parameter-effects curvature 445 and the RMS intrinsic
curvature 74 is computed by, respectively,

2
1 P P B 2 D

k=1 I=1

and

L 1 P I 2 E v %
TRMS = w_z ZZZ(I:-JM) +(Zf'-"’*") i

Jj=p+1 k=1 I=1 k=1

—

where f7, ki is the element of the curvature array F., and J*, k& 1s the diagonal element

p % p matrix in the j th face or slice of the curvature array ... The value of p* lies
between p+ 1 to at most p(p + 3)/2.

{Received April 17 2007, Revised October 22 2007)
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In the context of nonlinear regression models, we propose an optimal experimental
design criterion for estimating the parameters that account for the intrinsic and
par ter-effects linearity. The optimal design criterion proposed in this article
minimizes the determinant of the mean squared error matrix of the parameter
estimator that is quadratically approximated using the curvature array. The design
criterion reduces to the D-oprimal design criterion if there are no intrinsic and
parameter-effects nonlinearity in the model, and depends on the scale parameter
estimator and on the reparameterization used. Some examples, using a well known
nonlinear kinetics model, demonstrate the application of the proposed criterion to
nonsequential design of experiments as compared with the D-optimal criterion.

Keywords D-optimality; Intrinsic or parameter-effects nonlinearity; Locally
optimal designs; Quadratic approximation; Reparameterization.
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1. Introduction

It is common knowledge that a well designed experiment has some advantages
including the ability to provide valid inferences as well as cost-effectiveness. In the
context of nonlinear models, optimum experimental designs depend on unknown
parameter values and are only locally optimum as the model is nonlinear with
respect to the parameter, whereas in linear models, such designs are independent
of parameter values (see Atkinson, 1982; Silvey, 1980; St. John and Draper, 1975,
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for general reviews). Therefore, for the nonlinear case, in particular, our interest
often focuses on the design of experiments that can provide accurate or precise
parameter estimation, and thus a number of nonlinear experimental design criteria
have been proposed (for general reviews, Atkinson, 1996; Atkinson and Donev,
1992; Chaudhuri and Mykland, 1993; Cochran, 1973; Ford et al., 1989; Melas, 2006,
etc.; in particular, an excellent and comprehensive review for general experimental
designs has been presented from a historical viewpoint by Atkinson and Bailey,
2001). In addition, recent developments and applications are found in Atkinson
(2003, 2005), Dette and Biedermann (2003), Miiller and Pézman (2003), Dette
et al. (2003, 2004, 2005), Han and Chaloner (2004), Ucifiski and Bogacka (2005),
etc. However, most works on the design of experiments for nonlinear models
follow the D-optimal design criterion proposed in the pioneering paper of Box and
Lucas (1959). D-optimality minimizes the determinant of the information matrix,
at a value close to or a preliminary guess for a true value of the parameter.
Other interpretations of this criterion are that it minimizes the volume of linear-
approximation joint confidence regions for the parameters and that it maximizes the
posterior density for the parameter estimator if a noninformative prior distribution
is used. Two other criteria that have a statistical interpretation in terms of the
information matrix are A- and E-optimality (Atkinson and Donev, 1992). In
A-optimality, the trace of the information matrix, or the average variance of
the parameter estimates, is minimized. In E-optimality, the variance of the least
well estimated contrast is minimized. An advantage of D-optimality is that the
optimum designs for quantitative variables do not depend upon their scale. Linear
transformations leave the D-optimum design unchanged, which is not in general the
case for A- and E-optimum designs. In principle this is a serious drawback to the
other two criteria: it seems undesirable that an optimum design should depend upon
units of a variable.

Cochran (1973) noted the asymptotic nature of the D-optimal design criterion
and invited studies of its small sample performance. Some researchers have
responded to this invitation; Box (1971) derived an approximation to the bias of the
least squares estimators and suggested designing experiments to minimize this bias
of the estimator of a parameter of interest. Clarke (1980) presented an improved
formula for the variance—covariance matrix of the parameter estimator and
recommended selecting experimental designs to minimize the mean squared error of
the estimator of one parameter. Bates and Watts (1981) proposed selecting designs
to minimize the parameter-effects curvature to simplify inference procedures.
Hamilton and Watts (1985) developed a quadratic approximation to the volume
of the parameter inference region based on a curvature array. O'Brien (1992) used
the quadratic approximation due to Hamilton and Watts (1985) to find designs
which have additional design points. Hughes-Oliver (1998) took the gquadratic
approximation approach for nonlinear models with correlated errors under the
limited scenario. Daimon and Goto (2003) proposed the curvature-adjusted criterion
for optimal design of sampling times for the inference of the pharmacokinetic
compartment models.

