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DM-related cognitive decline, the factors associated with
this condition must first be determined. In the present study,
we investigated factors associated with cognitive impairment
in elderly DM subjects using baseline data from a large-scale
cohort study of elderly DM in Japan.

2. Methods
2.1. Participants

The I-EDIT study was initiated in 2001 as a prospective
intervention study of elderly Japanese people with DM for
the purpose of determining how to prevent several diabetic
complications. One thousand one hundred and seventy-three
diabetic subjects were enrolled in 39 institutes and hospitals
in Japan. They were all aged 65 years or more and had serum
HbAlc levels at least 7.5%, or at least 7.0% with one of the
following comorbidity factors: hypertension (130/85 mmHg
and over), obesity (a body mass index (BMI) of at least 25),
dyslipidemia (total cholesterol of at least 200 mg/dl, low-
density lipoprotein (LDL) of at least 120 mg/dl, high-density
lipoprotein (HDL) of 40mg/dl or less, and/or triglyceride
of at least 150 mg/dl). Although no exclusion criteria were
determined for the registration of JEDIT, severely demented
subjects were not selected because the filling out of several
questionnaires was mandatory.

The study protocol was approved by the ethical committee
in all of the enrolled institutes, and written informed consent
was obtained from each patient.

2.2. Functional assessment

The Mini Mental State Examination (MMSE) was admin-
istered 1o most patients (907 of 1173) upon registration
(Folstein et al., 1978). The MMSE is a global test of ori-
entation, attention, calculation, language and recall with a
score of 0-30.

Of the 1173 enrolled cases, MMSE scores were not col-
lected in 266; data sheets were not retumed n 48, subjects
dropped out just after registration in 35, and doctors did not
perform MMSE in 183.

Basic activities of daily living (BADL) was measured by
a Barthel Index score of 0-20 (Mahoney and Barthel, 1965),
and depressive mood was assessed by a short version of the
Geniatric Depression Scale (GDS-15) (Yesavage, 1986).

2.3. Assessment of diabetes mellitus, complications and
comorbidities

The diagnosis and patient data regarding DM, blood exam-
inations and complications were obtained from clinical charts
(The Expert Committee, 2003). After overnight fasting, blood
samples were taken by venipuncture to assess serum levels
of glucose, HbAlc, total cholesterol, triglyceride and HDL
cholesterol. Additionally, serum insulin concentrations were
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determined in patients who were not receiving insulin ther-
apy. Diabetic nephropathy was assessed according to the
mean urinary albumin-to-creatinine ratio (ACR) and was
classified as no nephropathy (ACR < 30 pg/mg) or existence
of nephropathy (microalbuminemia: 30 ACR <300 pg/mg or
more advanced). Diabetic retinopathy was assessed by fun-
doscopic examination performed through dilated pupils by
experienced ophthalmologists, and was classified into two
categories: mild (no retinopathy or intraretinal hemorrhages
and hard exudates), or sernious (soft exudates, intraretinal
microvascular abnormalities, venous calibre abnormalities,
venous beading, neovascularization of the disc or other arcas
in the retina, preretinal fibrous tissuc proliferation, pre-
retinal or vitreous hemorrhage, and/or retinal detachment).
Diabetic neuropathy was defined as either the loss of the
Achilles tendon reflex without neuropathic symptoms includ-
ing paresthesia, or the presence of neuropathic symptoms.
Macrovascular complications were classified based on the
presence or absence of coronary artery diseases, and/or a his-
tory of stroke. The existence of a current regular occupation
and current habits of smoking, drinking and exercising were
also assessed by questionnaire as yes (1) or no (0).

2.4. Statistical analysis

The subjects were divided into two groups, one with higher
cognitive function, defined as having an MMSE score of
24 or more, and one with lower cognitive function, defined
as having an MMSE score of 23 or less, according to the
review by Tombaugh and McIntyre (1992). The groups were
compared with respect to each factor by the Student’s r-test
for continuous variables or a x-test for categorical vari-
ables. Logistic regression analysis including each factor as
an explanatory variable was performed to search the associ-
ation of the covariants and cognitive dysfunction indicated
by an MMSE score below 24 after adjusting for age. Then,
multiple logistic regression analysis was performed with the
variables selected by this analysis and additional variables
of interest. Spearman’s rank correlation coefficient was cal-
culated to confirm the relationship between serum albumin
levels and MMSE scores.

