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Abstract: Various disciplines have benefited from the advent of high-performance computing
in achieving practical solutions to their problems, and the area of health care is no exception
to this. Non-linear signal-processing tools have been developed to understand the hidden
complexity of the time series, and these will help clinicians in diagnosis and trearment. Postural
study helps the elderly and people with a balancing problem due to various pathological
conditions. In elderly subjects, falls are common and may result in injury. Correct postural
balance is basic to well-being and it influences our daily life significantly.

These postural signals are non-stationary; they may appear to be random in the time scale
and it is difficult to observe the subtle changes for the human observer. Hence, more hidden
information can be obtained from the signal using non-linear parameters.

In this paper, ten young normal subjects are subjected to the balancing platform whose
acceleration is gradually increased from 1 m/s® to 5m/s® to study the postural response. The
ankle front-back acceleration and ankle pitch angular velocity sensor data were studied using
the largest Lyapunov exponent (LLE). The results show that for higher acceleration of the
platform the ankle movement follows a particular rhythm, resulting in a lower Lyapunov
exponent. During lower acceleration of the balancing platform, this value is higher because of
the random movement of the ankle. In this work, the pattern of the body response was studied
using LLE values for different accelerations using ankle data as the base signal for the normal

subjects,

Keywords:

1 INTRODUCTION

Balance aligns the bones with gravity so that the
muscles can be in maximum relaxation. Studies
indicate that 80 per cent of people in the USA suffer
from some form of postural problems (causing back
pain) in their lifetimes. This is in sharp contrast with
some other cultures around the world, where back
pain is present in less than 5 per cent of the
population [1]. Balance is a state of equilibrium. An
out-of-balance situation disturbs the mind in subtle
ways. Correct posture is directly related to a relaxed
aware ideal state of mind. Every movement that is

*Corresponding author: Electronic and Computer Engineering
Divisian, Ngee Ann Polytechnic, 535 Clementi Road, Singapore,
599489, Singapore. email: aru@np.edu.sg

Lyapunov exponent, sensor, knee, ankle, balance, acceleration, posture

made, from walking to diving, changes the centre
of gravity. The muscles exert force to re-establish
equilibrium,

The maintenance of balance is a complex physio-
logical process involving the interaction of many
body subsystems. Neuromuscular and musculoske-
letal subsystems are important for control of the
body position and motor output. Sensory system
components coordinate the information regarding
the body's position relative to gravity, environment,
and positions of body parts in relation to each other.

The importance of the biosignal analysis, which
exhibits typical complex dynamics, has been recog-
nized in the field of non-linear dynamics. Several
non-linear parameters have been proposed to detect
the hidden important dynamic properties of the
physiological phenomenon. These techniques are
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based on the concept of chaos, which has been
applied to many areas including the areas of
biomedical informatics. The theory of chaos has been
applied to the postural signals to study the postural
sway |2]. Efforts have been made to determine non-
linear parameters in rehabilitation, and it has been
shown that they are useful indicators of pathologies.
Cavanaugh er al. (3] have used the approximate
entropy to detect changes in postural control during
quiet standing in athletes with normal postural
stability after cerebral concussion effectively. Kine-
matic sensors, acceleromerers, and gyroscopes help
to monitor the long-term physiological signals related
to the postural study [4, 5]. Postural balance was
measured with the help of a force platform system in
four test conditions: normal standing with eyes open
and closed (both for 30s), semitandem (20s), and
tandem stand with eyes open (20s) [6]. The results of
the study indicate that the deterioration in balance
function starts at a young age and worsens further
from about 60 years onwards.

Body sway in a standing position with both legs for
30s, and for 10s during one-leg standing with eyes
open or closed alternating between left and right legs
(five times each), were studied using a stabilimeter (7).
The results indicate that the lower extremity muscle
power did not appear to be the dominant factor in
maintaining balance in these young subjects. Re-
cently, Stel er al. [8] have shown that significant
difference between the balance performances of
older fallers and non-fallers indicate that poor
balance abilities are found in fallers. Different
balance tests (clinical and laboratory) have been
studied to predict the postural stability in commu-
nity-dwelling older subjects [9].