In this paper, we develop an optimum experimental design criterion that
minimizes the “determinant” of the mean squared error matrix of the parameter
estimator, which is quadratically approximated by the curvature array, In Sec. 2,
the formula for the mean squared error optimum design criterion is presented. In
Sec. 3, some applications of the design criterion to static designs are demonstrated
with a typical nonlinear model, as compared with the D-optimal design criterion.
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2. The Formula for the Mean Squared Error Optimum
Experimental Design Criterion

Consider the nonlinear regression model

Y,=fx; B +e; j=Liiaunm, (1

where ¥, is the jth response, x; is the g x 1 vector of the controllable or
design variables for the jth response, given by x; = (x;,...,x,)", f(x;; f) is a
known expectation function that depends nonlinearly on the p-vector of unknown
parameters, given by f=(f,, ..., ﬂp)T, &; is the error that is usually assumed to be
independently, identically, normally distributed with mean 0 and constant variance
a® as N(0, #%), and n is the number of observations or experiments. The vector
representation of (1) is

Y =[x f) + &, @)

where Y is the n x 1 random vector of the observations given by ¥ = (¥,, ..., ¥,)",
[ B =(fx; By flxi BN 6= (8),...,8,)7, and & is assumed to be n
dimensional multivariate normal distributed with mean vector 0 and variance—
covariance matrix ¢”I, as MN, (0, ¢”1,), where I, is the n x n identity matrix. The
maximum likelihood (least squares) parameter estimator f of f minimizes the sum
of squares S(B) = (Y — f(x; B))"(Y — f(x; B)) = L}, (¥, — f(x;; B))*.

The estimation of f and ¢ in (2) is carried out based on the linearized
approximation about f:

f(x; B) = f(x; By + F(B - B), 3)

where F is the n x p first derivative matrix with respect to fi evaluated at ﬂ and is

: Py
represented as F = Ay f(x; )|,y = [(%,“—m) seed

Chernoff (1953) introduced locally optimum designs in which the design may
depend on the unknown values of the parameters and proposed the design criterion
that minimizes the trace of (FTF) '. A disadvantage of this criterion is that the
optimal designs are not invariant under changes of scale of the parameters. Box and
Lucas (1959), in some nonlinear models arising in chemical or biological kinetics,
proposed the D-optimal designs that minimize the determinant of (FTF)_' and are
invariant under scale changes of the parameters. However, it should be noted that
the above mentioned design criteria based on the linearized approximation in (3)
are applicable to a large sample on the premise that the function of the nonlinear
model is not misspecified and that the behavior about f is approximately or locally
close to that in the linear model. If the linearized approximation is inappropriate
for a given model-design combination, then f# can be very seriously biased and
the asymptotic results of the inference be invalid (see Box, 1971; Clarke, 1980;
Hougaard, 1985). Therefore, as pointed out by Cochran (1973), it is necessary to
develop an experimental design criterion that relies on an accurate higher-order
approximation, rather than the linearized approximation. In addition, it is required
for the designs to yield precise and accurate estimates of the parameters in the
inference of nonlinear models.

vi=howmk=1,..000p.

-224-



Mean Squared Error Nonlinear Optimal Design 511

As the validity of the linearized approximation quite strongly depends on the
nonlinearity underlying the expectation function f(x; f) of the nonlinear model,
evaluated at parameter estimators, as pointed out by Hamilton and Watts (1985)
and Hughes-Oliver (1998), it is sensible that we utilize the relative curvature
measure of the nonlinearity developed by Bates and Watts (1980) to incorporate the
higher-order approximation, and develop the curvature optimum design criterion.