3. Results

The background characteristics of the two MMSE score
groups are shown in Tables | and 2. The average age was
74.0 years old in the lower MMSE-score group (23 and less)
and 7.8 years old in the higher MMSE-score group (24 and
more) (Table 1). The average HbAlc and FBG levels in the
higher MMSE score group and lower MMSE score group
were 8.0% versus 8.1% and 5.1 mmol/l versus 5.0 mmol/,
respectively (Table 1). At least about half of the participants
had microangiopathic complications (nephropathy, retinopa-
thy, or neuropathy) as shown in Table 2.
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Table 1 Table 3

Analysis by Studant's +-test =* Univariste regression analysis adjusted with age

ltem Higher Lower p-Value Ddds ratio 95% C1 p-Value

Number 848 59 Height (cm) 0959 0.928-0.992 00138

Age (years) TIBx46 74051 <0.001 Gender (male) 1212 0.714-2.126 0.453

DM duration (years) 163297 1T1+88 0.545 HbAlc (%) 103 0.779-1369 0.822

Height (em) 155884 1523 £8.6 0.002 Systolic blood pressure 1.005 0.988-1.021 0.576

Body weight (kg) 57.9£102 51788 0.o71 (mmHg)

BMI 2B3.8+3S 19+32 0.874 Diastolic blood pressure 1.7 0.990-1.044 0.230

HbAlc (%) 8.0x09 [ REIBI 0.766 (mmHg)

FBO (mmol/) 5103 5005 0.234 Albumin (g/dl) 032 0.163-0.637 0.001

Systolic BP (mmHg) 1354156 13331193 0.351 History of 1128 1.735-5.637 <0.001

Disstolic BP (mmHg) 749405 764112 0.288 cerebrovascular diseass

LDL cholesterol (mg/dl) 120.9 £ 30.6 1262£35.7 0.201 Existence of nephropathy 1877 1.079-3.264 0.026

HDL cholestzrol (mg/dl) 56.4%18.0 57.7%184 0.567 Existance of retinopathy L7130 0.998-2.997 0.051

Triglyceride (log) 47+£05 46205 0.353 Existence of neuropathy 1.369 074223517 0315

Lp (2) (mg/dl) B14+229 259+05 0.362 Existence of current 0.458 0.287-0.863 0.013

Albumin (g/dl) 42404 41£05 0.001 ocrupation

MMSE BSE18 203£3.0 <0.001 Current drinking habit 0527 0.287-0.968 0.039

ADL 199£34 189£1.0 <0.001 Current smoking habit 0.544 0.305-0.968 0.038

GDS-15 40x3.1 59+19 <0.001 GDS-15 1.166 1.080-1.259 <0,001
ADL 1.019 0.998-1.042 0.0810

Higher: the group with higher MMSE scores (24 or more), Lower: the group
with jower MMSE scores (23 or less).

Analysis by Student’s t-test showed that age, height, activ-
ities of daily living (ADL) scores, and serum albumin were
significantly different between the two groups of patients
(Table 1). A history of cerebrovascular disease, existence of
diabetic nephropathy, current smoking babit, current drink-
ing habit, and absence of occupation were also demonstrated
to have a significantly different distribution between the two
groups (Table 2). Fasting serum insulin levels or insulin treat-
ment were not significantly associated with MMSE scores.