Methods of non-linear dynamics, namely the Lya-
punov exponent, correlation dimension, and approx-
imate entropy, were used to analyse centre-of-pressure
(COP) data during different sitting postures [10].
Variability in human movement data can be analysed
by a linear method using power spectral analysis and
the non-linear method [11]. The nature of variability
present in time series generated from gait parameters
of two different age groups, namely the elderly and
young females, was studied using non-linear analysis
[12]. The elderly exhibited significantly larger Lyapu-
nov exponents and correlation dimensions for all
parameters evaluated, indicating local instability. The
linear measures also indicated that the elderly demon-
strated significantly higher variability.

Both the methods, i.e. stabilogram diffusion analy-
sisand detrended fluctuation analysis (DFA), were able
to identify differences between the postural stabili-

ties of control and elderly subjects for time series as
short as 55 [13]. In addition, measurements proved
to be reliable across testing sessions, with DFA the
more robust method for anteroposterior (AP) displace-
ment. The non-linear behaviours of the postural sig-
nals in young and elderly normal subjects were ana-
lysed by fractal dimension analysis using COP signals
[14].

The largest Lyapunov exponent (LLE) was esti-
mated to quantify the chaotic behaviour of postural
sway. COP data and AP displacements (stabilogram)
were obtained by static posturography tests per-
formed on control subjects (2, 15]. LLE values were
found to be positive, although close to zero. This
suggests that postural sway derives from a process
exhibiting weakly chaotic dynamics.

Recently, Han er al. [16] have used the COP
trajectories, Rényi dimension, and sway path to
classify the normal and balance disorder groups in
quiet stance. The COP was obtained using a force-
sensing mat. The complexities of centre-of-mass
(COM) and COP displacements in healthy elderly
subjects were analysed using fractal dimension ana-
lysis [17]. The subjects performed the test with eves
open and closed. The COP was measured using a
force platform while the COM was derived from
markers placed on the body using the Yeadon-
Morlock 14-segment human model.

In the above studies, the subjects stood on a non-
moving platform. However, in the real-world situa-
tion, people may be standing on a moving vehicle.
In this work, attempts were made to simulate this
situation using an accelerating platform.

Displacements of ankle data were analysed because
they fall into three distinct categories, namely angle,
hip, and step strategies; hence they would be expected
to give more varied results.

The objective of this project focused on improving
the quality of life for elderly subjects. One area
contributing to the quality of life is the ability to
perform daily activities including the use of public
transport. It is the intention to pursue these studies
in this direction in the next phase.

2 METHODOLOGY

In this project, normal subjects stood on a motorized
horizontal platform. The platform was then acceler-
ated in the posterior direction, continued to move
for a short interval at constant speed, and then
decelerated to rest. Accelerometers and rate gyro-
scopes attached to points on the body, and foot
pressure sensors were used to record the subjects’ res-
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Fig. 1 General layout of the equipment

ponse. During each trial, the subject’s initial posture
was checked to ensure that it was in accordance
to the standard posture. Then a signal was given to
the subject that the platform was about to move.
Within a delay time of 1-10s after the signal, the plat-
form moved. After the platform had stopped moving,
the initial posture and conditions were then resumed
and checked again before repeating the experiment
with different magnitudes of acceleration and delays
after the signal. The magnitude of acceleration and
delay were randomly applied and do not follow any
sequence. Figure 1 shows the layout of the equipment
used for this work.

2.1 The platform

The platform (Fig. 1) was controlled by a program-
mable logic controller (Keyence MV-1000) via a servo
amplifier (Keyence MV-41). The movement of the
platform was as follows.

1. The platform accelerated in the posterior direc-

tion for a fixed duration of 100 ms.

. The magnitude of posterior acceleration varies

from 0.2 m/s* 10 5.0 m/s? randomly executed.

3. After the posterior acceleration, the platform
continued to move ar a constant speed for a fixed
duration of 1000 ms.

4. After the constant-speed movement, the platform
was decelerated to a stop at a constant magnitude
of 1.0m/s?%

Mo

2.2 Posture and sensors

The initial posture was standing upright with arms
folded and eyes open. Three-axis accelerometer and

(,.5w) uopesajaady

. —

%0 20 0 B0 B0 1000 V20 a0 1600 1800 200
sample points

Fig. 2 Acceleration of the platform

three-axis rate gyro modules (Gyrocube O-Navi
23505) were attached to the ankle of the subject. A
similar module was attached to the platform to
measure its acceleration. The sampling rate was
1000 Hz.