The local behavior of the expectation surface of f(x; f) can be described
by the parameter-effects curvature array APE and the intrinsic curvature array
A™ (see Bates and Watts, 1988; Seber and Wild, 1989, and the Appendix). The
parameter-effects curvature array measures the degree of nonlinearity depending on
the parameters in the model. If each element of the curvature array is so small, it
means that straight parallel equispaced lines in the parameter space map into ones
in the expectation surface, as they do in the tangent plane. The parameter-effects
nonlinearity can be decreased by suitable reparameterizations. On the other hand,
the intrinsic curvature array measures the degree of nonlinearity inherent to the
model itself. If each element of the intrinsic curvature array is small, it means that
the expectation surface can be locally replaced by the tangent plane. But the intrinsic
curvature cannot be reduced by reparameterizations.

In (2), the mean squared error of ff can be approximated by using the curvature
array as follows (for details of the derivation and proof, see Clarke, 1980 and the
Section 4.7 of Seber and Wild, 1989):

MSE(p) = o’R;! (l, . o’(L’” . %M" + %N"))(R;,‘)T. @)

where I, is the p x p identity matrix, L™ = 3777 (A;” )2. where Aj” is the jth face
of A (for the definition of the term “face,” see Bates and Watts, 1988; Seber
and Wild, 1989, and the Appendix), M"“ [(trace(APFAZE))], j,j* =1,..., p, and
NFE = {(traoe{A""}lraoe{A )). j.j* =1,.... p, are the p x p matrices, composed
of the function of A’“. where A¥* is the jth face of APE_ The term including N™#
on the right hand of (4) is a.ssoclated with the estimate of the bias of B, and the
remaining terms are associated with the estimate of the variance of B.

Here, we can consider the mean squared error optimum experimental design
criterion, MSE-D,,, that sclects the designs, x,, ..., x, to minimize the determinant
of (4):

|(F7F) || (5)

1 1
2L L I MPE 4 ZNPE) |
+o (L - 2M = 3 )

where the design region is the half-line [0, ). For n= p, there is no intrinsic
curvature (A’Y = 0), and the expectation surface is flat, comcldmg with the tangent
plane. Note that if there is no curvature (A™ = A’® = 0) or ¢* = 0, the MSE-D,,,
reduces to the D-optimal design criterion, D, to minimize the determinant of
the inverse of the asymptotic Fisher’s information matrix of ff, namely |(FTF)" |
It should be noted that the MSE-D,, also assumes that the nonlinear regression
function f(x; f) is known in advance from previous experiments, theoretical
constructs, or other considerations. In addition, the MSE-D,, requires that
unknown true values f* and ¢*, of § and o in (4) are replaced by a priori initial
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parameter values, f and &, respectively. We use a quasi-Newton algorithm to select
the designs that minimize (5). The FORTRAN program codes for the MSE-D,,, are
available from the author upon request.

An advantage of the proposed MSE-D,,, is that it could enables us to conduct
sensitivity analysis with respect to the nonlinearity underlying a compartment model,
leading to checking the D, designs or other designs or providing additional designs
(see O'Brien, 1992). In particular, the MSE-D,,, could be useful tool for such a check
when the nonlinearity underlying the model function is quite high.

3. Applications of the Mean Squared Error Optimum
Experimental Design Criterion

In this section, the MSE-D,, is applied to one of the most well known models for
nonlinear experimental designs — the intermediate product model (see Atkinson and
Donev, 1992; Bates and Watts, 1988; Box and Lucas, 1959; Hamilton and Watts,
1985; Seber and Wild, 1989, etc.). The model function describes the concentration
of the intermediate substance created from two consecutive irreversible first-order
biological or chemical kinetics; the model function can be expressed as follows:

B
ﬁ1 _ﬁ]

where = (f,, B,)" and p = 2; x denotes a controllable variable. We investigate the
effects of n, 7* and the parameterization,

flx; B) =

[exp(—f,x) —exp(—p,0)], By, B2 x >0, (6)