To determine variables significantly associated with cog-
nitive dysfunction, logistic regression analysis adjusted for
age was performed. The variables selected by this analysis
were age, body height, serum albumin, the existence of an
occupation, smoking habits, drinking habits, the existence of
nephropathy, GDS-15 scores and history of cerebrovascular
disease (Table 3). Then, multiple regression analysis was per-
formed with all these significant variables plus variables of

Table 2
Analysis by f-test

Higher Lower p-Value

Male 459(389)  40.0(23) 0.304
Existence of current occupation 672(552) 474021 0.002
Existence of exercise habit 61.1 (497) 483 (28) 0,055
Current drinking habit 40.4 (343) 254 (15) 0.017
Cument smoking habit 46.5 (383) 31.0(18) D.022
Existence of nephropathy 485(411) B44(38) 0.018
Existence of retinopathy 4BB(413) 608(35)  0.088
Existence of neuropathy 65.5(544) 732(41) 0.241
User of antibypenensive drugs 552(468) 627(370) 0.261
User of antidyslipidemic drugs 388 (329) 424(25)  0.586
Antiplatlet user 269 (127T)  492(2%)  <0.001
Presence of [HD 17,6 (149) 163 (%) 0.650
Histnry of cershrovascular disease 126 (107) 322(19) «<0.001

Higher: the group with higher MMSE scores (24 or more). Lower: the group
with lower MMSE scores (23 or less). Dam are expressed as percentages of
the total with the number in parentheses.

95% CI: 95% confidence interval

Table 4
Multiple logistic regression analysis
Odds ratio  95% C1

p-Value

Age (years) 1.079 1.011-1.150 0.021
Height (cm) 0.954 0.905~-1.006 0.083
Gender (male) 0.429 0.139-1323 0.141
Albumin (g/dl) 0.336 0.174-0.745 0.006
HbAle (%) 0.965 0,703-1.325 0.828
Histary of cerebrovascular disease  3.011 1.578-5.748  <0.001
Existence of nephropathy 1.679 0913-3089  0.09
Existence of current occupation 0.725 0.348-1.368 0321
Current smoking habit 0.516 0.223-1.195 0.123
Current drinidng habit 0.601 0.274-1315 D.202
GDS-15 scores 1.139 1.045-1.243 0.003
95% CI: 95% confidence interval

interest (HbA l¢ and gender) considered simultaneously. As
shown in Table 4, higher age, higher GDS-15 scores, lower
serum albumin and a history of cerebrovascular disease were
significantly associated with the group having lower MMSE
scores.

MMSE scores and serum albumin levels were sig-
nificantly correlated based on Spearman’s correlation
{coefficient=0.14902, p <0.001).

4. Discussion

The analysis of the data from the J-EDIT study at registra-
tion demonstrated that a history of cerebrovascular disease, a
low serum afbumin Jevel, higher GDS scores, and higber age
were independently associated with lower cognitive fanction.

The present study demonstrated that in DM subjects, the
strongest risk factor for cognitive dysfunction as defined by a
MMSE score less than 24, which is considered to be the level
defining dementia (Tombaugh and Mclntyre, 1992), was a
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history of stroke. Although the causes of cognitive dysfunc-
tion were not determined in the present study, vascular lesions
might play a prominent role in the cognitive decline of DM
subjects with a history of stroke. Furthermore, Snowdon et
al, report that among subjects who met the neuropathologi-
cal criteria for Alzheimer's disease, those with brain infarcts
had poorer cognitive functions and a higher prevalence of
dementia (Snowdon et al., 1997); thus, cerebrovascular dis-
ease might shorten the period of preclinical dementia. In the
current study the participants were all Japanese, a race which
is relatively prone to cerebrovascular diseases (Kitamura et
al., 2006). The prevalence of a history of stroke in the current
study was 13.9% (126 out of 907 participants), much higher
than the 1.8% reported by Kuusisto et al. (1994) in Finland,
and comparable to 18.8% in PROACTIVE, a secondary pre-
vention study for macrovascular disease in diabetic patients
performed in European countries (Charbonnel et al., 2004),
Thus, the higher stroke prevalence might have affected the
results of the current study.

Lower levels of serum albumin, even within the “nor-
mal” range, are associated with increased risks of stroke
and coronary heart disease incidents as well as all-cause and
cardiovascular monality (Shaper et al., 2004). Of particu-
lar interest are several lines of evidence demonstrating that
chronic inflammation is involved in atherosclerotic mech-
anisms, and high-serum proinflammatory factors including
c-reactive protein, intereleukin-6 and tumor necrosis fac-
tor have been reported to be risk factors for progressed
atherosclerosis; these proinflammatory factors reportedly
suppress the synthesis of albumin in the liver (Chojkier,
2005). The present results indicate that lower serum albumin
and a history of cercbrovascular disease are indepen-
dent factors associated with cognitive decline. However,
asymptomatic strokes may also be involved in the mech-
anism of cognitive impairment in elderly diabetic patients
(Araki and Ito, 2002). Although lower serum albumin was
strongly associated with cognitive decline, mean urinary
ACR was not associated with MMSE scores (data not
shown).