2.3 The protocol used

The following measurement protocol was used. There
was measurement of all six linear and angular axes of
acceleration and angular velocity at the waist, knee,
and ankle, and the foot pressure map was also meas-
ured. Socks were worn by the subjects. Ten normal
male subjects, of age 22.4 4+ 2.3 years, participated
in the experiment.

The ethics committee of Chiba University has
approved the data for this research purpose. Written
consent was obtained from each subject before they
participated in this experiment.

2.4 State space reconstruction

Analysis of the signal depends on the successful
reconstruction of the state space of the underlying
process. There are a number of rigorous theorems
about the possibility to reconstruct a state space
from the signal. The reconstructed attractor from the
signal must preserve the invariant characteristics of
the original unknown attractor. This is achieved by
choosing an appropriate embedding dimension m
and delay time r, in the so-called delay coordinate
method. In the analysis an embedding dimension
m of 4 and delay t of 11 were obtained [18].
was evaluated using the actual murtual information
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Fig. 3 Estimation of the embedding dimension

method and m using the false nearest-neighbour
method. These methods are described below.

2.4.1 Estimation of the embedding dimension m

If the reconstructed attractor is projected to a lower
dimension than the original dimension, then certain
distant points may appear as false neighbours [19].
In a higher dimension these false neighbours may
appear as distant points. As the embedding dim-
ension is increased, the false nearest neighbours
(FNNs) may vanish or reach some acceptable level.
Hence, the FNN method is used to calculate the
optimum embedding dimension.

The criterion for evaluating each element y; in the
time series is to look for its nearest neighbour y,
in the m-dimensional space and to calculate the
distance |ly; — y)|l; D; is calculated, by increasing i,
according to

- ‘.Via-l—y;-a—1|

D=
Hy;—y,H

(1)

There will be FNNs, if D, exceeds some threshold
value D, The criterion which considers that the
embedding dimension is sufficiently high is that the
number of points verifying that D; > D, is zero or at
least sufficiently small. The algorithm is sensitive to
the choice of D,. The graph of FNN versus increasing
embedding dimension is a monotonically decreasing
graph. The optimum embedding dimension usually
can be found near the crossing of the 30 per cent
threshold. The embedding dimension is the value

for which there will be no FNN or a value within
the acceptable level. In this case, m was obtained as
4 and D; was chosen as 11. Figure 3 shows the
estimation of the embedding dimension for the data
using the FNN method.

2.4.2 Estimation of the delay time t

A one-to-one embedding can be obtained for any
value of the delay time = > 0 for an infinite amount of
noise-free data. However, values of r that are both
too small and too large will cause failures of the
reconstruction in the case of the observed finite
noisy time series. The optimal 1 is determined using
the mutual information function I(z) [20]. The idea is
that a good choice for  is a value that, given the state
of the system x(n), provides maximum new informa-
tion with measurement at x(n+1).

The mutual information function evaluated for the
present data between two instants n and n+7t is
given by

N _ P(x{n), x(n+1))
I(x)="S" P(x(n). 108; |5 i
(1) %1 (x(n), x(n+r7))log, Px(n))P(x(n+1))

(2)

where P(x(n), x(n+ 1)) are the probabilities of observ-
ing x(n) and x(n+ 1), P(x(n)) is the probability of x(n).

I(z) becomes zero when x(n) and x(n+ 1) are indep-
endent. A graph of I(r) versus t is used to calculate
the optimum delay time. {7} is the maximum for
t=0 as x(n+0) = x(n). As 7 is increased, I(r) decrea-
ses and then increases again. The value of the time
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Fig. 4 Estimation of the delay using average mutual information

delay where I(z) reaches its first minimum is the op-
timal t for use in state space reconstruction [20].
The mutual information function for the present
data is given in Fig. 4. It can be clearly seen that
the mutual information I(z) reaches its first minim-
um at r=11. Hence the optimal embedding delay
Tope is determined using the mutual information func-
tion in this study. In this work, a time delay of 11 was
obtained.

2.5 Largest Lyapunov exponent

The Lyapunov exponent + is a quantitative measure
of the sensitivity to the initial conditions. It indicates
the average rate of divergence of two neighbouring
trajectories. The time-domain signal is embedded in
the phase space and analysed in that space. / gives
the measure of the exponentially fast divergence or
convergence of nearby orbits in phase space. There-
fore, the existence of a positive 7 for almost all initial
conditions in a bounded dynamic system is a widely
used definition of deterministic chaos. Lyapunov
exponents are usually used to distinguish between
chaotic dynamics and periodic signals. A negative
exponent implies that the orbits approach a com-
mon fixed point. A zero exponent means that the
orbits maintain their relative positions; they are on a
stable attractor. A positive exponent indicates that
the orbits are on a chaotic attractor.