3.1. Changing n and &

The effects of changing the initial scale parameter value #° and the number of
experiments n on the MSE-D,, are investigated. Box and Lucas (1959) used the
initial parameter value ff = (0.7, 0.2)" in (6) and found that the local D,,, two-point
design was x, = (1.26,6.86)7; these were used as the starting values. Here,
n=2,...,9 and 5 =0, 0.05, 0.10, 0.15, 0.20, 0.25. However, for n > 2, starting
designs were randomly sampled from (1.26, 6.86); for example, for n =3, they
were randomly selected out from (1.26,6.86) as one combination such as
(1.26, 1.26, 6.86), (1.26, 6.86, 6.86), etc. Table 1 shows the MSE-D,, designs for
different combinations of n and &*. For &* = 0, the MSE-D,,, design coincides with
the D,,, design. For n > 2, irrespective of &°, in every starting design, the procedure
for the minimization of (5) terminated at a replicated two-point design; for example,
for n = 4 and &% = 0.1, the designs were selected as (1.201, 1.201, 6.646, 6.646), and
for n=5 and &> = 0.15, they were selected as (1.175, 1.175, 1.175, 6.465, 6.465),
(1.175, 1.175, 6.465, 6.465, 6.465), etc. That is to say, like the D,,, design, in the
MSE-D,,,, it would be equal for the even number of designs and for the odd
number of designs, with the choice the ‘extra’ observation could be taken at either
design point, but the MSE-D,, can yield the selection of designs adjusted, depending
on n and &°, for the D,,,, which can always do (1.229, 6.858); for example, for
n =4, (1.229, 1.229, 6.858, 6.858), and for n = 5, (1.229, 1.229, 6.858, 6.858, 6.858),
(1.229, 1.229, 1.229, 6.858, 6.858), etc. As shown in these results, the fact that
replications of the optimal p-point design are optimal or near-optimal (see Atkinson
and Donev, 1992) would be applied to the MSE-D,,,.
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Table 1

Design points selected by the MSE-DW for various combinations of
nand a°

a° n=2 n=3 n=4 n=>35

0 (1229,6.858)  (1.229,6.858)  (1.229,6858)  (1.229,6.858)
005 (1.1346673) (12166750) (1.222,6799)  (1.222,6.804)
0.1  (1.049,6378) (1.182,6490) (1.201,6.646) (1.203,6.659)
015 (0.984,6087) (1.138,6203) (1.172,6.448)  (1.175,6.465)
02  (0932,5851) (1.091,5975) (1.138,6.245) (1.144,6.265)
025 (0.889,5677) (1.047,5816) (1.104,6.062) (1.110,6.086)

6.2
0 (1.229,6.858)  (1.229,6.858)  (1.229,6.858)  (1.229,6.858)
005 (1.223.6815) (1.2256.821) (1.225.6.821)  (1.226,6.832)
0.1 (1.208,6.711)  (1.211,6.719)  (1.211,6.722)  (1.216,6.758)
015 (1.188,6.560) (1.193,6.575) (1.192,6.575)  (1.202,6.652)
02 (1.163,6.393)  (1.170,6.453)  (1.168,6.440)  (1.184,6.499)
025 (1.136,6.229) (1.140,6.248)  (1.154,6.338)  (1.163,6.359)

n=6 n=7 n=2§ n=29

In addition, local minima were found in some cases, in particular, for large n
(n=7, 8, or 9) and & (7* = 0.15, 0.20, or 0.25); therefore, a smaller value for (5)
was sometimes obtained by starting with a replicated design that is different from
x,. As shown in these results, we can exploit the fact that replications of the optimal
p-point designs for general models are optimal or near-optimal (see Atkinson and
Hunter, 1968; Box, 1968, 1970), and the MSE-D,,, can be applied for a replicated
p-point design.

Figure 1 shows the behavior of the design points selected by the MSE-D,,
for x, and x, with a continuous change in &* for each value of n. For each n,
both the design points selected by the MSE-D,,, decrease with an increase in &%
the design point for x, decreases slowly, whereas the design point for x, decreases
remarkably. This is because the MSE-D,,, accounts for the underlying nonlinearity
in the model with an increase in 3°. As n is larger, the decrease of the design point
for x, becomes smaller. Each curve of the design points for x, and x, tends to
approach a specialized one. This behavior may result from the effect of the intrinsic
nonlinearity relative to the parameter-effects nonlinearity with an increase in n.

Figure 2 shows the relative percentage efficiency of the D, to the
MSE-D,,, for n=2, which is calculated by 100 x [(Minimum of (5) for &%)/
(Minimum of (5) for @ = 0)]'/?, where the power factor accounts for the number
of parameters.

As shown in Figure 2, the relative efficiency decreases in proportion with an
increase in &* > 0.05.