The scores of GDS-15, which assessed depressive mood,
were significantly associated with lower MMSE scores, The
association of a depressive mood with cognitive dysfunction
has been reported (Jorm, 2000). However, the mechanism
of this association remains to be elucidated (Jorm, 2000).
Cognitive dysfunction and depression may share common
risk factors, depression may be a risk factor or prodrome
of cognitive dysfunction, depression may affect the thresh-
old of cognitive dysfunction, or depression may be a causal
factor in cognitive dysfunction. Further analysis of lon-
gitudinal data of JEDIT study may shed light on this
subject.

Many population-based and clinical studies have shown
that DM is associated with cognitive decline in the elderly
(Cukierman et al,, 2005; Mogi et al., 2004; Strachen et
al., 1997). Several hypothetical mechanisms have been
suggested for this impairment; however, their clinical rele-

vance is unclear (Biessels et al., 2006). The J-EDIT study
was an interventional prospective study with a random-
ized control design. Longitudinal clinical and cognitive
assessment of elderly diabetic patients will provide more
information on the mechanisms of DM-related cognitive
disorders.

Some limitations should be considered in the present case.
First, the present study was performed with cross-sectional
design using the data obtained at registration for the J-EDIT
study, The patients are being followed longitudnally, and a
follow-up analysis will be reported in the future. Second,
because all of the patients enrolled were diabetic, it was
not clear whether or not the results of the present study
were diabetes-specific, In particular, the involvement of low
serum albumin in the mechanism of cognitive decline in
non-diabetic elderly patients should be investigated. Third,
the present study did not include brain imaging. A subgroup
analysis of J-EDIT subjects who underwent brain magnetic
resonance imaging (MRI) was recently reported elsewhere
(Akisaki et al., 2006), and revealed that cognitive decline in
diabetes was associated with white-matter hyperintensities
and subcortical atrophy in the tested subgroup. However, the
relationship between the present results and the results of
MRI analysis requires further investigation.

In the present study, neither DM-specific clinical indices
including HbA 1¢, fasting blood glucose and serum insulin
level, nor DM-related microangiopathies (nephropathy, neu-
ropathy, and retinopathy) were associated with lower MMSE
scares. The J-EDIT study recruited patients with relatively
severe DM status, and this group of patients therefore did not
represent the general population of elderly diabetics. The cni-
teria for diagnosis for microangiopathy in the present study
were relatively simple. Retinopathy has been reported as
being associated with cognitive impairment or brain atrophy
(Musen et al., 2006;: Wong et al., 2002); proteinuria, which
is a symptom of diabetic nephropathy, has received atten-
tion as a risk for stroke and ischemic heart disease (Madison
et al., 2006); dysfunctions of the central and peripheral ner-
vous systems may share a common pathogenesis (Gispen
and Biessel, 2000; Suzuki et al., 2006). Further investiga-
tion of subjects with a broader clinical background and more
sensitive diagnostic criteria for DM-related microangiopathic
complications is required.