The algorithm proposed by Wolf et al. [21] is used
to determine the LLE. For the acceleration data,
x(1) for m-dimensional phase space with a delay
coordinate t that is a point on the attractor is giv-
en by {x(1), x(t+71), x(t+21), ..., x{t+(m— 1)1]}. The

nearest neighbour to the initial point [x(fy), x(fy+1),
XLy +21), .ous Xllo+(m — 1)1} is located. Let P(ty) be
the distance between these two points. At a later
time f;, the initial length will evolve to a length P'(r)).
The mean exponential rate of divergence of two
initially close orbits is characterized by

(3)

A=

N [ P(ty)
IN— fok Prtg_y)

The maximum positive / is the LLE. In this work, the
total length N of the acceleration data is 2000.

2.6 Surrogate data

The purpose of surrogate data is to test for any non-
linearity in the original data. This concept of
surrogate data analysis was introduced by Theiler
et al. [22]. It can be obtained by phase randomizing
the original data. The mean, variance, autocorrela-
tion function, and power spectrum are the same as
those of the original data, with altered phase compo-
nent. The random phase spectrum can be obtained
by the following methods.

1. Random phase. The phase values of the Fourier-
transformed signal are chosen randomly,

2. Phase shuffle. The phase values of the original
spectrum are used in random order.

3. Data shuffle. The phase components of the original
spectrum are used in random order and the
sorted values of the surrogate data are substituted
by the corresponding sorted values of the refer-
ence sequence additionally.

JEIM454 © IMechE 2009
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Fig. 5 Typical response, 1.0m/s® (FB, front-back; UD, up-down)

Surrogate data were obtained by Fourier decom-
position with the same amplitudes as the empirical
data decomposition but with random phase com-
ponents. This was achieved using the chaos data
analyser [23]. Ten sets of surrogate data are gener-
ated for each person. The LLE is obtained for both
the original and the surrogate data sets. It was
found that the LLE for the surrogate data and that
for the original data differ from each other by more
than 58 per cent. This rejects the null hypothesis
and hence the original data contain non-linear feat-
ures.

3 RESULTS

The subject's response can generally be classified
into three categories: first, no lifting of the soles;
second, lifting of the soles; and third, stepping
of the feet. Figures 5, 6, and 7 show the responses
of a typical subject to acceleration magnitudes of
1.0m/s% 4.0m/s% and 4.8 m/s” respectively. Only the
acceleration of the ankle in the front-back (dark grey
curve) and up-down (light grey curve) directions are
shown.

Table 1 shows the results of the LLE for ten
subjects for ankle front-back acceleration and ankle
pitch rate. Figure 8 shows the graph of Lyapunov
exponent versus the acceleration magnitude.

The LLE quantifies the sensitivity of the system to
initial conditions and gives a measure of predict-
ability. This value decreases in various ranges with
increase in the acceleration speed of the balance
platform, indicating that the signal becomes less
chaotic for normal subjects. The LLE corresponding
to the ankle pitch rate and ankle front-back accel-
eration decreases with increase in the speed of the
balancing platform.

4 DISCUSSION

From the raw data shown in Figs 2, 5, 6, and 7, it is
casily apparent that at low acceleration magnitudes,
only slight movement of the ankle occurs. During
moderate acceleration magnitudes, there is greater
ankle movement, and they occur over the entire
period when the platform is moving. At high accel-
eration magnitudes, the ankle movement is very
drastic, and it occurs only near the latter half of the
platform movement.

Table 1 shows the values of LLE for different
acceleration speeds of the balance platform. It was
noted that the ankle front-back acceleration shows a
clear decrease in the trend for the rise in the
acceleration speeds.

The ankle sensor parameters (LLE) decrease as the
accelerarion magnirude becomes greater, and in-
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Fig. 7 Typical response, 4.8 m/s” (FB, front-back; UD, up-down)

creases slightly when the magnitude is less. This is
because, when the magnitude is greater, the ankle
moves more quickly in a particular rhythmic fashion.
Therefore, these values will be smaller. However,
when the acceleration magnitude is low, there is

more random movement and hence these values will
be slightly higher.