3.2. Changing p

For n =2, the MSE-D,,,, two-point design for &* = 0.05 is compared with the local
D,, design, for a range of parameter values fi. The initial parameter values are
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Figure 2. Efficiency of the D, relative to the MSE-D,,; n = 2.
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Figure 3. Changes in the design points due to changes in fi; the solid and dotted lines
represent the design points for MSE-D,, and D, respectively.

on a grid that was generated by changing each value of § = (0.7,0.2)T by £10%
and +25%. The locations of the optimal designs are shown in Figure 3. For both
the criteria, increasing the initial values of §, and B, reduces the optimal values
for x, and x,. An increase in ff; causes a greater relative decrease in x, than in x,,
whereas an increase in i, causes a greater relative decrease in x, than in x,. For
every combination of the initial values, the optimal values of both x, and x, are
smaller for the MSE-D,,, for & = 0.05 than for the D,,,. Overall, the MSE-D,,,, is
slightly less sensitive to changes in the initial parameter values than the D,,. It is
evident that the MSE-D,, is less influenced by incorrect initial values than the D,,,.

3.3. Changing the Parameterization

The MSE-D,,, contains the terms M and NV, as shown in (5); thus, it depends
on the parameterization applied to the expectation function. On the other hand,
the D,, does not show such dependency. Here, we can consider typical three
parameterizations used for (5):

a. ¢ =fy, ¢, =P/ Bys
b. ¢, =logp,. ¢, = log fi5; and
c. ¢, = [log(B,/B)1/ (B, — B2). ¢, = exp(—f,¢,),

where the parameters in case ¢ correspond to the maximum E(Y) (=¢;) and to
the time of occurrence —x = ¢. To illustrate the effects of these parameterizations
for n=2, the MSE-D,, designs were selected with initial parameter values
corresponding to f = (0.7, 0.2)7 and with an increase in &7, ranging from 0 to 0.25.

Graphs of the design points selected by the MSE-D,,, are plotted in Figure 4.
An increase in @ causes the MSE-D,,, design to move away from the D, (7° = 0)
designs in different directions, depending on the parameterization. This dependence
on the parameterization of &° is the least for case b. The design for case a is more
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Figure 4. Changes in the design points due to changes in parameterization.

remarkably decreased than that for the original. On the other hand, for case ¢, the
design point for x, decreases with a slight increase in &° when compared with that
for > = 0, in contrast, the design point for x, is decreased.

4. Discussion

We have proposed the mean squared error optimum design criterion, MSE-D,,,,
and evaluated its performance as compared with that of the D-optimal design
criterion, D,,,. Similar to D,, designs, MSE-D,,, designs are influenced by the
initial parameter values f8, based on the premise that the true expectation function
can be specified a priori. The example shows that the MSE-D,, is slightly less
sensitive to changes in the initial parameter values than is the D,,. Consequently,
inaccurate specification of the initial parameter values may lead to a smaller loss
in efficiency for the MSE-D,,, than for the D, It is possible that the MSE-D,,, is
not very sensitive to the variation of the initial parameter values. In this article, we
assume that the parameters are fixed, and our interest is limited to locally optimum
designs; however, construction of the MSE-D,,, in the framework of the other
approaches including sequential, minimax, and Bayesian designs will be possible
(see Atkinson, 2003, 2005; Dette and Biedermann, 2003; Dette et al., 2003, 2004,
2005; Han and Chaloner, 2004; Miiller and Pdzman, 2003, etc.). For example, as
pointed out by Atkinson and Bailey (2001), we could assume that the parameters are
taken to be sampled from the prior once, for all experimental units, and consider an
extension of the MSE-D,,, that takes account of the variation or uncertainty with
regard to the parameters in the Bayesian approach or in a framework of random
effects nonlinear regression models. Mukhopadhyay and Haines (1995) investigated
Bayesian D-optimal designs for the exponential growth model. Mentré et al. (1997)
presented D-optimal designs for random effects nonlinear models with applications
to pharmacokinetics/toxicokinetics.

Another common feature of the MSE-D,, and D,, is the occurrence of
replications. As pointed out by Hamilton and Watts (1985) and other authors, a
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design consisting only of replicates at the p points provides no information about
the lack of fit. However, as shown in the examples, at least, with regard to the
MSE-D,,,, an increase in the sample size can lead to taking into account the intrinsic
nonlinearity and adjusting the designs although they are replicated.