In conclusion, based on the results obtained in the
current cross-sectional assessment, the prevention of cere-
brovascular disease may be a primary way of preventing
cognitive decline in elderly DM subjects. An investigation
of how lower serum albumin levels are associated with DM-
related cognitive impairment may lead to the development
of effective strategies for the prevention or treatment of this
decline.
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It is well known that the central nervous system (CNS) is vulnerable to
hypoglycemia and hyperglycemia. Insulin is indispensable for serum glucose control
and diabetes patients are on the relative or absolute deficient state of insulin. The role
of insulin on the CNS, however, has not been fully elucidated, yet. To reveal the role
of insulin on the neuronal survival, we have used in vitro system of an organotypic
hippocampal slice culture from rat, and examine the neuronal cell death at the various
glucose concentrations in the presence or absence of insulin. When glucose
concentrations is varied to 0, 1, 3, 5 and 30mM in the incubation medium, the neuronal
cell death was minimum at SmM, and no neuronal survival was observed under ImM
on the CAl. On the dentate gyrus granule cells (DG), on the other hand, the
significant neuronal survival was observed even as low as ImM. In the presence of
1nM concentration of insulin, the neuronal cell death curve showed the U-shape, and
the minimum death point was 3-SmM glucose concentrations at the CAl. At the DG,
insulin did not show the protective effect up to 48 hours culture regardless of glucose
concentration. In the absence of glucose, insulin accelerated the neuronal cell death
both in the CA1 and DG. We concluded that insulin has a double-edged effect on the
neuronal cell death dependent on glucose concentration, and that the CAl and the DG
have a different sensitivity to insulin in terms of cell survival.

It has been well known that the central nervous system is vulnerable to hypoglycemia.
Insulin regulates a blood glucose level and its deficiency causes diabetes. An action of
insulin on the central nervous system has not been enough elucidated, yet. Recent reports
have suggested that the type 2 diabetes is one of the risk factors for the decay of cognitive
function and the blockade of insulin signal cascade may be involved for its pathology (17, 21,
22). And after ischemic events, insulin acts directly on the brain to reduce ischemic brain
necrosis independent of hypoglycemia (26). Hypoglycemia causes lethal consequences
during insulin treatment. Clinically, it is mandatory to avoid nocturnal hypoglycemia
especially in case of treating elderly and the typel diabetic patients, and it is known that 2 to
4% of the typel diabetic patients die by an excess of insulin administration (15). The harm
effects of hypoglycemia, therefore, are well known and the protection method is mainly to
keep blood glucose in adequate levels. The insulin action per se during hypoglycemia
against the CNS, however, is merely understood.
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In this paper, we examined the direct action of insulin on the neuronal cell death at a
variety of glucose concentrations by using cultured hippocampal slices. Our experimental
results suggested that the CNS damage during hypoglycemia would exaggerate by insulin
therapy itself and the caution may be necessary not only the glucose levels but also the
insulin therapy itself during hypoglycemia.

MATERIALS AND METHODS

The experiments were conducted according to the guidelines for animal experimentation
at the Kobe University School of Medicine, and conform to the relevant National Institution
of Health guidelines.

Preparation of organotypic hippocampal slices

Hippocampal slices were made from the septal half of the hippocampus using a standard
method (20). Briefly, 9- to 11-days Wistar rats (Hartley, SLC, Japan) were anesthetized
with 98% diethyl | ether and decapitated. The hippocampus were rapidly dissected at
4-6 °C and cut into 450um slices using a Mclllwain Tissue Chopper (Mickle Laboratory
Engineering Co., Ltd, UK). Slices were then transferred onto membranes (pore diameter:
30um, Millicell-CM, Millipore, Bedford, MA, USA), and placed into a six-well microplate
(Costar Coming Inc, NY, USA) with ImL of slice culture medium per well. The culture
medium contained 50% Eagle’s minimal essential medium (MEM) (Gibco, CA, USA), 25%
Hanks’ Balanced Salt Solution (HBSS)(Gibco, CA, USA), 25% heat-inactivated horse serum
(Gibco, CA, USA) containing 1% penicillin/streptomycin. The medium was changed every
3 days. Slices were kept in culture for 14 days before study and the six-well microplates
were stored at 37 °C in a 5% CO2 incubator under a 95% humidity atmosphere (Sanyo,
Tokyo, Japan).