It is hypothesized that the drastic ankle movement
(stepping) at high acceleration magnitudes have a
hidden pattern and depend on the athletic ability of

JEIM454 @ IMechE 2009
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Graph of Lyapunov Exponent vs Magnitude of Acceleration
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Fig. 8 Graph of the LLE versus the acceleration magnitude

the subject. The reason is that the subject will try to
avoid falling as much as possible, exerting maximum
effort. Hence the cadence of the stepping will be at
the subject’s ‘favourite’ pace.

For low acceleration magnitudes, fluctuations in
ankle signals occur immediately after the accelera-
tion. These are more random and hence result in
higher LLE values,

The correlation dimension and the LLE studied on
a time series of stabilograms showed distinct values
in healthy subjects and Parkinsonian subjects [24],
Ohtaki er al. [25] have studied the Lyapunov expo-
nents of young and elderly subjects, and of groups
before and after exercise intervention. Experimental
results demonstrated that exercise intervention im-
proved the local dynamic stability of walking. During

Table 1 Average LLE of ten subjects for ankle front-back acceleration and ankle pitch angular velocity

Acceleration magnitude (m/s®)

Ankle front-back acceleration (m/s*)

Ankle pitch angular velocity (degree/s)

1.0 0.1936 + 0.001 26

1.2 0.2348 + 0.001 144
1.4 0.2028 + 0.002 954
1.6 0.1924 + 0.000516
1.8 0.2274 + 0.000 665

2.0 0.1952 + 0,000 349
2.2 0.1692 + 0.001774
24 0.2056 + 0.000 572
2.6 0.1736 + 0.000 68

28 0.1878 + 0.002233
3.0 0.1526 + 0.003 098
32 0.1582 + 0.002 545
34 0,1356 + 0.004318
3.6 0.1484 + 0.003514
3.8 0.142 + 0.004 707
4.0 0.1508 + 0.003 807
4.2 0.132 + 0.002 526
4.4 0.1104 + 0.000 302
1.6 0.1162 + 0.000 898
4.8 0.1208 + 0.000 166
5.0 0.1336 + 0.001 243

0.2034 + 0.001 012
0.1974 + 0.000 684
0.184 + 0.001 314
0.1972 + 0.000 104
0.1934 + 0,000 887
0.1642 + 0.000 285
0.1668 + 0,001 184
0.1734 + 0.000 888
0.1418 + 0.000087 2
0.1426 + 0.003 489
0.116 + 0.002 078
0.1288 + 0.000 283
0.118 + 0.000918
0.1318 + 0.001 405
0.1324 + 0.001 019
0.13 + 0.000477
0.128 + 0.001 059
0.1058 + 0.000 846
0.123 + 0.000 454
0.1256 + 0,000 254
0.1226 + 0.000299

Proc. IMechE Vol. 223 Part H: |. Engineering in Medicine

JEIM454 © IMechE 2009



Analysis of body responses by the LLE method 119

quiet standing, the human body continually moves
about in an erratic and possibly chaotic fashion. It
has been shown that postural sway is indistinguish-
able from correlated noise and that it can be mod-
elled as a system of bounded correlated random
walks [26]. The results suggest that the postural con-
trol system incorporates both open-loop and closed-loop
control mechanisms.

In this moving-platform experiment, at low accel-
eration magnitudes, the ankle movements are expec-
ted to be random, to maintain balance, and thus to
confirm the findings. At high magnitudes, the ankle
movements are less variable: first, before stepping
occurs, they depend on the ‘natural frequency’ of
the subject leaning back and forth in an oscillatory
manner; second, after stepping occurs, they depend
on the ‘natural frequency’ of the lower limbs and
muscles, the subjects steppingat their favourite caden-
ces. The present authors intend to continue this
work by analysing the cadences of the same subjects
on a treadmill to find their most efficient pace.

In this work, the responses of the ankle signal due
to the movement of the acceleration platform have
been analysed. The concept can be applied to ana-
lyse the quality of life of elderly subjects to perform
their daily activities including the use of public tran-
sport.

5 SUMMARY

This work is focused on the application of a proper
non-linear technique to analyse the complexity of
postural signals. The surrogate data analysis ap-
plied to the data exhibited the deterministic and
non-linear nature of the signals. The results of a
force platform balance test suggest that the LLE for
ankle front-back and ankle pitch rate decreases
with increase in the balance platform acceleration.
The proposed method was able to quantify the res-
ponse of ankle signals to the external force (acceler-
ation).
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