The major features that distinguish the MSE-D,, from the D, are its
sensitivity to the scale parameter value, the number of experiments, and the
parameterization. The examples have shown that these three factors can cause the
location of the MSE-D,,, design to be quite different from the D,,. In contrast,
the D-optimal criterion is unaffected by any of these factors because the linearized
approximation of the model fails to take into account the intrinsic and parameter-
effects nonlinearity.

With an increase in &2, the gain in efficiency of the MSE-D,, is more than that
of the D,,.. A simple way to determine whether a given initial value of the scale
parameter is too large for the D, to be safely used, has not been found; however,
the MSE-D,,, takes into consideration the degree of the nonlinearity in the model
and produces reasonable results for a wider range of scale parameter value. The
MSE-D,,, would be helpful when the nonlinearity in the model is quite high.

Appendix A

Curvature array. The relative curvature measure is given by assigning its role to the
parameter-effects curvature and intrinsic curvature, to describe the local behavior
of the expectation surface of f(x; f). Following the notation in Bates and Watts
(1988) and Seber and Wild (1989), the parameter-effects curvature array A"E and
the intrinsic curvature array A’ are respectively defined, in (2), by

A = [QT][(R;)E(R;))] and A™ = [QT][(Ry)) E(R;)]. (A7)

where F is the n x px p threedﬁgcnsional array of second derivatives of flx; B)
with respect to f evaluated at f, given by F=V,f(x; B)|ﬁ4={ Ml#-ﬁ”‘

[ (] E’l

j=1,....n,k=1,....,p,l=1,...,p, and Q,, Q,_,, and R,, are obtammed from
the QR decomposition of F:

- _ Rullpxp =

F=QR, _(-?LI s )( 0 )}(n—p} x g™ YRy

axp  nx{n-p)

where (-|)) denotes a block-partitioning of the matrix, Q is an n x n orthogonal
matrix that plays a role of rotating the axes of the sample space and so Q"Q =1,
(1, is the n x n identity matrix), R, is an n x p matrix, Q, is an n x p matrix, whose
columns form a basis for the tangent plane parallel to the expectation surface, Q,_,
is an n x (n — p) matrix, whose columns form a basis for vectors perpendicular to
the tangent plane, R,, is a nonsingular p x p upper triangular matrix, and O is an
(n — p) x p zero matrix. Since RT|R,, is the Cholesky decomposition of FTF, R,; is
unique if its diagonal elements are all positive or all negative.

In (A.7) we notice the relation between the term “array” and the operation
“[-]", square-bracket multiplication (see Seber and Wild, 1989, pp. 142, 691-
692). For example, let us consider the n x p x p three-dimensional array W =
[(w,;)} made up of a p x p matrix of n-dimensional vectors, Wy, = (Wyg. ..., W)
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k=1.....p.0=1.....p. If wy is the jth clement of w,, then the matrix of j*
elements W, = [(w,)] is called the jth face of W. Now, two types of multiplication
are defined. Firstly, if B and C are p x p matrices, then

V= {(vi)} = BWC

denotes the array with jth face V, = BW C, ie.,

V=323 buWercr,
¥

where by and c,, denote the (k, k')th element of B and the (I, I)th element of
C, respectively. Secondly, if D is a ¢ x n matrix, then we define square-bracket
multiplication by the equation

[D][W] = {(Dw,,)},

where the right-hand side is a ¢ x p x p array.
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Intra-arterial chemoradiotherapy for locally advanced oral cavity
cancer: analysis of therapeutic results in|34 cases
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The obijective of this study was to investigate the therapeutic results of arterial injection therapy via the superficial temporal artery for
134 cases of stages lll and IV (MO) oral cavity cancer retrospectively, and to clanfy the prognostic factors. We administered intra-
arterial chemoradiotherapy by continuous infusion of carboplatin in 65 cases from January 1993 to July 2002. Systemic chemotherapy
was performed on 26 cases at the same time. We administered intra-arterial chemoradiotherapy by cisplatin with sodium
thiosulphate in 69 cases from October 2002 to December 2006. Systemic chemotherapy was performed on 48 cases at the same
time. The 3-year local control rate was 68.6% (T2-3: 77.9%; T4: 51.3%), and the 3-year survival rate was 53.9% (stage Ill: 62.9%; stage
IV: 45.3%). Regarding the results of multivariate analysis of survival rates, age (< 65), selective intra-arterial infusion, and the use of
asplatin as an agent for intra-arterial infusion were significant factors. The therapeutic results of intra-arterial chemoradiotherapy via
the superficial temporal artery were not inferior to the results of surgery. In particular, the results of arterial injection therapy by
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® 2008 Cancer Research UK

As locally advanced oral cavity cancer is difficult to control by
radiotherapy, surgery remains the most effective curative therapy
(Poulsen et al, 1996). In this case, an extended surgery markedly
reduces the quality of life, thus affecting the patient's social life.
Therefore, the development of effective non-resection therapy is
extremely important.