Treatment of hippocampal slices

Slices in the six-well microplates at day 14 were washed, and the basic medium was
replaced with various agents for the treatment. The basic medium contained 90mM NaCl,
4mM KCI, 0.1mM MgCI2, 0.ImM KH2PO4, 0.5mM MgSO4, 0.1mM Na2HPO4, 0.5mM
NaH2PO4, 14mM NaHCO3, 1.2mM CaCl2, 10mM glucose, about 2mM essential and
non-essential amino acids, and 0.02mM vitamins. In order to investigate the changes in
neuronal toxicity due to the glucose concentration, various glucose concentrations (0mM,
ImM, 3mM, SmM, and 30mM) were added to the medium that was used to treat the slices.
Moreover, the change in the neuronal death rate was investigated both with and without
insulin loading at a concentration of 1nM. (insulin: Humulin® R, Eli Lilly, Indiana, USA)
Assessment of cell death in hippocampal slices

The, propidium iodide (PT) method was used in the assessment of neuronal death in
hippocampal slices at 24h, 48h, and 72h after each treatment in the CAl and the dentate
gyrus granule cells (DG) of the hippocampus. To label the nuclei of dead neurons,
4.6ug/mL of Pl (Sigma, St. Louis, Mo, USA) was added to the wells of the culture
microplates for 15min. Pl is a polar compound that only enters cells with damaged cell
membranes, where it binds to nucleic acids within the cells and develops a bright red
fluorescence. The dye is basically non-toxic to neurons, and is used as an indicator of
neuronal integrity and cell viability (11). Thus the intensity of fluorescence correlates with
the cell death fraction. After 15 min, digital images of the PI fluorescence were obtained
with an inverted fluorescence microscope (4xobjective) equipped with a digital camera
(Olympus [X70, Tokyo, Japan). After the final image, all the neurons were killed by
adding 10 x M N-methyl-D-aspartic acid (NMDA) and the final PI fluorescence intensity was
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calibrated as 100% cell death. The mean intensity (green values) of the PI fluorescence
were measured using an image program MacScope (Ver 2.6.1, Mitani Inc, Osaka, Japan).
Statistical analysis

Values were expressed as mean + standard error of the mean (SEM) from three
independent experiments. The statistical significance was established by ANOVA followed
by a post-hoc test, and then the non-paired t-test was employed using StatView software
(v.5.0.1.0; SAS Institute Inc., Cary, NC, USA). p<0.05 was considered to be statistically
significant.

RESULTS

CA1 neuronal cell death in the presence or absence of serum

Serum is widely used for maintenance of cultured neuronal cell viability. To know the
extent of nerve protection effects of serum in our experimental settings, the neuronal cell
death was evaluated in the presence or absence of the heat inactivated horse serum (Gibeo,
CA, USA) in the culture medium. The glucose concentration in the medium was kept at
30mM, the concentration that is usually commercially available. After 72 hour culture, the
neuronal cell survival was better in the presence of serum (n=30) in comparison with the
absence of serum (n=11) and the cell death rate was 22.7+63% and 40.862%,
respectively (non-paired t-test; p<0.05) (Fig.1) .
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Fig. 1. CA1 neuronel cell death in the presence or absence of serum,

The glucose concentration in the medium was kept at 30mM, the concentration that is usually
commercially available.  Afier 72-hour culture, the neuronal cell survivel was betier in the presence of
serum (n=30) in comparison with the absence of serum (n=11) and the cell death rate was 22.746.3%
and 40.8£6.2%, respectively (*: non-paired t-test; p<0.05.)
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The CAl neuronal cell death during low glucose

The difference in cell death rates was examined in various glucose concentrations (0mM,
1mM, 3mM, SmM, and 30mM) under the environment lacking serum on the CAl pyramidal
cell. Glucose 0mM (n=9) and ImM (n=14) resulted prominently high cell death rates after
48 hour culture and the cell death rates were 37.0+6.5% and 33.7£7.4%, respectively. After
72 hour, the rate further increased and the each rate was 83.6+ 4.9% and 92.9+12%,
respectively. The cell death rates showed the U-shaped curve against the glucose
concentrations and neuronal cell death was minimum at SmM glucose (n=9) (Fig.
2)(One-way ANOVA; p<0.0001, Scheffe’s F test; p<0.01).
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the environment lacking serum on the DG granule cell.
maximally at 0OmM glucose and the cell death rate after 48 hours was 59.2=5.3%.

The cell death rates increased

The DG

granule cell was kept relatively well alive even in ImM glucose condition and the death rate

after 48 hours was only 14.5 = 5.0%.