In 1992, we started chemoradiation therapy, in which continuous
arterial infusion therapy with carboplatin was combined with
radiotherapy, by selectively inserting a catheter into the target artery
through the superficial temporal artery in patients with locally
advanced head and neck cancer (Fuwa er al, 2000), We started
therapy in two courses of systemic chemotherapy combined with
intra-arterial chemoradiotherapy by continuous intra-arterial infu-
sion of carboplatin and radiation therapy, in an effort to control
metastasis in cervical lymph nodes and distant metastasis in 1997
(Fuwa et al, 2007). Furthermore, we changed the agent for intra-
arterial infusion from carboplatin to cisplatin in an effort to improve
the local control rate in October 2002. This is an improved
technique of the Robbins et al method (Robbins ef al, 1994, 2000),
whereby an infusion dose of cisplatin was increased by infusing
sodium thiosulphate, which is a neutralising agent of cisplatin, from
a vein at the time of intra-arterial infusion of cisplatin.

In this article, we analyse the therapeutic results of 134 cases of
stages Il and IV (MO0) oral cavity cancer retrospectively to

%orrespondence- Dr N Fuwa: E-mail nfuwa@aichi-ccjp
Received 29 June 2007; revised |7 January 2008; accepted 22 |anuary
2008; published online 19 February 2008

cisplatin with sodium thiosulphate were excellent, so we believe that it will be a new therapy for advanced oral cavity cancer.
British Journal of Cancer (2008) 98, 1039 1045. doi:10.1038/s).bjc.6604272 www.bjcancer.com

Keywords: carcinoma of the oral cavity; intra-arterial chemotherapy; radiation therapy; prognostic factor

investigate the prognostic factors, and we inspect the effectiveness
of arterial injection therapy via the superficial temporal artery for
cases of advanced oral cavity cancer,

MATERIALS AND METHODS
Patient selection criteria

The subjects met the following criteria: (1) the pathology is
squamous cell carcinoma; (2) stage ITT or higher oral cavity cancer
(except carcinoma of the base of tongue) without distant
metastasis according to the TNM staging published in 2002; (3)
patients in whom the performance status (PS) was evaluated as
0-3 according to the classification described by the Eastern
Cooperative Oncology Group; (4) ages ranging from 20 to 89 years;
(5) the bone marrow function was maintained (leukocyte count:
3000mm™* or more, platelet count: 100000 mm > or more); (6)
patients without severe liver, kidney, heart, or lung dysfunction;
(7) untreated patients; (8) patients without active double cancer at
the start of treatment, and who had not previously undergone
radiotherapy in the head and neck region; and (9) patients from
whom written informed consent was obtained.

Treatment schedule, administration of the agent

The treatment schedule was divided into four groups (Figure 1).
Continuous arterial injection of carboplatin was performed using a
portable electrical pump for 6 weeks in Group 1. Using Calvert’s
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formula, the total dose of carboplatin was established as six- to
eight-fold the area under the plasma concentration-time curve
(AUC) according to both the kidney function and PS.

As mentioned above, we started a new chemoradiation therapy
in which continuous arterial infusion therapy with carboplatin was
combined with two courses of systemic chemotherapy with 5-
fluorouracil and nedaplatin in order to control the neck lymph
nodes and distant metastases (Group 2) in 1997, Carboplatin (total
dose: AUC 6) was administered continuously in the latter half of
radiotherapy after the end of the second course of systemic
chemotherapy. The regimen of systemic chemotherapy consisted
of continuous intravenous injection of 5-fluorouracil at
700 mgm > for 5 days (from Day 1 until Day 5) and intravenous
drip of nedaplatin at 120mgm ™" over 6h on Day 6.