The cell death rates did not show the U-shaped curve

against the glucose concentrations and neuronal cell death was most inhibited at 3mM
glucose (one-way ANOVA; p<0.0001, Scheffe’s F test; p<0.01) (Fig. 3).
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Fig. 3. The DG granule cell
death during low glucose.

Various glucose concentrations
(0mM, ImM, 3mM, 5mM, and
30mM) under the environment
lacking serum on the DG
granule cell.  The cell death
rates increased maximally at
OmM glucose and the cell death
rate  after 48 hours was
59.245.3%. The DG granule
cell was kept relatively well
gdlive even in 1lmM glucose
condition and the death rate
after 48 hours was only 145 +
5.0%. The cell death rates did
not show the U-shaped curve
against the glucose concentrati-
onns and neuronal cell death
was most inhibited ar 3mM
glucose (one-way ANOVA;
p<0.0001, Scheffe’'s F test;
p<0.01) (Fig. 3).
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CA1 neuronal cell death in the presence or absence of insulin

The difference in the cell death rates on the CAl pyramidal neuron was examined in the
presence or absence of 1nM insulin during treatment with a variety of glucose concentrations
(0mM, 3mM, and 30mM). In the presence or absence of insulin at 3mM glucose, the
observed cell death rates after 48 hours were 10.3%1.2% and 38.129.1%, respectively, and
after 72 hours were 22.4+3.8% and 54.5+£8.2%, respectively (p<0.05) (Fig4B). Thus, the
presence of insulin significantly improved the cell survival at 3mM glucose concentrations
up to 72hours. In the case of 0mM glucose, the insulin addition surprisingly deteriorated
the cell survival and the cell death rates of the presence or absence of insulin were 67.0
10.5% and 37.3 + 8.9%, respectively (p<0.05) (Fig. 4A), At 30mM glucose condition, the
insulin addition did not give any significant effects on the cell survival (p=0.789) (Fig. 4C).
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The DG granule cell death in the presence or absence of insulin

The difference in cell death rates on the DG granule cell was examined in the presence or
absence of 1nM insulin. The presence and absence of insulin at 3mM glucose showed no
significant difference after 48 hours (22.1% 3.2 % and 25.5+3.6%, respectively) (p=0.4963).
After 72 hours, the insulin showed minor protective effect against the cell death (31.8 =4.2%
and 46.6 + 4.1%, respectively) (p=0.0161). At OmM glucose, the insulin addition
deteriorated the cell survival and the cell death rates after 48 hours in the presence or absence
of insulin were 47.2 = 9.2% and 23.9 = 3.7%, respectively (p<0.05) (Fig. 5A) . At30mM
glucose condition, no significant difference was observed between the insulin and
non-insulin groups (p=0.2074) (Fig. 5C).
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DISCUSSION

In the present experiment, we examined the insulin effects on the neuronal cell death
during low glucose condition, and found that the insulin protected neuronal cell with low
glucose, but increased neuronal cell death in case of glucose free condition (Fig. 4A, Fig.
5A). Moreover, while the DG had more tolerant against low glucose, the neuroprotective
effect of insulin during low glucose had more prominent on the CA1 than the DG.
Neurotrophic effects of serum

When serum is contained, a low neuronal cell death rate was observed in comparison
with addition of insulin only (1nM), suggesting that a variety of factors contained in serum
work for neuronal cell protection in addition to insulin (Fig. 1). Neurotrophic factors such
as NGF (nerve growth factor) or BDNF (brain derived néurotrophic factor), and vitamin B
family in serum are supposed to restrain apoptosis and promote neuronal survival (18, 27.
Our results were coincident to these previous results.