To further im; the local control, we modified the procedure
described by Robbins er al from October 2002. The dose of
cisplatin was established as 20mgm™" when the catheter was
inserted into the selected artery, and 30 mgm? when the catheter
was inserted into the external carotid artery. During the arterial
injection of cisplatin, a cisplatin-neutralising agent, sodium
thiosulphate, at 8- 10gm~* was intravenously administered over 7 h.

When inserting catheters into arteries on both sides, we set the
amount of the infused dose of CDDP up to 40 mgm ™ in total per
week; and to distribute the agent appropriately, we decided the
amount of agent distributed from the findings of the MRL

In patients who were not eligible for systemic chemotherapy,
including elderly patients (=75 years) and those with a poor PS
score, cisplatin arterial injection chemotherapy was repeated six to
seven times in combination with radiotherapy at 60— 70 Gy (Group 3).

In patients in whom systemic chemotherapy was possible,
alternating therapy involving systemic chemotherapy and
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ted four to five times after the end of the second course of
systemic chemotherapy (Group 4). The regimen of systemic
chemotherapy « d of the conti intr injection
of 5-fluorouracil at 700 mgm ™ for 5 days (from Day 1 until Day 5)
and intravenous drip of cisplatin at 85 mgm* over 24 h on Day 6.
In patients with a poor renal function (24-h creatinine clearance
was 60mlmin~" or less), nedaplatin at 100mgm™ was adminis-
tered in place of cisplatin.

Radiation therapy

Radiotherapy was performed five times a week by irradiating 1.8-
2 Gy of photon beam in a fraction using a 6 MV linear accelerator.
The initial irradiation (irradiation method A) was performed five
times a week for 4 weeks at a radiation dose of 1.8-2 Gy (total
dose: 36-40 Gy). The latter half of irradiation (irradiation method
B) was performed five times a week for 3 weeks at a radiation dose
of 2 Gy (total dose: 26-30 Gy) (A + B: 66 Gy).

In the irradiation method A, using the bilateral opposing portal
irradiation method, 36-40Gy in 20 fractions was irradiated
between the primary lesion, the middle cervical lymph nodes,
and a 2 cm safety margin, whereas 36 - 40 Gy of photon beam was
irradiated between the lower cervical region and the supraclavi-
cular fossa using the anterior single irradiation method.

In irradiation method B, an area involving the tumour site on
the initial consultation and a 1 cm safety margin was established as
the planned target volume (PTV). The radiation dose for the spinal
cord was established as 40 Gy or less. In patients with tongue or
oral floor cancer in whom brachytherapy was possible, external
irradiation at a radiation dose of approximately 50 Gy or less was
combined with brachytherapy using a Cs needle or Au grain.

Arterial injection therapy

As previously reported (Fuwa et al, 2000), the anterior ear on the
affected side was incised under local anaesthesia to expose the
superficial temporal artery. During fluoroscopy, a thin catheter
was selectively inserted into the selected artery. When the lesion
involved the contralateral side beyond the median line, another
catheter was inserted in the contralateral side for bilateral arterial
injection. The target artery was the lingual artery in carcinoma of
the tongue, the facial artery in carcinomas of the floor of mouth,
the buccal mucosa, and Inwerg‘ilﬁivn and the maxillary artery in
carcinomas of the hard palate and upper gingiva.

When the tumour involved beyond the perfusion area by
selected arterial injection, or when severe arteriosclerosis made the
selective insertion of a catheter into the selected artery difficult, a
catheter was placed in the external carotid artery.

We confirmed that the extent of arterial injection covered the
tumour by a pigment, angiography, and MRI from 2001, in which
an extremely low dose of contrast medium for MRI was slowly
infused via a catheter for arterial injection.

This clinical trial was approved by the Ethics Committee of
Aichi Cancer Center Hospital.

Patient assessments

The treatment res was evaluated based on the MRI The
subjects consulted the outpatient clinic at 1-month intervals for 1
year after the end of treatment, at 2- to 3-month intervals in the
second and third years of follow-up, and at 3-5 month intervals
after 3 years of follow-up. Follow-up MRI was performed at 4- to
6-month intervals for 2 years after the end of treatment, and at
6- to 8-month intervals thereafter. Chest X-rays were performed
at 6- to 8-month intervals, and liver CT or echogram was
performed every year until 3 years after the end of treatment.
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