The CA1 vulnerability to hypoglycemia

Selective vulnerability has been well known to date and particularly the CA1 is one of
the most vulnerable sites in the CNS against a stress. It is commonly believed that
glutamate excitotoxicity relates to selective vulnerability.  Glutamate level in the
hippocampus of mouse after ischemic stress was greater in the CA1 than that of the DG (6,
14,25). Also it has been known that the extracellular glutamate level rises in a glucose-free
condition (24). As for the functional selectivity, the field potential was reported to be well
maintained with low glucose concentration on the DG compared with the CAl. Li et al
explained these selectivity as the differential activity of phosphofructokinase (PFK), the key
enzyme for glycolysis. And the DG, indeed, has a high PFK activity than that of the CA1
(10). We found that the DG showed more tolerance to hypoglycemia than the CAl at ImM
glucose concentration (Fig. 2, Fig.3), indicating the lower dependency of the DG granule
neurons on glucose for their survival, Albeit it is a well-known phenomenon, the precise
mechanism of the difference of glucose sensitivity between the CAl and the DG neurons
will need more exploration.

The protective effect of insulin during low glucose

The culture medium was adjusted to prepare insulin at InM concentration. This
concentration corresponds to a blood insulin level following a hypodermic injection of about
27 units of insulin as a conversion to a 50 kg human body (8). This amount is nearly equal
to that used in a clinical treatment. There is a report on the experiment in that 4nM insulin
successfully worked for the suppression of cell apoptosis in the CNS (23). Our results
showed even the smaller dose of insulin could affect the neuronal cell death. In CAl, 3mM
glucose with insulin treatment inhibited prominently the neuronal cell death (Fig. 4B). A
question arose whether lower than 3mM glucose concentration with insulin might alter the
cell death rate.  We conducted the experiment at the condition of 1.5mM and 2mM glucose,
and obtained an advantageous result for survival of the neuronal cell (data not show). In
case of the DG, the insulin treatment did not inhibit the neuronal cell death (Fig. 5B, Fig. 5C).
Insulin takes glicose actively in the cell through the GLUT4 translocation to convert ca. 50%
of glucose to energy. Furthermore, insulin activates MAP kinase (mitogen-activated
protein kinase) ~working as a cell propagation factor to support the neuronal cell (12). In
addition, insulin induces the expression of BDNF (29). A cooperation of these factors takes
probably an important role for survival of neurons. In the present study, the prominent
inhibition of the neuronal cell death was found only in the CAl. The levels of mRNA of
GLUTA4 were found to express in higher degree in the CA1 than the DG (2). Therefore, the
CA1 neurons will be affected more influence by insulin than the DG neurons, at least on
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glucose transport.  Moreover, it has been reported that the depression of the insulin signal in
the CNS increases GSK activity (Glycogen Synthase Kinase-3), that may lead to induce the
neuronal cell death (1). GSK-3 expresses more in the CAl pyramidal neurons and these
preference in the CAl may a least partially explain the insulin-sensitive selective
vulnerability of the CAl (4).
The acceleration of cell death by insulin during glucose deprivation

It has long been alleged that a possible secondary action of insulin includes affecting an
amino acid metabolism and a lipid metabolism to enhance protein synthesis and lipid
synthesis resulting in inhibiting the use of a substrate other than glucose by the cell. Thus,
the environment lacking an enough amount of glucose may allow insulin to work negatively
for cell survival (7). AMPK (AMP-activated protein kinase) that enhances the glucose
transportation in a hypoxia tissue, is reduced by insulin treatment in an ischemic heart
muscle (3, 5,9, 19, 28). It is possible that insulin may block the induction of AMPK during
glucose deprivation, and thus result in increase of cell death. Interestingly, an in vivo
experiment reported that the neuronal protection effect of insulin showed the U-shaped curve,
having a maximum peak in 6 to 7TmM of the glucose level, and insulin rather accelerated the
neuronal cell death at 2 to 3mM or the lower concentration of glucose (30).

CONCLUSION

Insulin therapy is now a common strategy for diabetic treatment, and caution for its
therapy has been paid mainly on the treatment related hypoglycemia.  Our study indicated
that in central nervous system, insulin indeed has double-edged effects, and while neuronal
survival is promoted in the presence of the adequate concentrations of glucose, the hazard
effect of hypoglycemia may be accelerated by the presence of insulin. The selective
vulnerability did not exist in this hypoglycemia-related insulin neuronal toxicity. The
further study for this mechanism especially on the molecular cascade may lead to the better
clinical management for diabetic care particularly on the prevention of the CNS
complication.
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